Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Semin Cell Dev Biol ; 150-151: 58-65, 2023 12.
Article in English | MEDLINE | ID: mdl-36470715

ABSTRACT

Homeostatic balance in the intestinal epithelium relies on a fast cellular turnover, which is coordinated by an intricate interplay between biochemical signalling, mechanical forces and organ geometry. We review recent modelling approaches that have been developed to understand different facets of this remarkable homeostatic equilibrium. Existing models offer different, albeit complementary, perspectives on the problem. First, biomechanical models aim to explain the local and global mechanical stresses driving cell renewal as well as tissue shape maintenance. Second, compartmental models provide insights into the conditions necessary to keep a constant flow of cells with well-defined ratios of cell types, and how perturbations can lead to an unbalance of relative compartment sizes. A third family of models address, at the cellular level, the nature and regulation of stem fate choices that are necessary to fuel cellular turnover. We also review how these different approaches are starting to be integrated together across scales, to provide quantitative predictions and new conceptual frameworks to think about the dynamics of cell renewal in complex tissues.


Subject(s)
Signal Transduction , Stem Cells , Animals , Stem Cells/metabolism , Intestinal Mucosa , Homeostasis , Mammals
2.
FASEB J ; 38(6): e23538, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38482729

ABSTRACT

Stem cells respond and remember mechanical cues from the microenvironment, which modulates their therapeutic effects. Chromatin organization and energy metabolism regulate the stem cell fate induced by mechanical cues. However, the mechanism of mechanical memory is still unclear. This study aimed to investigate the effects of mechanical amplitude, frequency, duration, and stretch cycle on mechanical memory in mesenchymal stem cells. It showed that the amplitude was the dominant parameter to the persistence of cell alignment. F-actin, paxillin, and nuclear deformation are more prone to be remolded than cell alignment. Stretching induces transcriptional memory, resulting in greater transcription upon subsequent reloading. Cell metabolism displays mechanical memory with sustained mitochondrial fusion and increased ATP production. The mechanical memory of chromatin condensation is mediated by histone H3 lysine 27 trimethylation, leading to much higher smooth muscle differentiation efficiency. Interestingly, mechanical memory can be transmitted based on direct cell-cell interaction, and stretched cells can remodel the metabolic homeostasis of static cells. Our results provide insight into the underlying mechanism of mechanical memory and its potential benefits for stem cell therapy.


Subject(s)
Chromatin , Mesenchymal Stem Cells , Chromatin/metabolism , Stress, Mechanical , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Muscle, Smooth , Cell Proliferation
3.
Cell Mol Life Sci ; 81(1): 26, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212548

ABSTRACT

Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.


Subject(s)
Mitochondria , Stem Cells , Cell Differentiation/genetics , Mitochondria/metabolism , Epigenesis, Genetic , Cellular Senescence , DNA, Mitochondrial/genetics
4.
Development ; 148(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34100065

ABSTRACT

Adult tissues in multicellular organisms typically contain a variety of stem, progenitor and differentiated cell types arranged in a lineage hierarchy that regulates healthy tissue turnover. Lineage hierarchies in disparate tissues often exhibit common features, yet the general principles regulating their architecture are not known. Here, we provide a formal framework for understanding the relationship between cell molecular 'states' and cell 'types', based on the topology of admissible cell state trajectories. We show that a self-renewing cell type - if defined as suggested by this framework - must reside at the top of any homeostatic renewing lineage hierarchy, and only there. This architecture arises as a natural consequence of homeostasis, and indeed is the only possible way that lineage architectures can be constructed to support homeostasis in renewing tissues. Furthermore, under suitable feedback regulation, for example from the stem cell niche, we show that the property of 'stemness' is entirely determined by the cell environment, in accordance with the notion that stem cell identities are contextual and not determined by hard-wired, cell-intrinsic characteristics. This article has an associated 'The people behind the papers' interview.


Subject(s)
Cell Lineage/physiology , Cell Self Renewal/physiology , Stem Cells/physiology , Animals , Cell Differentiation , Homeostasis , Humans , Models, Biological , Stem Cell Niche
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725165

ABSTRACT

Here, we study the dynamical expression of endogenously labeled Hes1, a transcriptional repressor implicated in controlling cell proliferation, to understand how cell-cycle length heterogeneity is generated in estrogen receptor (ER)+ breast cancer cells. We find that Hes1 shows oscillatory expression with ∼25 h periodicity and during each cell cycle has a variable peak in G1, a trough around G1-S transition, and a less variable second peak in G2/M. Compared to other subpopulations, the cell cycle in CD44HighCD24Low cancer stem cells is longest and most variable. Most cells divide around the peak of the Hes1 expression wave, but preceding mitoses in slow dividing CD44HighCD24Low cells appear phase-shifted, resulting in a late-onset Hes1 peak in G1. The position, duration, and shape of this peak, rather than the Hes1 expression levels, are good predictors of cell-cycle length. Diminishing Hes1 oscillations by enforcing sustained expression slows down the cell cycle, impairs proliferation, abolishes the dynamic expression of p21, and increases the percentage of CD44HighCD24Low cells. Reciprocally, blocking the cell cycle causes an elongation of Hes1 periodicity, suggesting a bidirectional interaction of the Hes1 oscillator and the cell cycle. We propose that Hes1 oscillations are functionally important for the efficient progression of the cell cycle and that the position of mitosis in relation to the Hes1 wave underlies cell-cycle length heterogeneity in cancer cell subpopulations.


Subject(s)
Breast Neoplasms/metabolism , Cell Cycle , Circadian Rhythm , Receptors, Estrogen/metabolism , Transcription Factor HES-1/metabolism , Humans , MCF-7 Cells , Neoplastic Stem Cells/physiology
6.
Dev Biol ; 491: 43-55, 2022 11.
Article in English | MEDLINE | ID: mdl-36063869

ABSTRACT

Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Argonaute Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Germ Cells/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Male , RNA/metabolism , RNA Nucleotidyltransferases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Notch/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism
7.
Cell Physiol Biochem ; 56(4): 436-448, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36037065

ABSTRACT

BACKGROUND/AIMS: It is unknown whether cancer stem cells respond differentially to treatment compared with progeny, potentially providing therapeutic vulnerabilities. Our program pioneered use of ultra-high single dose radiotherapy, which cures diverse metastatic diseases at a higher rate (90-95%) than conventional fractionation (~65%). Single dose radiotherapy engages a distinct biology involving microvascular acid sphingomyelinase/ceramide signaling, which, via NADPH oxidase-2-dependent perfusion defects, initiates an adaptive tumor SUMO Stress Response that globally-inactivates homologous recombination repair of double stand breaks, conferring cure. Accumulating data show diverse stem cells display heightened-dependence on homologous recombination repair to repair resolve double stand breaks. METHODS: Here we use colorectal cancer patient-derived xenografts containing logarithmically-increased Lgr5+ stem cells to explore whether optimizing engagement of this acid sphingomyelinase dependent biology enhances stem cell dependent tumor cure. RESULTS: We show radioresistant colorectal cancer patient-derived xenograft CLR27-2 contains radioresistant microvasculature and stem cells, whereas radiosensitive colorectal cancer patient-derived xenograft CLR1-1 contains radiosensitive microvasculature and stem cells. Pharmacologic or gene therapy enhancement of single dose radiotherapy-induced acid sphingomyelinase/ceramide-mediated microvascular dysfunction dramatically sensitizes CLR27-2 homologous recombination repair inactivation, converting Lgr5+ cells from the most resistant to most sensitive patient-derived xenograft population, yielding tumor cure. CONCLUSION: We posit homologous recombination repair represents a vulnerability determining colorectal cancer stem cell fate, approachable therapeutically using single dose radiotherapy.


Subject(s)
Colorectal Neoplasms , Vascular System Injuries , Animals , Ceramides , Colorectal Neoplasms/genetics , Disease Models, Animal , Humans , Neoplastic Stem Cells , Sphingomyelin Phosphodiesterase/genetics
8.
Acta Biotheor ; 70(4): 24, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35962861

ABSTRACT

Much of the current research in regenerative medicine concentrates on stem-cell therapy that exploits the regenerative capacities of stem cells when injected into different types of human tissues. Although new therapeutic paths have been opened up by induced pluripotent cells and human mesenchymal cells, the rate of success is still low and mainly due to the difficulties of managing cell proliferation and differentiation, giving rise to non-controlled stem cell differentiation that ultimately leads to cancer. Despite being still far from becoming a reality, these studies highlight the role of physical and biological constraints (e.g., cues and morphogenetic fields) placed by tissue microenvironment on stem cell fate. This asks for a clarification of the coupling of stem cells and microenvironmental factors in regenerative medicine. We argue that extracellular matrix and stem cells have a causal reciprocal and asymmetric relationship in that the 3D organization and composition of the extracellular matrix establish a spatial, temporal, and mechanical control over the fate of stem cells, which enable them to interact and control (as well as be controlled by) the cellular components and soluble factors of microenvironment. Such an account clarifies the notions of stemness and stem cell regeneration consistently with that of microenvironment.


Subject(s)
Regenerative Medicine , Tissue Engineering , Animals , Cell Differentiation , Humans , Stem Cells
9.
EMBO J ; 36(13): 1946-1962, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28515121

ABSTRACT

Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self-renewal) is crucial for tissue repair. Here, we showed that AMP-activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self-renewal. AMPKα1-/- MuSCs displayed a high self-renewal rate, which impairs muscle regeneration. AMPKα1-/- MuSCs showed a Warburg-like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non-limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1-/- phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1-/- MuSC self-renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cell Differentiation , Cell Self Renewal , Homeostasis , L-Lactate Dehydrogenase/metabolism , Muscles/cytology , Stem Cells/metabolism , Animals , Glycolysis , Mice , Mice, Knockout
10.
Stem Cells ; 38(1): 102-117, 2020 01.
Article in English | MEDLINE | ID: mdl-31648392

ABSTRACT

Nuclear actin plays a critical role in mediating mesenchymal stem cell (MSC) fate commitment. In marrow-derived MSCs, the principal diaphanous-related formin Diaph3 (mDia2) is present in the nucleus and regulates intranuclear actin polymerization, whereas Diaph1 (mDia1) is localized to the cytoplasm and controls cytoplasmic actin polymerization. We here show that mDia2 can be used as a tool to query actin-lamin nucleoskeletal structure. Silencing mDia2 affected the nucleoskeletal lamin scaffold, altering nuclear morphology without affecting cytoplasmic actin cytoskeleton, and promoted MSC differentiation. Attempting to target intranuclear actin polymerization by silencing mDia2 led to a profound loss in lamin B1 nuclear envelope structure and integrity, increased nuclear height, and reduced nuclear stiffness without compensatory changes in other actin nucleation factors. Loss of mDia2 with the associated loss in lamin B1 promoted Runx2 transcription and robust osteogenic differentiation and suppressed adipogenic differentiation. Hence, mDia2 is a potent tool to query intranuclear actin-lamin nucleoskeletal structure, and its presence serves to retain multipotent stromal cells in an undifferentiated state.


Subject(s)
Lamin Type B/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Microtubule-Associated Proteins/metabolism , NADPH Dehydrogenase/metabolism , Actins/metabolism , Animals , Cell Differentiation/physiology , Core Binding Factor Alpha 1 Subunit/biosynthesis , Core Binding Factor Alpha 1 Subunit/genetics , Gene Knockdown Techniques , Mice , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , NADPH Dehydrogenase/deficiency , NADPH Dehydrogenase/genetics , Nuclear Envelope/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis
11.
Cell Commun Signal ; 19(1): 41, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33794905

ABSTRACT

The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions. Video abstract.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Lineage , Protein Serine-Threonine Kinases/metabolism , Stem Cells/cytology , Humans , Models, Biological , Protein Serine-Threonine Kinases/chemistry
12.
Cell Biol Toxicol ; 37(6): 811-831, 2021 12.
Article in English | MEDLINE | ID: mdl-34272618

ABSTRACT

Similar to epigenetic DNA and histone modifications, epitranscriptomic modifications (RNA modifications) have emerged as crucial regulators in temporal and spatial gene expression during eukaryotic development. To date, over 170 diverse types of chemical modifications have been identified upon RNA nucleobases. Some of these post-synthesized modifications can be reversibly installed, removed, and decoded by their specific cellular components and play critical roles in different biological processes. Accordingly, dysregulation of RNA modification effectors is tightly orchestrated with developmental processes. Here, we particularly focus on three well-studied RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N1-methyladenosine (m1A), and summarize recent knowledge of underlying mechanisms and critical roles of these RNA modifications in stem cell fate determination, embryonic development, and cancer progression, providing a better understanding of the whole association between epitranscriptomic regulation and mammalian development.


Subject(s)
Adenosine , Neoplasms , Adenosine/metabolism , Animals , Cell Differentiation , Methylation , Neoplasms/genetics , RNA/genetics , RNA/metabolism
13.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576079

ABSTRACT

Previous anatomical studies have shown different functional zones in human nasal septal cartilage (NC). These zones differ in respect to histological architecture and biochemical composition. The aim of this study was to investigate the influence of these zones on the fate of stem cells from a regenerative perspective. Therefore, decellularized porcine septal cartilage was prepared and subjected to histological assessment to demonstrate its equivalence to human cartilage. Decellularized porcine NC (DPNC) exposed distinct surfaces depending on two different histological zones: the outer surface (OS), which is equivalent to the superficial zone, and the inner surface (IS), which is equivalent to the central zone. Human adipose tissue-derived stem cells (ASCs) were isolated from the abdominal fat tissue of five female patients and were seeded on the IS and OS of DPNC, respectively. Cell seeding efficiency (CSE), vitality, proliferation, migration, the production of sulfated glycosaminoglycans (sGAG) and chondrogenic differentiation capacity were evaluated by histological staining (DAPI, Phalloidin, Live-Dead), biochemical assays (alamarBlue®, PicoGreen®, DMMB) and the quantification of gene expression (qPCR). Results show that cell vitality and CSE were not influenced by DPNC zones. ASCs, however, showed a significantly higher proliferation and elevated expression of early chondrogenic differentiation, as well as fibrocartilage markers, on the OS. On the contrary, there was a significantly higher upregulation of hypertrophy marker MMP13 (p < 0.0001) and GAG production (p = 0.0105) on the IS, whereas cell invasion into the three-dimensional DPNC was higher in comparison to the OS. We conclude that the zonal-dependent distinct architecture and composition of NC modulates activities of ASCs seeded on DPNC. These findings might be used for engineering of cartilage substitutes needed in facial reconstructive surgery that yield an equivalent histological and functional structure, such as native NC.


Subject(s)
Adipose Tissue/cytology , Nasal Cartilages/anatomy & histology , Nasal Cartilages/physiology , Regeneration/physiology , Stem Cells/cytology , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Chondrogenesis/genetics , Female , Gene Expression Regulation , Humans , Middle Aged , Nasal Cartilages/cytology , Stem Cells/metabolism , Swine
14.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298973

ABSTRACT

Intestinal cylindrical growth peaks in mice a few weeks after birth, simultaneously with crypt fission activity. It nearly stops after weaning and cannot be reactivated later. Transgenic mice expressing Cd97/Adgre5 in the intestinal epithelium develop a mega-intestine with normal microscopic morphology in adult mice. Here, we demonstrate premature intestinal differentiation in Cd97/Adgre5 transgenic mice at both the cellular and molecular levels until postnatal day 14. Subsequently, the growth of the intestinal epithelium becomes activated and its maturation suppressed. These changes are paralleled by postnatal regulation of growth factors and by an increased expression of secretory cell markers, suggesting growth activation of non-epithelial tissue layers as the origin of enforced tissue growth. To understand postnatal intestinal growth mechanistically, we study epithelial fate decisions during this period with the use of a 3D individual cell-based computer model. In the model, the expansion of the intestinal stem cell (SC) population, a prerequisite for crypt fission, is largely independent of the tissue growth rate and is therefore not spontaneously adaptive. Accordingly, the model suggests that, besides the growth activation of non-epithelial tissue layers, the formation of a mega-intestine requires a released growth control in the epithelium, enabling accelerated SC expansion. The similar intestinal morphology in Cd97/Adgre5 transgenic and wild type mice indicates a synchronization of tissue growth and SC expansion, likely by a crypt density-controlled contact inhibition of growth of intestinal SC proliferation. The formation of a mega-intestine with normal microscopic morphology turns out to originate in changes of autonomous and conditional specification of the intestinal cell fate induced by the activation of Cd97/Adgre5.


Subject(s)
Computer Simulation , Intestinal Mucosa/growth & development , Intestine, Small/growth & development , Models, Biological , Receptors, G-Protein-Coupled/metabolism , Stem Cells/metabolism , Animals , Kruppel-Like Factor 4 , Mice , Mice, Transgenic , Organ Culture Techniques , Receptors, G-Protein-Coupled/genetics
15.
Proc Natl Acad Sci U S A ; 114(41): E8618-E8627, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973866

ABSTRACT

Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology.


Subject(s)
Cell Differentiation , Cell Physiological Phenomena , Cell Size , Mesenchymal Stem Cells/physiology , Water/metabolism , Animals , Cell Lineage , Cells, Cultured , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C
16.
Proc Natl Acad Sci U S A ; 113(27): 7509-14, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27313213

ABSTRACT

To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of "dynamic heterogeneity" may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization.


Subject(s)
Cell Self Renewal , Models, Biological , Animals
17.
Article in English | MEDLINE | ID: mdl-27515674

ABSTRACT

Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.


Subject(s)
Electromagnetic Fields , Stem Cells/physiology , Animals , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Electromagnetic Fields/adverse effects , Humans , Mitochondria/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism
18.
Development ; 142(13): 2250-60, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26130756

ABSTRACT

The maintenance of pluripotency in embryonic stem cells (ESCs), its loss during lineage specification or its re-induction to generate induced pluripotent stem cells are central topics in stem cell biology. To uncover the molecular basis and the design principles of pluripotency control, a multitude of experimental, but also an increasing number of computational, studies have been published. Here, we consider recent reports that apply computational or mathematical modelling approaches to describe the regulatory processes that underlie cell fate decisions in mouse ESCs. We summarise the principles, the strengths and potentials but also the limitations of different computational strategies.


Subject(s)
Cell Lineage , Computer Simulation , Embryonic Stem Cells/cytology , Models, Biological , Animals , Cell Differentiation , Embryonic Stem Cells/metabolism , Humans , Pluripotent Stem Cells
19.
Int J Med Sci ; 15(14): 1631-1639, 2018.
Article in English | MEDLINE | ID: mdl-30588186

ABSTRACT

Melatonin, that regulates many physiological processes including circadian rhythms, is a molecule able to promote osteoblasts maturation in vitro and to prevent bone loss in vivo, while regulating also adipocytes metabolism. In this regard, we have previously shown that melatonin in combination with vitamin D, is able to counteract the appearance of an adipogenic phenotype in adipose derived stem cells (ADSCs), cultured in an adipogenic favoring condition. In the present study, we aimed at evaluating the specific phenotype elicited by melatonin and vitamin D based medium, considering also the involvement of epigenetic regulating genes. ADSCs were cultured in a specific adipogenic conditioned media, in the presence of melatonin alone or with vitamin D. The expression of specific osteogenic related genes was evaluated at different time points, together with the histone deacetylases epigenetic regulators, HDAC1 and Sirtuins (SIRT) 1 and 2. Our results show that melatonin and vitamin D are able to modulate ADSCs commitment towards osteogenic phenotype through the upregulation of HDAC1, SIRT 1 and 2, unfolding an epigenetic regulation in stem cell differentiation and opening novel strategies for future therapeutic balancing of stem cell fate toward adipogenic or osteogenic phenotype.


Subject(s)
Cell Differentiation/genetics , Epigenesis, Genetic/physiology , Melatonin/metabolism , Stem Cells/physiology , Vitamin D/metabolism , Adipocytes/physiology , Adipogenesis/genetics , Adipose Tissue/cytology , Adult , Cells, Cultured , Histone Deacetylase 1/metabolism , Humans , Middle Aged , Osteoblasts/physiology , Osteogenesis/genetics , Primary Cell Culture , Sirtuin 1/metabolism , Sirtuin 2/metabolism , Up-Regulation
20.
Exp Cell Res ; 341(2): 139-46, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26854694

ABSTRACT

In the endothelial recovery process, bone marrow-derived MSCs are a potential source of cells for both research and therapy, and their capacities to self-renew and to differentiate into all the cell types in the human body make them a promising therapeutic agent for remodeling cellular differentiation and a valuable resource for the treatment of many diseases. Based on the results provided in a miRNA database, we selected miRNAs with unique targets in cell fate-related signaling pathways. The tested miRNAs targeting GSK-3ß (miR-26a), platelet-derived growth factor receptor, and CD133 (miR-26a and miR-29b) induced MSC differentiation into functional ECs, whereas miRNAs targeting VEGF receptor (miR-15, miR-144, miR-145, and miR-329) inhibited MSC differentiation into ECs through VEGF stimulation. In addition, the expression levels of these miRNAs were correlated with in vivo physiological endothelial recovery processes. These findings indicate that the miRNA expression profile is distinct for cells in different stages of differentiation from MSCs to ECs and that specific miRNAs can function as regulators of endothelialization.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation/genetics , Cell Lineage , Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , Animals , Cell Differentiation/physiology , Cells, Cultured , Rats, Sprague-Dawley , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL