Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 417
Filter
Add more filters

Publication year range
1.
Cell ; 185(8): 1402-1413.e21, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35366416

ABSTRACT

The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.


Subject(s)
Asian People , DNA, Ancient , Genetics, Population , Asian People/genetics , Genome , History, Ancient , Human Migration/history , Humans , Sulfur
2.
Cell ; 183(4): 890-904.e29, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33157037

ABSTRACT

The Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region's population history. Here, we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.


Subject(s)
Genetics, Population , Grassland , Archaeology , Europe , Female , Gene Frequency/genetics , Gene Pool , Genetic Heterogeneity , Genome, Human , Geography , Haplotypes/genetics , History, Ancient , Humans , Male , Mongolia , Principal Component Analysis , Time Factors
3.
BMC Plant Biol ; 24(1): 839, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242992

ABSTRACT

Dominant species occupy a pivotal role in plant community, influencing the structure and function of the ecosystem. The spatial distributions of dominant species can react to the effect of different grazing intensities, thereby reflecting their tolerance and adaptive strategies toward grazing. In this study, geostatistical methods were mainly used to study the spatial distribution characteristics of Stipa krylovii Roshev. and Leymus chinensis (Trin.) Tzvel. species at two interval scales (quadrat size 5 m × 5 m, 10 m × 10 m) and two treatments (free grazing, FG, 1.66 sheep·ha- 1·a- 1; control, CK, 0 sheep·ha- 1·a- 1) in typical steppe of Inner Mongolia. A systematic sampling method was used in each 100 m × 100 m representative sample plots to obtain the height, coverage, and density of all species in the community. The results showed that grazing altered the concentrated distribution of S. krylovii and the spatial mosaic distribution pattern of S. krylovii and L. chinensis while having no effect on the spatial clumped distribution of L. chinensis. It also found that the spatial distributions of dominant species are primarily affected by structural factors, and random factors such as long-term grazing led to a transition of S. krylovii from a concentrated distribution to a small patchy random pattern should not be overlooked. Our findings suggest that long-term grazing alters the spatial distribution pattern of dominant species and that adaptive strategies may be the key for maintaining the dominant role of structural factors.


Subject(s)
Herbivory , Herbivory/physiology , Animals , China , Poaceae/physiology , Sheep/physiology , Ecosystem , Grassland
4.
BMC Plant Biol ; 24(1): 408, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755583

ABSTRACT

BACKGROUND: Grazing exclusion is an efficient practice to restore degraded grassland ecosystems by eliminating external disturbances and improving ecosystems' self-healing capacities, which affects the ecological processes of soil-plant systems. Grassland degradation levels play a critical role in regulating these ecological processes. However, the effects of vegetation and soil states at different degradation stages on grassland ecosystem restoration are not fully understood. To better understand this, desert steppe at three levels of degradation (light, moderate, and heavy degradation) was fenced for 6 years in Inner Mongolia, China. Community characteristics were investigated, and nutrient concentrations of the soil (0-10 cm depth) and dominant plants were measured. RESULTS: We found that grazing exclusion increased shoots' carbon (C) concentrations, C/N, and C/P, but significantly decreased shoots' nitrogen (N) and phosphorus (P) concentrations for Stipa breviflora and Cleistogenes songorica. Interestingly, there were no significant differences in nutrient concentrations of these two species among the three degraded desert steppes after grazing exclusion. After grazing exclusion, annual accumulation rates of aboveground C, N, and P pools in the heavily degraded area were the highest, but the aboveground nutrient pools were the lowest among the three degraded grasslands. Similarly, the annual recovery rates of community height, cover, and aboveground biomass in the heavily degraded desert steppe were the highest among the three degraded steppes after grazing exclusion. These results indicate that grazing exclusion is more effective for vegetation restoration in the heavily degraded desert steppe. The soil total carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus concentrations in the moderately and heavily degraded desert steppes were significantly decreased after six years of grazing exclusion, whereas these were no changes in the lightly degraded desert steppe. Structural equation model analysis showed that the grassland degradation level mainly altered the community aboveground biomass and aboveground nutrient pool, driving the decrease in soil nutrient concentrations and accelerating nutrient transfer from soil to plant community, especially in the heavily degraded grassland. CONCLUSIONS: Our study emphasizes the importance of grassland degradation level in ecosystem restoration and provides theoretical guidance for scientific formulation of containment policies.


Subject(s)
Grassland , Herbivory , China , Desert Climate , Soil/chemistry , Phosphorus/metabolism , Phosphorus/analysis , Conservation of Natural Resources , Nitrogen/metabolism , Poaceae , Carbon/metabolism , Ecosystem , Nutrients/metabolism , Environmental Restoration and Remediation/methods , Animals
5.
BMC Plant Biol ; 24(1): 719, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39069617

ABSTRACT

BACKGROUND: With the profound changes in the global climate, the issue of grassland degradation is becoming increasingly prominent. Grassland degradation poses a severe threat to the carbon cycle and carbon storage within grassland ecosystems. Additionally, it will adversely affect the sustainability of food production. The grassland ecosystem in the northwest region of Liaoning Province, China, is particularly vulnerable due to factors such as erosion from the northern Horqin Sandy Land, persistent arid climate, and issues related to overgrazing and mismanagement of grassland. The degradation issue is especially pronounced in this ecological environment. However, previous research on the carbon density of degraded grasslands in Northeast China has predominantly focused on Inner Mongolia, neglecting the impact on the grasslands in the northwest of Liaoning Province. Therefore, this experiment aims to assess the influence of grassland degradation intensity on the vegetation and soil carbon density in the northwest of Liaoning Province. The objective is to investigate the changes in grassland vegetation and soil carbon density resulting from different degrees of grassland degradation. METHODOLOGY: This study focuses on the carbon density of grasslands at different degrees of degradation in the northwest of Liaoning Province, exploring the variations in vegetation and soil carbon density under different levels of degradation. This experiment employed field sampling techniques to establish 100 × 100 m plots in grasslands exhibiting varying degrees of degradation. Six replications of 100 × 100 m plots per degradation intensity were sampled. Vegetation and soil samples were collected for analysis of carbon density. RESULTS: The results indicate that in the context of grassland degradation, there is a significant reduction in vegetation carbon density. Furthermore, it was found that root carbon density is the primary contributor to vegetation carbon density. In comparison to mildly degraded grasslands, moderately and severely degraded grasslands experience a reduction in vegetation carbon density by 25.6% and 52.6%, respectively. However, with regard to the impact of grassland degradation on soil carbon density, it was observed that while grassland degradation leads to a slight decrease in soil carbon density, there is no significant change in soil carbon density in the short term under the influence of grassland degradation. CONCLUSIONS: Therefore, grassland degradation has exerted a negative impact on aboveground vegetation carbon density, reducing the carbon storage of above-ground vegetation in grasslands. However, there was no significant effect on grassland soil carbon density.


Subject(s)
Carbon , Grassland , Soil , Soil/chemistry , Carbon/metabolism , China , Conservation of Natural Resources , Poaceae/metabolism , Ecosystem
6.
New Phytol ; 243(5): 1966-1979, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970455

ABSTRACT

The primary mechanisms contributing to nitrogen (N) addition induced grassland biodiversity loss, namely light competition and soil cation toxicity, are often examined separately in various studies. However, their relative significance in governing biodiversity loss along N addition gradient remains unclear. We conducted a 4-yr field experiment with five N addition rates (0, 2, 10, 20, and 50 g N m-2 yr-1) and performed a meta-analysis using global data from 239 observations in N-fertilized grassland ecosystems. Results from our field experiment and meta-analysis indicate that both light competition and soil cation (e.g. Mn2+ and Al3+) toxicity contribute to plant diversity loss under N enrichment. The relative importance of these mechanisms varied with N enrichment intensity. Light competition played a more significant role in influencing species richness under low N addition (≤ 10 g m-2 yr-1), while cation toxicity became increasingly dominant in reducing biodiversity under high N addition (>10 g m-2 yr-1). Therefore, a transition from light competition to cation toxicity occurs with increasing N availability. These findings imply that the biodiversity loss along the N gradient is regulated by distinct mechanisms, necessitating the adoption of differential management strategies to mitigate diversity loss under varying intensities of N enrichment.


Subject(s)
Biodiversity , Cations , Light , Nitrogen , Nitrogen/metabolism , Cations/metabolism , Soil/chemistry , Grassland , Plants/metabolism , Plants/radiation effects , Plants/drug effects
7.
Mol Phylogenet Evol ; : 108212, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39384122

ABSTRACT

The northern North American Cordillera is a globally significant center of endemism. In western North America, imperiled arid steppe habitats support a number of unique species, including several endemic lichens. However, processes driving diversification and endemism in this region remain unclear. In this study, we investigate diversity and phylogeography of the threatened wanderlust lichens (mycobiont = Rhizoplaca species) which occur unattached on calcareous soils in steppe habitats in western North America. Wanderlust lichens comprise three species of lichen-forming fungi (LFF) - Rhizoplaca arbuscula, R. haydenii, and R. idahoensis (endangered, IUCN Red List) - which occur in fragmented populations in Idaho and Wyoming, with more limited populations in southeastern Montana and northern Utah. These lichens reproduce almost exclusively via large, asexual vegetative propagules. Here, our aims were to (i) assess the evolutionary origin of this group and identify phylogeographic structure, (ii) infer ancestral geographic distributions for lineages within this clade, and (iii) use species distribution modeling to better understand the distribution of contemporary populations. Using a genome-skimming approach, we generated a 19.1 Mb alignment, spanning ca. half of the complete LFF genome, from specimens collected throughout the entire range of wanderlust lichens. Based on this phylogeny we investigated phylogeographic patterns using RASP. Finally, we used MaxEnt to estimate species distribution models for R. arbuscula and R. haydenii. We inferred a highly structured topology, with clades corresponding to distinct geographic regions and morphologies represented throughout the group's distribution. We found that R. robusta, a sexually reproducing taxon, is clearly nested within this asexual lineage. Phylogeographic analyses suggest that both dispersal and vicariance played a significant role throughout the evolutionary history of the vagrant Rhizoplaca clade, with most of the dispersal events originating from the Salmon Basin in eastern Idaho - the center of diversity for this group. Despite the fact that wanderlust lichens are dispersal limited due to large, unspecialized vegetative propagules, we inferred multiple dispersal events crossing the Continental Divide. Comparing herbarium records with SDMs suggests that wanderlust lichens don't fully occupy the areas of highest distribution probability. In fact, documented records often occur in areas predicted to be only marginally suitable. These data suggest a potential mismatch between contemporary habitats outside of the center of diversity in eastern Idaho with the most suitable habitat, adding to the vulnerability of this imperiled complex of endemic lichens.

8.
Ann Bot ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230172

ABSTRACT

BACKGROUND AND AIMS: Absorptive root traits play important roles in acquisition of water and nutrients from soil by plants. Despite numerous reports on the changes in species dominance under long-term drought in grassland community, few studies have specifically investigated absorptive root traits of these dominant species in grasslands, especially in the alpine grasslands. METHODS: Here, two grass species (Leymus secalinus and Stipa purpurea) differing in their responses to drought were selected from an alpine steppe. A series of absorptive root traits were examined under drought in a 3-year glasshouse experiment. KEY RESULTS: We found that drought had no effects on root morphological and architectural traits, whereas root physiological traits and rooting depth differed in their responses to drought. Specifically, drought significantly reduced root respiration and enhanced organ carbon (C) exudation rate, carboxylate exudation rate, acid phosphatase activity and rooting depth of L. secalinus. Particularly, L. secalinus released more citrate into the rhizosphere under drought than S. purpurea. In contrast, these root traits of S. purpurea remained relatively unchanged in response to the drought. These differential responses would render L. secalinus more competitive in acquisition of nutrients and water, thus contributing to its dominance in the community under drought. Moreover, root respiration was negatively correlated with organic C exudation rate, carboxylate exudation rate and acid phosphatase activity, indicating a tradeoff between root respiration and root exudates to acquire nutrients and water by optimizing C allocation under drought. Additionally, all root traits exhibited two independent dimensions in root economic space (RES) for both species under drought. CONCLUSIONS: These results indicate that the plant species with great capacity to acquire water and nutrients in soil by optimizing C allocation under drought will be dominant in the community of the alpine grasslands. These findings provide an important insight into species re-ordering under drought on the Tibetan Plateau.

9.
J Toxicol Environ Health A ; : 1-19, 2024 Oct 13.
Article in English | MEDLINE | ID: mdl-39396151

ABSTRACT

There is a need to assess whether ecological resources are being protected on large, federal lands. The aim of this study was to present a methodology which consistently and transparently determines whether two large Department of Energy (U.S. DOE) facilities have protected valuable ecological lands on their sites compared to the surrounding region. The National Land Cover Database (2019) was used to examine the % shrub-scrub (shrub-steppe) and other habitats on the DOE's Hanford Site (HS, Washington) and on the Idaho National Laboratory (INL), compared to a 10-km and 30-km diameter band of land surrounding each site. On both sites, over 95% is in shrub-scrub or grassland, compared to the surrounding region. Approximately 70% of 10 km and 30-km bands around INL, and less than 50% of land surrounding HS is located in these two habitat types. INL has preserved a significantly higher % shrub/scrub habitat than HS, but INL allows grazing on 60% of its land. HS has preserved a significantly higher % grassland than INL but no grazing on site is present. The methodology presented may be used to compare key ecological habitat types such as grasslands, forest, and desert among sites in different parts of the country. This methodology enables managers, resource trustees, and the public to (1) make remediation decisions that protect resources, (2) assess whether landowners and managers have adequately characterized and protected environmental resources on their sites, and (3) whether landowners and managers have protected the integrity of that land as well as its climax vegetation.

10.
J Plant Res ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180624

ABSTRACT

The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.

11.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34930836

ABSTRACT

The collapse of the steppe-tundra biome (mammoth steppe) at the end of the Pleistocene is used as an important example of top-down ecosystem cascades, where human hunting of keystone species led to profound changes in vegetation across high latitudes in the Northern Hemisphere. Alternatively, it is argued that this biome transformation occurred through a bottom-up process, where climate-driven expansion of shrub tundra (Betula, Salix spp.) replaced the steppe-tundra vegetation that grazing megafauna taxa relied on. In eastern Beringia, these differing hypotheses remain largely untested, in part because the precise timing and spatial pattern of Late Pleistocene shrub expansion remains poorly resolved. This uncertainty is caused by chronological ambiguity in many lake sediment records, which typically rely on radiocarbon (14C) dates from bulk sediment or aquatic macrofossils-materials that are known to overestimate the age of sediment layers. Here, we reexamine Late Pleistocene pollen records for which 14C dating of terrestrial macrofossils is available and augment these data with 14C dates from arctic ground-squirrel middens and plant macrofossils. Comparing these paleovegetation data with a database of published 14C dates from megafauna remains, we find the postglacial expansion of shrub tundra preceded the regional extinctions of horse (Equus spp.) and mammoth (Mammuthus primigenius) and began during a period when the frequency of 14C dates indicates large grazers were abundant. These results are not consistent with a model of top-down ecosystem cascades and support the hypothesis that climate-driven habitat loss preceded and contributed to turnover in mammal communities.


Subject(s)
Betula , Population Dynamics , Tundra , Animals , Biodiversity , Climate , Extinction, Biological , History, Ancient , Mammals , Paleontology
12.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34649988

ABSTRACT

Climate change-induced shifts in species phenology differ widely across trophic levels, which may lead to consumer-resource mismatches with cascading population and ecosystem consequences. Here, we examined the effects of different rainfall patterns (i.e., timing and amount) on the phenological asynchrony of population of a generalist herbivore and their food sources in semiarid steppe grassland in Inner Mongolia. We conducted a 10-y (2010 to 2019) rainfall manipulation experiment in 12 0.48-ha field enclosures and found that moderate rainfall increases during the early rather than late growing season advanced the timing of peak reproduction and drove marked increases in population size through increasing the biomass of preferred plant species. By contrast, greatly increased rainfall produced no further increases in vole population growth due to the potential negative effect of the flooding of burrows. The increases in vole population size were more coupled with increased reproduction of overwintered voles and increased body mass of young-of-year than with better survival. Our results provide experimental evidence for the fitness consequences of phenological mismatches at the population level and highlight the importance of rainfall timing on the population dynamics of small herbivores in the steppe grassland environment.


Subject(s)
Arvicolinae/growth & development , Grassland , Rain , Animals , Arvicolinae/classification , Arvicolinae/physiology , Biomass , China , Climate Change , Feeding Behavior , Population Dynamics , Probability , Reproduction , Survival Analysis
13.
J Environ Manage ; 365: 121534, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905797

ABSTRACT

Species and functional diversity play a major role in the stability and sustainability of grassland ecosystems. However, changes in species and functional diversity during grassland degradation in arid areas as well as the underlying mechanisms remain unclear. In this study, we surveyed the vegetation and soil properties of arid regions across a degradation gradient to explore the shifts in species and functional diversity in plant communities, their relationships and key determinants during desert steppe degradation. Our results found significant variability in species diversity and functional diversity across degradation stages. Species diversity (Shannon-Wiener index (H), and Pielou index) and functional diversity (functional evenness (FEve) index, and Rao's quadratic entropy (RaoQ) index) tended to increase initially and then decrease with increasing grassland degradation. The Patrick index, Simpson index, functional richness (FRic) index, functional divergence (FDiv) index, and functional dispersion (FDis) index declined as grassland degradation increased. The relationships between species diversity and functional diversity indices at different stages of degradation in the desert steppe were inconsistent. From no to heavy degradation grasslands, the correlation between species diversity and functional diversity gradually weakened. Specifically, there was a significant correlation between Patrick (R) and FRic indices (R2 > 0.7) on both non-degraded and light degraded grasslands, but there was no significant correlation between R and FRic indices in moderately and heavily degraded grasslands (R2 < 0.7), and R2 gradually decreased. Redundancy analysis and partial least squares path modeling showed that grassland degradation has a significant direct effect on the species diversity and functional diversity. In addition grassland degradation has direct and indirect effects on the species diversity through soil available nitrogen, organic matter and total nitrogen. Functional diversity is directly or indirectly affected by species diversity, soil available nitrogen, organic matter and total nitrogen, soil moisture content, soil bulk density, and pH value. In summary, the relationship between species and functional diversity indices gradually weakened from areas with no degradation to heavy degradation in arid desert grasslands. Our study reveals the patterns and relationships between species diversity and functional diversity throughout the process of grassland degradation, demonstrating a gradual decrease in ecosystem stability and sustainability as degradation advances. Our results have significant implications for the restoration of grassland degradation and the management of ecosystem services in arid steppe regions.


Subject(s)
Biodiversity , Grassland , China , Ecosystem , Soil/chemistry , Desert Climate , Plants
14.
J Environ Manage ; 368: 122213, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39154389

ABSTRACT

To understand how nutrient cycling and sequestration are influenced by different grazing periods, the C:N:P stoichiometry features of the plant-soil interface in the desert steppe were measured and evaluated. The 5-year seasonal grazing experiment employed four grazing period treatments: traditional time of grazing (TG), early termination of grazing (EG), delayed start of grazing (DG), and delayed start and early termination of grazing (DEG). Additionally, fenced off desert steppe served as the control. The grazing periods each had a differing impact on the C:N:P stoichiometry in both plant functional group and soil depth comparisons. Compared to the EG, DG, and DEG treatments, the TG treatment had a more significant impact on the C, N, and P pools of grass, as well as the C:P and N:P ratios of forbs, but had a reduced effect on the C:P and N:P ratios of legumes. In contrast to plants, the DG treatment exhibited greater advantages in increasing C pools within the 0-40 cm soil layer. Furthermore, in the 10-20 cm soil layer, the C:P and N:P ratios under the EG treatment were significantly higher, ranging from 8.88% to 53.41% and 72.34%-121.79%, respectively, compared to the other treatments (TG, DG, and DGE). The primary drivers of the C, N, and P pools during different grazing periods were above-ground biomass (AGB) and litter biomass (LB). Both lowering the plant C:P and N:P ratios and considerably raising the plant P pool during different grazing periods greatly weakened the P limitation of the desert steppe environment. It is predicted that delayed start grazing might be a management strategy for long-term ecosystem sustainability, as it regulates above-ground nutrient allocation and has a positive effect on soil C and N pools.


Subject(s)
Soil , Soil/chemistry , China , Grassland , Nutrients/metabolism , Nitrogen/metabolism , Nitrogen/analysis , Animals , Desert Climate , Herbivory , Plants/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Poaceae
15.
J Environ Manage ; 357: 120765, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579467

ABSTRACT

Livestock grazing strongly influences the accumulation of soil organic carbon (SOC) in grasslands. However, whether the changes occurring in SOC content under different intensities of continuous summer long grazing are associated with the changes in microbially-derived necromass C remains unclear. Here, we established a sheep grazing experiment in northern China in 2004 with four different stocking rates. Soil samples were collected after 17 years of grazing and analyzed for physical, chemical, and microbial characteristics. Grazing decreased SOC and microbial necromass carbon (MNC). Notably, grazing also diminished contributions of MNC to SOC. MNC declined with decreasing plant carbon inputs with degradation of the soil environment. Direct reductions in microbial necromass C, which indirectly reduced SOC, resulted from reduced in plant C inputs and microbial abundance and diversity. Our study highlights the key role of stocking rate in governing microbial necromass C and SOC and the complex relationships these variables.


Subject(s)
Grassland , Soil , Animals , Sheep , Soil/chemistry , Carbon/analysis , Seasons , Nitrogen/analysis , Plants , China , Soil Microbiology
16.
J Environ Manage ; 356: 120757, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537472

ABSTRACT

The Eurasian steppe is one of the world's largest continuous areas of grassland and has an important role in supporting livestock grazing, the most ubiquitous land use on Earth. However, the Eurasian steppe is under threat, from irrational grazing utilization, climate change, and resource exploitation. We used an ensemble modeling approach to predict the current and future distribution of Stipa-dominated plant communities in three important steppe subregions; the Tibetan Alpine, Central Asian, and Black Sea-Kazakhstan subregions. We combined this with an assessment of the grazing value of 22 Stipa species, the dominant grassland species in the area, to predict how grazing value might change under future climate change predictions. We found that the effects of changing climates on grazing values differed across the three subregions. Grazing values increased in the Tibetan alpine steppe and to a lesser extent in Central Asia, but there were few changes in the Black Sea-Kazakhstan subregion. The response of different species to changing climates varied with environmental variables. Finally, our trait-based assessment of Stipa species revealed variations in grazing value, and this had major effects on the overall grazing value of the region. Our results reinforce the importance of trait-based characteristics of steppe plant species, how these traits affect grazing value, and how grazing values will change across different areas of the Eurasian steppe. Our work provides valuable insights into how different species will respond to changing climates and grazing, with important implications for sustainable management of different areas of the vast Eurasian steppe ecosystem.


Subject(s)
Ecosystem , Grassland , Animals , Plants , Poaceae , Livestock/physiology
17.
Saudi Pharm J ; 32(6): 102090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766273

ABSTRACT

In order to gain further insight into how various extraction techniques (maceration, microwave-, and ultrasound-assisted extractions) affect the chemical profile and biological activities of leaf extracts from Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L., this research was performed. The targeted chemical characterization of the extracts was achieved using the Ultra-High-Performance-Liquid-Chromatography-Linear-Trap-Mass-Spectrometry OrbiTrap instrumental technique, while Fourier Transform Infrared Spectroscopy was conducted to investigate the structural properties of the examined leaf extracts. According to the results, the species P. officinalis, Bozurna locality as the origin of the plant material, and microwave-assisted extraction produced the maximum polyphenol yield, (491.9 ± 2.7 mg gallic acid equivalent (GAE)/mL). The ethanolic extracts exhibited moderate antioxidant activity as evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and phosphomolybdenum tests. With MIC values of 0.125 mg/mL, the leaf extracts produced by ultrasound-assisted extraction and maceration (Deliblato sands and Bogovo gumno) had the best antibacterial activity against Pseudomonas aeruginosa and Salmonella Typhimurium. Ultrasound-assisted extraction has proven to produce the most effective antimicrobial agents. Inhibitory potential towards glucosidase, amylase, cholinesterases, and tyrosinase was evaluated in enzyme inhibition assays and molecular docking simulations. Results show that leaves of P. tenuifolia L. obtained by ultrasound-assisted extraction had the highest acetylcholinesterase and butyrylcholinesterase inhibitory activity. Namely, the complexity of the polyphenol structures, the extraction method, the used locality, and the different mechanisms of the reactions between bioactives from leaf extracts and other components (free radicals, microorganisms, and enzymes) are the main factors that influence the results of the antioxidant tests, as well as the antibacterial and enzyme-inhibitory activities of the extracts. Hydroxymethyl-phenyl pentosyl-hexoside and acetyl-hydroxyphenyl-hexoside were the first time identified in the leaf extract of the Paeonia species. Due to their proven biological activities and the confirmed existence of bioactive compounds, leaf extracts may find use in foodstuffs, functional foods, and pharmaceutical products.

18.
Mol Biol Evol ; 39(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36006373

ABSTRACT

The diversity of Central Asians has been shaped by multiple migrations and cultural diffusion. Although ancient DNA studies have revealed the demographic changes of the Central Asian since the Bronze Age, the contribution of the ancient populations to the modern Central Asian remains opaque. Herein, we performed high-coverage sequencing of 131 whole genomes of Indo-European-speaking Tajik and Turkic-speaking Kyrgyz populations to explore their genomic diversity and admixture history. By integrating the ancient DNA data, we revealed more details of the origins and admixture history of Central Asians. We found that the major ancestry of present-day Tajik populations can be traced back to the admixture of the Bronze Age Bactria-Margiana Archaeological Complex and Andronovo-related populations. Highland Tajik populations further received additional gene flow from the Tarim mummies, an isolated ancient North Eurasian-related population. The West Eurasian ancestry of Kyrgyz is mainly derived from Historical Era populations in Xinjiang of China. Furthermore, the recent admixture signals detected in both Tajik and Kyrgyz are ascribed to the expansions of Eastern Steppe nomadic pastoralists during the Historical Era.


Subject(s)
DNA, Ancient , Mummies , Asian People/genetics , Ethnicity , Gene Flow , Genetics, Population , Humans
19.
Mol Ecol ; 32(5): 1149-1168, 2023 03.
Article in English | MEDLINE | ID: mdl-36530155

ABSTRACT

The ant Plagiolepis taurica Santschi, 1920 (Hymenoptera, Formicidae) is a typical species of the Eurasian steppes, a large grassland dominated biome that stretches continuously from Central Asia to Eastern Europe and is represented by disjunct outposts also in Central and Western Europe. The extent of this biome has been influenced by the Pleistocene climate, and steppes expanded recurrently during cold stages and contracted in warm stages. Consequently, stenotopic steppe species such as P. taurica repeatedly went through periods of demographic expansion and severe isolation. Here, we explore the impact of these dynamics on the genetic diversification within P. taurica. Delimitation of P. taurica from other Plagiolepis species has been unclear since its initial description, which raised questions on both its classification and its spatiotemporal diversification early on. We re-evaluate species limits and explore underlying mechanisms driving speciation by using an integrative approach based on genomic and morphometric data. We found large intraspecific divergence within P. taurica and resolved geographically coherent western and eastern genetic groups, which likewise differed morphologically. A morphometric survey of type material showed that Plagiolepis from the western group were more similar to P. barbara pyrenaica Emery, 1921 than to P. taurica; we thus lift the former from synonymy and establish it as separate species, P. pyrenaica stat. rev. Explicit evolutionary model testing based on genomic data supported a peripatric speciation for the species pair, probably as a consequence of steppe contraction and isolation during the mid-Pleistocene. We speculate that this scenario could be exemplary for many stenotopic steppe species, given the emphasized dynamics of Eurasian steppes.


Subject(s)
Ants , Animals , Phylogeny , Ants/genetics , Biological Evolution , Ecosystem , Demography
20.
J Exp Bot ; 74(9): 2799-2810, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36124695

ABSTRACT

Sweet briar (Rosa rubiginosa) belongs to the group of wild roses. Under natural conditions it grows throughout Europe, and was introduced also into the southern hemisphere, where it has efficiently adapted to dry lands. This review focuses on the high adaptation potential of sweet briar to soil drought in the context of global climatic changes, especially considering steppe formation and desertification of agricultural, orchard, and horticultural areas. We provide a comprehensive overview of current knowledge on sweet briar traits associated with drought tolerance and particularly water use efficiency, sugar accumulation, accumulation of CO2 in intercellular spaces, stomatal conductance, gibberellin level, effective electron transport between photosystem II and photosystem I, and protein content. We discuss the genetics and potential applications in plant breeding and suggest future directions of study concerning invasive populations of R. rubiginosa. Finally, we point out that sweet briar can provide new genes for breeding in the context of depleting gene pools of the crop plants.


Subject(s)
Rosa , Droughts , Plant Breeding , Plants , Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL