Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Sensors (Basel) ; 23(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36772756

ABSTRACT

A multimode optical fiber supports excitation and propagation of a pure single optical mode, i.e., the field pattern that satisfies the boundary conditions and does not change along the fiber. When two counterpropagating pure optical modes are excited, they could interact through the stimulated Brillouin scattering (SBS) process. Here, we present a simple theoretical formalism describing SBS interaction between two individual optical modes selectively excited in an acoustically isotropic multimode optical fiber. Employing a weakly guiding step-index fiber approach, we have built an analytical expression for the spatial distribution of the sound field amplitude in the fiber core and explored the features of SBS gain spectra, describing the interaction between modes of different orders. In this way, we give a clear insight into the sound propagation effects accompanying SBS in multimode optical fibers, and demonstrate their specific contributions to the SBS gain spectrum.

2.
Sensors (Basel) ; 23(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37420569

ABSTRACT

In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception. Based on this statement, an estimation of the average noise power induced by the SpBS wave is given. This noise power equals the square of the average power of the SpBS Stokes wave, which in turn is approximately 18 dB lower than the Rayleigh backscattering power. The noise composition in DAS is determined for two configurations, the first for the initial backscattering spectrum and the second for the spectrum in which the SpBS Stokes and anti-Stokes waves are rejected. It is established that in the analyzed particular case, the SpBS noise power is dominant and exceeds the powers of the thermal, shot, and phase noises in DAS. Accordingly, by rejecting the SpBS waves at the photodetector input, it is possible to reduce the noise power in DAS. In our case, this rejection is carried out by an asymmetric Mach-Zehnder interferometer (MZI). The rejection of the SpBS wave is most relevant for broadband photodetectors, which are associated with the use of short probing pulses to achieve short gauge lengths in DAS.


Subject(s)
Fertilization , Heart Rate , Likelihood Functions
3.
Sensors (Basel) ; 22(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36236384

ABSTRACT

Nonlinear distortion for single-sideband (SSB) signals will significantly reduce the performance of Kramers-Kronig (KK) receiver-based optical transmission. In this work, we present a proof-of-concept study of stimulated Brillouin scattering (SBS)-induced nonlinear distortion for 10 Gbaud and 28 Gbaud SSB QAM16 transmission over 80 km standard single mode fiber (SSMF) based on a KK receiver. Significantly reduced bit error rate (BER) has been experimentally observed due to the SBS and the threshold of SBS at about 7 dBm is detected for such an 80 km SSMF link. With left sideband (LSB) modulation of SSB, together with optical filtering, reduced SBS nonlinear distortion has been achieved with ~2 dB power tolerance improvement. The results reveal an important issue of SBS-induced nonlinear distortion, which would be of great significance for KK receiver-based optical transmission applications.

4.
Sensors (Basel) ; 22(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36015823

ABSTRACT

Distributed optical fiber sensing technology has been widely applied in the areas of infrastructure health monitoring, national defense security, etc. The long-range high-spatial-resolution Brillouin optical correlation domain analysis (BOCDA) has extensive development and application prospects. In this paper, long-range BOCDAs are introduced and summarized. Several creative methods underpinning measurement range enlargement, including the interval enhancement of the adjacent correlation peak (CP), improvements in the signal-to-noise ratio, and the concurrent interrogation of multiple CPs, are discussed and experimentally verified, respectively. The main drawbacks in the present BOCDA schemes and avenues for future research and development have also been prospected.


Subject(s)
Fiber Optic Technology , Refractometry , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Transducers
5.
Sensors (Basel) ; 23(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36616720

ABSTRACT

We experimentally demonstrate a fiber laser with different linewidths based on self-injection locking (SIL) and the stimulated Brillouin scattering effect. Based on the homemade fiber laser, the error origin, resolution, and applicable range of delayed self-heterodyne interferometry (DSHI), self-correlation envelope linewidth detection (SCELD) and Voigt fitting are investigated numerically and experimentally. The selection of the linewidth measuring method should meet the following conclusions: an approximately Lorentzian self-heterodyne spectrum without the pedestal and high-intensity sinusoidal jitter is a prerequisite for DSHI; the SCELD needs a suitable length of delay fiber for eliminating flicker noise and dark noise of the electrical spectrum analyzer; a non-Lorentzian self-heterodyne spectrum without a pedestal is an indispensable element for Voigt fitting. According to the experimental results, the laser Lorentzian linewidth of SIL changes from 1.7 kHz to 587 Hz under different injection powers. When the Brillouin erbium fiber laser is utilized, the Lorentzian linewidth is measured to be 60 ± 5 Hz.

6.
Sensors (Basel) ; 21(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800206

ABSTRACT

As one of the most consolidated distributed fiber sensors based on stimulated Brillouin scattering, the Brillouin optical time-domain analyzer (BOTDA) has been developed for decades. Despite the commercial availability and outstanding progresses which has been achieved, the intrinsic Lorentzian gain spectrum restricts the sensing performance from possible further enhancements and hence limits the field of validity of the technique. In this paper, the novel method of engineering the gain spectral properties of the Brillouin scattering and its application on static and dynamic BOTDA sensors will be reviewed. Such a spectral property engineering has not only provided improvements to BOTDA, but also might open a new way to enhance the performance of all kinds of distributed Brillouin fiber sensors.

7.
Sensors (Basel) ; 21(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396597

ABSTRACT

A high-order polynomial fitting method is proposed to accelerate the computation of double-Gaussian fitting in the retrieval of the Brillouin frequency shifts (BFS) in optical fibers showing two local Brillouin peaks. The method is experimentally validated in a distributed Brillouin sensor under different signal-to noise ratios and realistic spectral scenarios. Results verify that a sixth-order polynomial fitting can provide a reliable initial estimation of the dual local BFS values, which can be subsequently used as initial parameters of a nonlinear double-Gaussian fitting. The method demonstrates a 4.9-fold reduction in the number of iterations required by double-Gaussian fitting and a 3.4-fold improvement in processing time.

8.
Sensors (Basel) ; 20(19)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019695

ABSTRACT

Over the past three decades, extensive research activity on Brillouin scattering-based distributed optical fiber sensors has led to the availability of commercial instruments capable of measuring the static temperature/strain distribution over kilometer distances and with high spatial resolution, with applications typically covering structural and environmental monitoring. At the same time, the interest in dynamic measurements has rapidly grown due to the relevant number of applications which could benefit from this technology, including structural analysis for defect identification, vibration detection, railway traffic monitoring, shock events detection, and so on. In this paper, we present an overview of the recent advances in Brillouin-based distributed optical fiber sensors for dynamic sensing. The aspects of the Brillouin scattering process relevant in distributed dynamic measurements are analyzed, and the different techniques are compared in terms of performance and hardware complexity.

9.
Sensors (Basel) ; 19(7)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934816

ABSTRACT

We present, to our knowledge for the first time, a 100-km Brillouin Optical Frequency-Domain Analysis (BOFDA) employing a 200-km fiber loop. Compared to our previous publication, enhanced sensor length, sensor accuracy and spatial resolution are presented. The performance improvements are achieved by applying distributed Raman amplification (DRA) and a digital high-pass filter. We report on temperature measurements over sensing distances of 75 km and 100 km both with a 12.5-m spatial resolution. Temperature changes of 5 ° C have been measured along 75 km sensing fiber. A temperature change of 30 ° C has been detected at 99.5 km.

10.
Sensors (Basel) ; 19(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261717

ABSTRACT

In this article, we demonstrate the noise reduction and signal to noise ratio (SNR) enhancement in Brillouin optical time-domain analyzers (BOTDA). The results show that, although the main noise contribution comes from the Brillouin interaction itself, a simple low pass filtering on the detected radio frequency (RF) signal reduces remarkably the noise level of the BOTDA traces. The corresponding SNR enhancement depends on the employed cut-off frequency of the low pass filter. Due to the enhancement of the SNR, a mitigation of the standard deviation error of the Brillouin frequency shift (BFS) has been demonstrated. However, RF filters with low cut-off frequency could lead to distortions on the trace signals and therefore detection errors on a non-uniform BFS. The trade-off between the noise reduction and the signal distortion as well as an optimal cut-off frequency are discussed in detail.

11.
Sensors (Basel) ; 18(5)2018 May 17.
Article in English | MEDLINE | ID: mdl-29772807

ABSTRACT

We demonstrate (and are the first to do so) 63 km Brillouin Optical Frequency-Domain Analysis (BOFDA) for temperature and strain monitoring using a 100 km fiber loop. The use of BOFDA for long-range applications can be considered a novel approach, as previous investigations focused on the utilization of Brillouin Optical Time-Domain Reflectometry and Analysis (BOTDR and BOTDA, respectively). At 51.7 km, a 100 m hotspot (37 ∘ C) was detected without using distributed Raman amplification or image processing.

12.
Sensors (Basel) ; 18(9)2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30200241

ABSTRACT

Brillouin-Enhanced Four-Wave-Mixing techniques, which couple four optical beams through Brillouin nonlinearity, have gained popularity in the 1980's largely owing to their phase conjugation properties. Experiments were mainly conducted in liquid cells. The interest in Brillouin-Enhanced Four-Wave-Mixing has reawakened in the 2000's, following the quest for dynamically reconfigurable gratings in optical fibers. Termed Brillouin Dynamic Grating this time around, it is, in fact, an acoustic wave, optically generated by stimulated Brillouin scattering process between two pump waves. The acoustic wave either carries the coherent information encoded by the pump beams, or in the case of sensing applications, its properties are determined by the environmental parameters. This information, in turn, is imparted to the third phase-matched optical probe wave through the elasto-optic effect. Over the last decade, this mechanism allowed for the realization of many all-optical signal processing functions and has proven instrumental in distributed sensing applications. This paper describes the basics, as well as the state of the art, of BDG-based applications in optical fibers. It also surveys the efforts being done to carry over these concepts to the photonic chip level.

13.
Sensors (Basel) ; 18(4)2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29587407

ABSTRACT

In the distributed optical fiber sensing (DOFS) domain, simultaneous measurement of vibration and temperature/strain based on Rayleigh scattering and Brillouin scattering in fiber could have wide applications. However, there are certain challenges for the case of ultra-long sensing range, including the interplay of different scattering mechanisms, the interaction of two types of sensing signals, and the competition of pump power. In this paper, a hybrid DOFS system, which can simultaneously measure temperature/strain and vibration over 150 km, is elaborately designed via integrating the Brillouin optical time-domain analyzer (BOTDA) and phase-sensitive optical time-domain reflectometry (Ф-OTDR). Distributed Raman and Brillouin amplifications, frequency division multiplexing (FDM), wavelength division multiplexing (WDM), and time division multiplexing (TDM) are delicately fused to accommodate ultra-long-distance BOTDA and Ф-OTDR. Consequently, the sensing range of the hybrid system is 150.62 km, and the spatial resolution of BOTDA and Ф-OTDR are 9 m and 30 m, respectively. The measurement uncertainty of the BOTDA is ± 0.82 MHz. To the best of our knowledge, this is the first time that such hybrid DOFS is realized with a hundred-kilometer length scale.

14.
Sensors (Basel) ; 18(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445689

ABSTRACT

In this paper perfluorinated graded-index polymer optical fibers are characterized with respect to the influence of relative humidity changes on spectral transmission absorption and Rayleigh backscattering. The hygroscopic and thermal expansion coefficient of the fiber are determined to be C H E = (7.4 ± 0.1) · 10 - 6 %r.h.-1 and C T E = (22.7 ± 0.3) · 10 - 6 K-1, respectively. The influence of humidity on the Brillouin backscattering power and linewidth are presented for the first time to our knowledge. The Brillouin backscattering power at a pump wavelength of 1319 nm is affected by temperature and humidity. The Brillouin linewidth is observed to be a function of temperature but not of humidity. The strain coefficient of the BFS is determined to be C S = (-146.5 ± 0.9) MHz/% for a wavelength of 1319 nm within a strain range from 0.1% to 1.5%. The obtained results demonstrate that the humidity-induced Brillouin frequency shift is predominantly caused by the swelling of the fiber over-cladding that leads to fiber straining.

15.
JPhys Photonics ; 6(3): 032001, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38939757

ABSTRACT

Stimulated Brillouin scattering (SBS) microscopy is a nonlinear all-optical imaging method that provides mechanical contrast based on the interaction of laser radiation and acoustical vibrational modes. Featuring high mechanical specificity and sensitivity, three-dimensional sectioning, and practical imaging times, SBS microscopy with (quasi) continuous wave excitation is rapidly advancing as a promising imaging tool for label-free visualization of viscoelastic information of materials and living biological systems. In this article, we introduce the theory of SBS microscopy and review the current state-of-the-art as well as recent innovations, including different approaches to system designs and data analysis. In particular, various performance parameters of SBS microscopy and its applications in the life sciences are described and discussed. Future perspectives for SBS microscopy are also presented.

16.
Micromachines (Basel) ; 14(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37893364

ABSTRACT

Phase-modulated (PM) spectral failsafe systems are necessary to promptly terminate amplification processes following accidental seeding of a high-power laser chain with a non-PM pulse to prevent optical damage. In this work, we present a reliable spectral failsafe system that can indicate the presence or absence of sufficient PM light. This requirement is met by combining dual temperature-sensitive fiber Bragg gratings detection with high-speed RF amplitude comparisons. The failsafe trigger signal is generated when the spectral power at the peak sideband exceeds that at the center. The spectral failsafe system has the ability to distinguish between adequate and inadequate PM pulses, and it exhibits significant robustness in pulse width, TEC temperature drift, and DFB wavelength drift in experiments, making it valuable for safe high-power laser operations and providing a useful reference for other detection system designs.

17.
Front Phys ; 112023.
Article in English | MEDLINE | ID: mdl-37377499

ABSTRACT

Brillouin microscopy based on spontaneous Brillouin scattering has emerged as a unique elastography technique because of its merit of non-contact, label-free, and high-resolution mechanical imaging of biological cell and tissue. Recently, several new optical modalities based on stimulated Brillouin scattering have been developed for biomechanical research. As the scattering efficiency of the stimulated process is much higher than its counterpart in the spontaneous process, stimulated Brillouin-based methods have the potential to significantly improve the speed and spectral resolution of existing Brillouin microscopy. Here, we review the ongoing technological advancements of three methods, including continuous wave stimulated Brillouin microscopy, impulsive stimulated Brillouin microscopy, and laser-induced picosecond ultrasonics. We describe the physical principle, the representative instrumentation, and biological application of each method. We further discuss the current limitations as well as the challenges for translating these methods into a visible biomedical instrument for biophysics and mechanobiology.

18.
F1000Res ; 10: 521, 2021.
Article in English | MEDLINE | ID: mdl-37745939

ABSTRACT

Stimulated Brillouin scattering (SBS) is useful, among others for generating slow light, sensing and amplification. SBS was previously viewed as a poor method due to the limitation on optical power in high-powered photonic applications. However, considering the many possible applications using SBS, it is now of interest to enhance SBS in areas of Brillouin frequency shift together with Brillouin Gain. A numerical model, using a fully vectorial approach, by employing the finite element method, was developed to investigate methods for enhancing SBS in optical fiber. This paper describes the method related to the numerical model and discusses the analysis between the interactions of longitudinal, shear and hybrid acoustic modes; and optical modes in optical fiber. Two case studies were used to demonstrate this. Based on this numerical model, we report the influence of core radius, clad radius and effective refractive index on the Brillouin frequency shift and gain. We observe the difference of Brillouin shift frequency between a normal silica optical fiber and that of a microfiber - a uniformed silica fiber of a much smaller core and cladding dimensions where nonlinearities are higher. Also observed, the different core radii used and their respective Brillouin shift. For future work, the COMSOL model can also be used for the following areas of research, including simulating "surface Brillouin shift" and also to provide in-sights to the Brillouin shift frequency vB of various structures of waveguides, e.g circular, and triangular, and also to examine specialty fibers, e.g. Thulium and Chalcogenide doped fibers, and their effects on Brillouin shift frequency.

19.
Micromachines (Basel) ; 11(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183230

ABSTRACT

Nonlinear frequency generation requires high intensity density which is usually achieved with pulsed laser sources, anomalous dispersion, high nonlinear coefficients or long interaction lengths. Whispering gallery mode microresonators (WGMRs) are photonic devices that enhance nonlinear interactions and can be exploited for continuous wave (CW) nonlinear frequency conversion, due to their capability of confine light for long time periods in a very small volume, even though in the normal dispersion regime. All signals must be resonant with the cavity. Here, we present a review of nonlinear optical processes in glass microspherical cavities, hollow and solid.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 320-327, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30144748

ABSTRACT

Vegetable oils provide high nutritional value in the human diet. Specifically, extra virgin olive oil (EVOO) possesses a higher price than that of other vegetable oils. Adulteration of pure EVOO with other types of vegetable oils has attracted increasing attentions. In this work, a stimulated Brillouin scattering (SBS) combined with visible absorption spectroscopy method is proposed for authentication of vegetable oils and detection of olive oil adulteration. The results provided here have demonstrated that the different vegetable oils and adulteration oils exhibit significant differences in normalized absorbance values of two relevant wavelengths (455 and 670 nm) and frequency shifts of SBS. The normalized absorbance values of all spectra at the two relevant wavelengths of 670 nm and 455 nm linearly decrease with the increase of the adulteration concentration. The Brillouin frequency shifts exponentially increase with the increase of the adulteration concentration. Due to non-destructive and requiring no sample pretreatment procedure, this method can be effectively employed for authentication and detection of oils adulteration.


Subject(s)
Food Contamination/analysis , Olive Oil/analysis , Spectrum Analysis/methods , Linear Models , Olive Oil/chemistry , Olive Oil/standards , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL