Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
Add more filters

Publication year range
1.
Cell ; 183(5): 1185-1201.e20, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33242417

ABSTRACT

Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.


Subject(s)
Genomics , Mitochondria/pathology , Space Flight , Stress, Physiological , Animals , Circadian Rhythm , Extracellular Matrix/metabolism , Humans , Immunity, Innate , Lipid Metabolism , Metabolic Flux Analysis , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscles/immunology , Organ Specificity , Smell/physiology
2.
J Neurochem ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39318241

ABSTRACT

Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment are lacking. We asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound (CDDO-EA) mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received CDDO-EA (400 µg/g of food) or a control diet (vehicle, Veh) for 5 days and Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: (1) location discrimination reversal (tests behavior pattern separation and cognitive flexibility, abilities reliant on the dentate gyrus) and (2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment's end (14.25-month post-IRR), an index relevant to neurogenesis was quantified (doublecortin-immunoreactive [DCX+] dentate gyrus immature neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. One radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had slower stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice showed normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change relevant to neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.

3.
Cell Mol Life Sci ; 80(1): 29, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36607431

ABSTRACT

Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.


Subject(s)
Hippocampus , Radiation Exposure , Female , Mice , Male , Animals , Synapses , Long-Term Potentiation , Neuronal Plasticity
4.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201636

ABSTRACT

Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth's protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, like the brain, and have shown males to be more vulnerable than their female counterparts. However, astronauts will be exposed to a combination of ions that may result in additive effects differing from those of any one particle species. To better understand this nuance, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like mice with 0, 0.5, or 0.75 Gy galactic cosmic ray simulation (GCRsim) or 0, 0.75, or 2 Gy gamma radiation (wild-type only). At 11 months, mice underwent brain and heart MRIs or behavioral tests, after which they were euthanized to assess amyloid-beta pathology, heart and kidney gene expression and fibrosis, and plasma cytokines. Although there were no changes in amyloid-beta pathology, we observed many differences in brain MRIs and behavior, including opposite effects of GCRsim on motor coordination in male and female transgenic mice. Additionally, several genes demonstrated persistent changes in the heart and kidney. Overall, we found sex- and genotype-specific, long-term effects of GCRsim and gamma radiation on the brain, heart, and kidney.


Subject(s)
Alzheimer Disease , Brain , Cosmic Radiation , Gamma Rays , Heart , Kidney , Mice, Transgenic , Animals , Alzheimer Disease/genetics , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Female , Male , Gamma Rays/adverse effects , Brain/radiation effects , Brain/metabolism , Brain/pathology , Brain/diagnostic imaging , Mice , Kidney/radiation effects , Kidney/metabolism , Kidney/pathology , Heart/radiation effects , Cosmic Radiation/adverse effects , Mutation , Sex Characteristics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Disease Models, Animal , Sex Factors
5.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892109

ABSTRACT

Astronauts on exploratory missions will be exposed to galactic cosmic rays (GCR), which can induce neuroinflammation and oxidative stress (OS) and may increase the risk of neurodegenerative disease. As key regulators of inflammation and OS in the CNS, microglial cells may be involved in GCR-induced deficits, and therefore could be a target for neuroprotection. This study assessed the effects of exposure to helium (4He) and iron (56Fe) particles on inflammation and OS in microglia in vitro, to establish a model for testing countermeasure efficacy. Rat microglia were exposed to a single dose of 20 cGy (300 MeV/n) 4He or 2 Gy 56Fe (600 MeV/n), while the control cells were not exposed (0 cGy). Immediately following irradiation, fresh media was applied to the cells, and biomarkers of inflammation (cyclooxygenase-2 [COX-2], nitric oxide synthase [iNOS], phosphorylated IκB-α [pIκB-α], tumor necrosis factor-α [TNFα], and nitrite [NO2-]) and OS (NADPH oxidase [NOX2]) were assessed 24 h later using standard immunochemical techniques. Results showed that radiation did not increase levels of NO2- or protein levels of COX-2, iNOS, pIκB-α, TNFα, or NOX2 compared to non-irradiated control conditions in microglial cells (p > 0.05). Therefore, microglia in isolation may not be the primary cause of neuroinflammation and OS following exposures to helium or iron GCR particles.


Subject(s)
Biomarkers , Cosmic Radiation , Inflammation , Microglia , Oxidative Stress , Animals , Microglia/metabolism , Microglia/radiation effects , Cosmic Radiation/adverse effects , Oxidative Stress/radiation effects , Rats , Inflammation/metabolism , Inflammation/etiology , Biomarkers/metabolism , Nitric Oxide Synthase Type II/metabolism , Iron/metabolism , Cyclooxygenase 2/metabolism , Helium/pharmacology , Tumor Necrosis Factor-alpha/metabolism , NADPH Oxidase 2/metabolism
6.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542258

ABSTRACT

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


Subject(s)
DNA Breaks, Double-Stranded , Mouse Embryonic Stem Cells , Animals , Mice , DNA Repair , DNA End-Joining Repair , Sequence Analysis, RNA , Gene Expression Profiling
7.
J Radiol Prot ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39326443

ABSTRACT

According to NASA's plans, a human travel to the Moon is planned by the end of 2025 with the Artemis II mission, and humans should land on the Moon again in 2026. Exposure to space radiation is one of the main risks for the crew members; while for these short missions the doses from galactic cosmic rays would be relatively low, the possible occurrence of an intense Solar Particle Event (SPE) represents a major concern, especially considering that in 2025 the Sun activity will be at its peak. Quantifying the amount and the effects of such exposure is therefore crucial, to identify shielding conditions that allow respecting the dose limits established by the various space agencies. By exploiting an interface between the BIANCA biophysical model and the FLUKA Monte Carlo radiation transport code, in this work we implemented a male and a female voxel phantom and we calculated absorbed doses and Gy-Eq doses in the various tissues/organs, as well as effective doses, following exposure to the August 1972 SPE, the most intense event of the modern era. The calculations were performed for different values of Al-shielding; a 10 g/cm2 Al shielding was found to be sufficient to respect the organ dose limits for 30-days missions. A detailed comparison between male and female doses was then carried out, also considering that the Artemis II crew will include a woman. The results showed that female doses tend to be higher than male doses, especially with light shielding. This should be taken into account in mission design, also considering that, in a typical lunar mission, up to 15% of time may be spent in extra-vehicular activities, and thus with light shielding. More generally, this work outlines the importance of performing separate calculations for male and female astronauts when dealing with radiation doses and effects. .

8.
J Pineal Res ; 74(1): e12834, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36203395

ABSTRACT

Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.


Subject(s)
Chronobiology Disorders , Circadian Clocks , Melatonin , Radiation Injuries , Space Flight , Humans , Melatonin/pharmacology , Melatonin/physiology , Circadian Rhythm/physiology
9.
Exp Brain Res ; 241(2): 427-440, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36574036

ABSTRACT

Deep space flight missions will expose astronauts to multiple stressors, including sleep fragmentation and space radiation. There is debate over whether sleep disruptions are an issue in deep space. While these stressors independently impair sensorimotor function, the combined effects on performance are currently unknown. String-pulling behavior involves highly organized bimanual reach-to-grasp and withdraw movements. This behavior was examined under rested wakeful conditions and immediately following one session of sleep fragmentation in Sham and irradiated rats 3 months after exposure (10 cGy 4Helium or 5-ion simulated Galactic Cosmic Radiation). Sleep fragmentation disrupted several aspects of string-pulling behavior, such that rats' ability to grasp the string was reduced, reach endpoint concentration was more variable, and distance traveled by the nose increased in the Y-range compared to rested wakeful performance. Overall, irradiated rats missed the string more than Sham rats 3 months post-exposure. Irradiated rats also exhibited differential impairments at 3 months, with additional deficits unveiled after sleep fragmentation. 4Helium-exposed rats took longer to approach the string after sleep fragmentation. Further, rats exposed to 4Helium traveled shorter withdraw distances 3 months after irradiation, while this only emerged in the other irradiated group after sleep fragmentation. These findings identify sleep fragmentation as a risk for fine motor dysfunction in Sham and irradiated conditions, in addition to radiation exposure. There may be complex temporal alterations in performance that are stressor- and ion-dependent. Thus, it is critical to implement appropriate models of multi-flight stressors and performance assessments in preparation for future deep space flight missions.


Subject(s)
Sleep Deprivation , Space Flight , Rats , Animals , Humans , Sleep Deprivation/complications , Helium , Movement , Astronauts
10.
Radiat Environ Biophys ; 62(2): 221-234, 2023 05.
Article in English | MEDLINE | ID: mdl-37062024

ABSTRACT

Space radiation exposure from omnipresent Galactic Cosmic Rays (GCRs) in interplanetary space poses a serious carcinogenic risk to astronauts due to the-limited or absent-protective effect of the Earth's magnetosphere and, in particular, the terrestrial atmosphere. The radiation risk is directly influenced by the quality of the radiation, i.e., its pattern of energy deposition at the micron/DNA scale. For stochastic biological effects, radiation quality is described by the quality factor, [Formula: see text], which can be defined as a function of Linear Energy Transfer (LET) or the microdosimetric lineal energy ([Formula: see text]). In the present work, the average [Formula: see text] of GCR for different mission scenarios was calculated using a modified version of the microdosimetric Theory of Dual Radiation Action (TDRA). NASA's OLTARIS platform was utilized to generate the radiation environment behind different aluminum shielding (0-30 g/cm2) for a typical mission scenario in low-earth orbit (LEO) and in deep space. The microdosimetric lineal energy spectra of ions ([Formula: see text]) in 1 µm liquid water spheres were calculated by a generalized analytical model which considers energy-loss fluctuations and δ-ray transport inside the irradiated medium. The present TDRA-based [Formula: see text]-values for the LEO and deep space missions were found to differ by up to 10% and 14% from the corresponding ICRP-based [Formula: see text]-values and up to 3% and 6% from NASA's [Formula: see text]-model. In addition, they were found to be in good agreement with the [Formula: see text]-values measured in the International Space Station (ISS) and by the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) which represent, respectively, a LEO and deep space orbit.


Subject(s)
Cosmic Radiation , Radiation Exposure , Space Flight , Humans , Astronauts , Relative Biological Effectiveness , Ions
11.
Sensors (Basel) ; 23(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37050619

ABSTRACT

LIDAL (Light Ion Detector for ALTEA, Anomalous Long-Term Effects on Astronauts) is a radiation detector designed to measure the flux, the energy spectra and, for the first time, the time-of-flight of ions in a space habitat. It features a combination of striped silicon sensors for the measurement of deposited energy (using the ALTEA device, which operated from 2006 to 2012 in the International Space Station) and fast scintillators for the time-of-flight measurement. LIDAL was tested and calibrated using the proton beam line at TIFPA (Trento Institute for Fundamental Physics Application) and the carbon beam line at CNAO (National Center for Oncology Hadron-therapy) in 2019. The performance of the time-of-flight system featured a time resolution (sigma) less than 100 ps. Here, we describe the detector and the results of these tests, providing ground calibration curves along with the methodology established for processing the detector's data. LIDAL was uploaded in the International Space Station in November 2019 and it has been operative in the Columbus module since January 2020.

12.
Sensors (Basel) ; 23(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37430620

ABSTRACT

As a basic task and key link of space situational awareness, space target recognition has become crucial in threat analysis, communication reconnaissance and electronic countermeasures. Using the fingerprint features carried by the electromagnetic signal to recognize is an effective method. Because traditional radiation source recognition technologies are difficult to obtain satisfactory expert features, automatic feature extraction methods based on deep learning have become popular. Although many deep learning schemes have been proposed, most of them are only used to solve the inter-class separable problem and ignore the intra-class compactness. In addition, the openness of the real space may invalidate the existing closed-set recognition methods. In order to solve the above problems, inspired by the application of prototype learning in image recognition, we propose a novel method for recognizing space radiation sources based on a multi-scale residual prototype learning network (MSRPLNet). The method can be used for both the closed- and open-set recognition of space radiation sources. Furthermore, we also design a joint decision algorithm for an open-set recognition task to identify unknown radiation sources. To verify the effectiveness and reliability of the proposed method, we built a set of satellite signal observation and receiving systems in a real external environment and collected eight Iridium signals. The experimental results show that the accuracy of our proposed method can reach 98.34% and 91.04% for the closed- and open-set recognition of eight Iridium targets, respectively. Compared to similar research works, our method has obvious advantages.

13.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835027

ABSTRACT

Whole-body exposure to high-energy particle radiation remains an unmitigated hazard to human health in space. Ongoing experiments at the NASA Space Radiation Laboratory and elsewhere repeatedly show persistent changes in brain function long after exposure to simulations of this unique radiation environment, although, as is also the case with proton radiotherapy sequelae, how this occurs and especially how it interacts with common comorbidities is not well-understood. Here, we report modest differential changes in behavior and brain pathology between male and female Alzheimer's-like and wildtype littermate mice 7-8 months after exposure to 0, 0.5, or 2 Gy of 1 GeV proton radiation. The mice were examined with a battery of behavior tests and assayed for amyloid beta pathology, synaptic markers, microbleeds, microglial reactivity, and plasma cytokines. In general, the Alzheimer's model mice were more prone than their wildtype littermates to radiation-induced behavior changes, and hippocampal staining for amyloid beta pathology and microglial activation in these mice revealed a dose-dependent reduction in males but not in females. In summary, radiation-induced, long-term changes in behavior and pathology, although modest, appear specific to both sex and the underlying disease state.


Subject(s)
Alzheimer Disease , Male , Mice , Female , Humans , Animals , Alzheimer Disease/pathology , Protons , Amyloid beta-Peptides/metabolism , Dose-Response Relationship, Radiation , Hippocampus/metabolism , Mutation , Mice, Transgenic
14.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108815

ABSTRACT

DNA damage in astronauts induced by cosmic radiation poses a major barrier to human space exploration. Cellular responses and repair of the most lethal DNA double-strand breaks (DSBs) are crucial for genomic integrity and cell survival. Post-translational modifications (PTMs), including phosphorylation, ubiquitylation, and SUMOylation, are among the regulatory factors modulating a delicate balance and choice between predominant DSB repair pathways, such as non-homologous end joining (NHEJ) and homologous recombination (HR). In this review, we focused on the engagement of proteins in the DNA damage response (DDR) modulated by phosphorylation and ubiquitylation, including ATM, DNA-PKcs, CtIP, MDM2, and ubiquitin ligases. The involvement and function of acetylation, methylation, PARylation, and their essential proteins were also investigated, providing a repository of candidate targets for DDR regulators. However, there is a lack of radioprotectors in spite of their consideration in the discovery of radiosensitizers. We proposed new perspectives for the research and development of future agents against space radiation by the systematic integration and utilization of evolutionary strategies, including multi-omics analyses, rational computing methods, drug repositioning, and combinations of drugs and targets, which may facilitate the use of radioprotectors in practical applications in human space exploration to combat fatal radiation hazards.


Subject(s)
DNA Damage , Protein Processing, Post-Translational , Humans , Phosphorylation , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA , DNA Repair
15.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982525

ABSTRACT

The lifetime effects of space irradiation (IR) on left ventricular (LV) function are unknown. The cardiac effects induced by space-type IR, specifically 5-ion simplified galactic cosmic ray simulation (simGCRsim), are yet to be discovered. Three-month-old, age-matched, male C57BL/6J mice were irradiated with 137Cs gamma (γ; 100, 200 cGy) and simGCRsim (50 and 100 cGy). LV function was assessed via transthoracic echocardiography at 14 and 28 days (early), and at 365, 440, and 660 (late) days post IR. We measured the endothelial function marker brain natriuretic peptide in plasma at three late timepoints. We assessed the mRNA expression of the genes involved in cardiac remodeling, fibrosis, inflammation, and calcium handling in LVs harvested at 660 days post IR. All IR groups had impaired global LV systolic function at 14, 28, and 365 days. At 660 days, 50 cGy simGCRsim-IR mice exhibited preserved LV systolic function with altered LV size and mass. At this timepoint, the simGCRsim-IR mice had elevated levels of cardiac fibrosis, inflammation, and hypertrophy markers Tgfß1, Mcp1, Mmp9, and ßmhc, suggesting that space-type IR may induce the cardiac remodeling processes that are commonly associated with diastolic dysfunction. IR groups showing statistical significance were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). The observed dose-response shape did not indicate a lower threshold at these IR doses. A single full-body IR at doses of 100-200 cGy for γ-IR, and 50-100 cGy for simGCRsim-IR decreases the global LV systolic function in WT mice as early as 14 and 28 days after exposure, and at 660 days post IR. Interestingly, there is an intermediate time point (365 days) where the impairment in LV function is observed. These findings do not exclude the possibility of increased acute or degenerative cardiovascular disease risks at lower doses of space-type IR, and/or when combined with other space travel-associated stressors such as microgravity.


Subject(s)
Cardiomyopathies , Radiation Exposure , Male , Mice , Animals , Mice, Inbred C57BL , Ventricular Remodeling , Travel , Ventricular Function, Left , Fibrosis , Inflammation
16.
Nucl Instrum Methods Phys Res B ; 534: 26-34, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36644589

ABSTRACT

Proton interactions with 16O or 12C nuclei are frequent nuclear interaction leading to secondary radiation in tissues for space radiation and cancer therapy with protons or ion beams. The fragmentation of these ions by protons produces a large number of heavy ion (A>4) target or projectile fragments often with high ionization density. Here we develop an analytical model of energy dependent proton-16O and proton-12C cross sections for isotopic nuclei production. Using experimental data and a 2nd order optical model an accurate formula for the absorption cross section from <10 MeV/u to >10 GeV/u is obtained. The energy dependence of the elemental and isotopic cross sections is modeled as multiplicities scaled to absorption cross section with average isotopic fractions estimated from experimental data. We show that this approach results in accurate analytic formulae for isotopic fragmentation cross sections over the full energy range in hadron therapy and space radiation protection studies.

17.
Exp Eye Res ; 223: 109192, 2022 10.
Article in English | MEDLINE | ID: mdl-35917999

ABSTRACT

This article explores the role that oxygen levels in US spacecraft from 1961 to 1998 have on the development of cataracts induced by space radiation in astronauts and whether oxygen levels are well accounted for in experimental studies examining cataractogenesis. The first epidemiological report in 2001 linked an increased risk of the primary types of cataracts, and nuclear cataract alone, for astronauts with higher lens doses. However, later studies of US astronauts in 2009 and 2012 reported a higher risk of cortical cataract and posterior subcapsular cataract, but not for nuclear cataract. Firstly, it is postulated that the high oxygen level atmospheres of spacecraft employed before 1976 were a factor in promoting nuclear cataract. The high oxygen levels of hyperbaric oxygen therapy are reportedly associated with nuclear cataract, and the low intraocular oxygen levels of diabetic patients are possibly linked to their higher risk of posterior subcapsular cataract and cortical cataract. Secondly, it is hypothesized that the normal hypoxic environment of the lens and lens epithelial cells (LECs), and all stem/progenitor cells in general, have an optimal Goldilocks range of oxygen levels. Too high a lenticular oxygen level increases oxidative stress and radiosensitivity due to the oxygen effect. Whereas too low an oxygen tension also increases oxidative stress and disrupts LEC differentiation. Even so, a focused literature search of the PubMed database of in vitro experiments with LECs shows that studies rarely account for the hypoxic state of the normal lens, whether ionizing radiation is a factor or not. It is therefore recommended that ocular physioxic levels should therefore be considered when designing in vitro studies to better understand the progression of cataractogenesis on long-duration missions to the Moon and Mars.


Subject(s)
Cataract , Lens, Crystalline , Astronauts , Cataract/etiology , Humans , Lens, Crystalline/radiation effects , Oxygen
18.
Int J Mol Sci ; 23(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806469

ABSTRACT

Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.


Subject(s)
Gynecology , Neoplasms, Radiation-Induced , Space Flight , Weightlessness , Astronauts , Female , Humans , Male , Weightlessness/adverse effects
19.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457139

ABSTRACT

The biological effects of high linear energy transfer (LET) radiation show both a qualitative and quantitative difference when compared to low-LET radiation. However, models used to estimate risks ignore qualitative differences and involve extensive use of gamma-ray data, including low-LET radiation epidemiology, quality factors (QF), and dose and dose-rate effectiveness factors (DDREF). We consider a risk prediction that avoids gamma-ray data by formulating a track structure model of excess relative risk (ERR) with parameters estimated from animal studies using high-LET radiation. The ERR model is applied with U.S. population cancer data to predict lifetime risks to astronauts. Results for male liver and female breast cancer risk show that the ERR model agrees fairly well with estimates of a QF model on non-targeted effects (NTE) and is about 2-fold higher than the QF model that ignores NTE. For male or female lung cancer risk, the ERR model predicts about a 3-fold and more than 7-fold lower risk compared to the QF models with or without NTE, respectively. We suggest a relative risk approach coupled with improved models of tissue-specific cancers should be pursued to reduce uncertainties in space radiation risk projections. This approach would avoid low-LET uncertainties, while including qualitive effects specific to high-LET radiation.


Subject(s)
Cosmic Radiation , Neoplasms, Radiation-Induced , Space Flight , Animals , Astronauts , Cosmic Radiation/adverse effects , Female , Humans , Linear Energy Transfer , Male , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology , Risk
20.
J Radiol Prot ; 42(2)2022 05 04.
Article in English | MEDLINE | ID: mdl-35453133

ABSTRACT

Space research seems to be object of a renewed interest, also considering that human missions to the Moon, and possibly Mars, are being planned. Among the risks affecting such missions, astronauts' exposure to space radiation is a major concern. In this work, the question of the evaluation of biological damage by Galactic Cosmic Rays (GCR) was addressed by a biophysical model called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), which simulates the induction of cell death and chromosome aberrations by different ions. While previously BIANCA has been validated for calculating cell death along hadrontherapy beams up to oxygen, herein the approach was extended up to Fe ions. Specifically, experimental survival curves available in literature for V79 cells irradiated by Si-, Ne-, Ar- and Fe-ions were reproduced, and a reference radiobiological database describing V79 cell survival as a function of ion type (1 ⩽Z⩽ 26), energy and dose was constructed. Analogous databases were generated for Chinese hamster ovary hamster cells and human skin fibroblasts, finding good agreement between simulations and data. Concerning chromosome aberrations, which are regarded as radiation risk biomarkers, dicentric data in human lymphocytes irradiated by heavy ions up to iron were reproduced, and a radiobiological database allowing calculation of lymphocyte dicentric yields as a function of dose, ion type (1 ⩽Z⩽ 26) and energy was constructed. Following interface between BIANCA and the FLUKA Monte Carlo transport code, a feasibility study was performed to calculate the relative biological effectiveness (RBE) of different GCR spectrum components, for both dicentrics and cell death. Fe-ions, although representing only 10% of the total absorbed dose, were found to be responsible for about 35%-40% of the RBE-weighted dose. Interestingly, the RBE for dicentrics was higher than that for cell survival. More generally, this work shows that BIANCA can calculate RBE values for cell death and lymphocyte dicentrics not only for ion therapy, but also for space radiation.


Subject(s)
Cosmic Radiation , Heavy Ions , Animals , CHO Cells , Cell Death , Chromosome Aberrations , Cosmic Radiation/adverse effects , Cricetinae , Cricetulus , Humans , Iron
SELECTION OF CITATIONS
SEARCH DETAIL