Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.357
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 39: 557-581, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33651964

ABSTRACT

There is a growing interest in understanding tissue organization, homeostasis, and inflammation. However, despite an abundance of data, the organizing principles of tissue biology remain poorly defined. Here, we present a perspective on tissue organization based on the relationships between cell types and the functions that they perform. We provide a formal definition of tissue homeostasis as a collection of circuits that regulate specific variables within the tissue environment, and we describe how the functional organization of tissues allows for the maintenance of both tissue and systemic homeostasis. This leads to a natural definition of inflammation as a response to deviations from homeostasis that cannot be reversed by homeostatic mechanisms alone. We describe how inflammatory signals act on the same cellular functions involved in normal tissue organization and homeostasis in order to coordinate emergency responses to perturbations and ultimately return the system to a homeostatic state. Finally, we consider the hierarchy of homeostatic and inflammatory circuits and the implications for the development of inflammatory diseases.


Subject(s)
Inflammation , Animals , Homeostasis , Humans
2.
Annu Rev Immunol ; 39: 537-556, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33577346

ABSTRACT

The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.


Subject(s)
Autoimmune Diseases , Interleukin-17 , Animals , Autoimmune Diseases/etiology , Cytokines , Humans , Intention , Receptors, Interleukin-17
3.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280374

ABSTRACT

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Subject(s)
Complement C3 , Intestinal Mucosa , Microbiota , Animals , Humans , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Neutrophils , Complement C3/metabolism , Stromal Cells/metabolism
4.
Cell ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276774

ABSTRACT

Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.

5.
Cell ; 186(20): 4271-4288.e24, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37699390

ABSTRACT

Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.

6.
Annu Rev Immunol ; 33: 715-45, 2015.
Article in English | MEDLINE | ID: mdl-25861980

ABSTRACT

Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.


Subject(s)
Inflammation/immunology , Inflammation/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Stromal Cells/immunology , Stromal Cells/metabolism , Animals , Cell Communication , Chronic Disease , Humans , Inflammation/pathology , Organogenesis/immunology , Phenotype
7.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33508229

ABSTRACT

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Subject(s)
Cranial Sinuses/immunology , Cranial Sinuses/physiology , Dura Mater/immunology , Dura Mater/physiology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/metabolism , Antigens/cerebrospinal fluid , Cellular Senescence , Chemokine CXCL12/pharmacology , Dura Mater/blood supply , Female , Homeostasis , Humans , Immunity , Male , Mice, Inbred C57BL , Phenotype , Stromal Cells/cytology , T-Lymphocytes/cytology
8.
Immunity ; 57(6): 1345-1359.e5, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38692280

ABSTRACT

Regulatory T (Treg) cells in epidydimal visceral adipose tissue (eVAT) of lean mice and humans regulate metabolic homeostasis. We found that constitutive or punctual depletion of eVAT-Treg cells reined in the differentiation of stromal adipocyte precursors. Co-culture of these precursors with conditional medium from eVAT-Treg cells limited their differentiation in vitro, suggesting a direct effect. Transcriptional comparison of adipocyte precursors, matured in the presence or absence of the eVAT-Treg-conditioned medium, identified the oncostatin-M (OSM) signaling pathway as a key distinction. Addition of OSM to in vitro cultures blocked the differentiation of adipocyte precursors, while co-addition of anti-OSM antibodies reversed the ability of the eVAT-Treg-conditioned medium to inhibit in vitro adipogenesis. Genetic depletion of OSM (specifically in Treg) cells or of the OSM receptor (specifically on stromal cells) strongly impaired insulin sensitivity and related metabolic indices. Thus, Treg-cell-mediated control of local progenitor cells maintains adipose tissue and metabolic homeostasis, a regulatory axis seemingly conserved in humans.


Subject(s)
Adipocytes , Cell Differentiation , Homeostasis , Insulin Resistance , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Humans , Mice , Adipocytes/metabolism , Cell Differentiation/immunology , Oncostatin M/metabolism , Signal Transduction , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/cytology , Intra-Abdominal Fat/immunology , Stromal Cells/metabolism , Mice, Inbred C57BL , Coculture Techniques , Adipogenesis , Cells, Cultured , Male , Adipose Tissue/metabolism , Adipose Tissue/cytology , Culture Media, Conditioned/pharmacology
9.
Genes Dev ; 37(17-18): 781-800, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37798016

ABSTRACT

Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.


Subject(s)
Adipogenesis , Mesenchymal Stem Cells , Humans , Adipose Tissue , Obesity , Stromal Cells
10.
Immunity ; 53(1): 127-142.e7, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32562599

ABSTRACT

Located within red pulp cords, splenic red pulp macrophages (RPMs) are constantly exposed to the blood flow, clearing senescent red blood cells (RBCs) and recycling iron from hemoglobin. Here, we studied the mechanisms underlying RPM homeostasis, focusing on the involvement of stromal cells as these cells perform anchoring and nurturing macrophage niche functions in lymph nodes and liver. Microscopy revealed that RPMs are embedded in a reticular meshwork of red pulp fibroblasts characterized by the expression of the transcription factor Wilms' Tumor 1 (WT1) and colony stimulating factor 1 (CSF1). Conditional deletion of Csf1 in WT1+ red pulp fibroblasts, but not white pulp fibroblasts, drastically altered the RPM network without altering circulating CSF1 levels. Upon RPM depletion, red pulp fibroblasts transiently produced the monocyte chemoattractants CCL2 and CCL7, thereby contributing to the replenishment of the RPM network. Thus, red pulp fibroblasts anchor and nurture RPM, a function likely conserved in humans.


Subject(s)
Fibroblasts/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Spleen/cytology , WT1 Proteins/metabolism , Animals , Chemokine CCL2/metabolism , Chemokine CCL7/metabolism , Gene Expression Regulation , Humans , Immunity, Innate/immunology , Iron/metabolism , Macrophage Colony-Stimulating Factor/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Rats , Signal Transduction/immunology , Spleen/metabolism
11.
Immunity ; 50(6): 1467-1481.e6, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31201093

ABSTRACT

Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.


Subject(s)
Cytokines/metabolism , Lymph Nodes/cytology , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Stromal Cells/metabolism , Animals , Biomarkers , Cell Differentiation , Cellular Microenvironment , Immunophenotyping , Macrophages/immunology , Mice , Mice, Transgenic , Signal Transduction
12.
Immunity ; 50(6): 1453-1466.e4, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31053503

ABSTRACT

In lymph nodes, subcapsular sinus macrophages (SSMs) form an immunological barrier that monitors lymph drained from peripheral tissues. Upon infection, SSMs activate B and natural killer T (NKT) cells while secreting inflammatory mediators. Here, we investigated the mechanisms regulating development and homeostasis of SSMs. Embryonic SSMs originated from yolk sac hematopoiesis and were replaced by a postnatal wave of bone marrow (BM)-derived monocytes that proliferated to establish the adult SSM network. The SSM network self-maintained by proliferation with minimal BM contribution. Upon pathogen-induced transient deletion, BM-derived cells contributed to restoring the SSM network. Lymphatic endothelial cells (LECs) were the main source of CSF-1 within the lymph node and conditional deletion of Csf1 in adult LECs decreased the network of SSMs and medullary sinus macrophages (MSMs). Thus, SSMs have a dual hematopoietic origin, and LECs are essential to the niche supporting these macrophages.


Subject(s)
Endothelial Cells/metabolism , Macrophages/metabolism , Animals , Biomarkers , Cell Communication , Cell Differentiation , Gene Expression , Genes, Reporter , Hematopoiesis/genetics , Hematopoiesis/immunology , Homeostasis , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphatic Vessels , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/cytology , Macrophages/immunology , Mice , Monocytes/cytology , Monocytes/metabolism , Yolk Sac
13.
Immunity ; 50(3): 707-722.e6, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30824323

ABSTRACT

Type 2 lymphocytes promote both physiologic tissue remodeling and allergic pathology, yet their physical tissue niches are poorly described. Here, we used quantitative imaging to define the tissue niches of group 2 innate lymphoid cells (ILC2s), which are critical instigators of type 2 immunity. We identified a dominant adventitial niche around lung bronchi and larger vessels in multiple tissues, where ILC2s localized with subsets of dendritic and regulatory T cells. However, ILC2s were most intimately associated with adventitial stromal cells (ASCs), a mesenchymal fibroblast-like subset that expresses interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP). In vitro, ASCs produced TSLP that supported ILC2 accumulation and activation. ILC2s and IL-13 drove reciprocal ASC expansion and IL-33 expression. During helminth infection, ASC depletion impaired lung ILC2 and Th2 cell accumulation and function, which are in part dependent on ASC-derived IL-33. These data indicate that adventitial niches are conserved sites where ASCs regulate type 2 lymphocyte expansion and function.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Stromal Cells/immunology , Animals , Bronchi/immunology , Cytokines/immunology , Interleukin-13/immunology , Interleukin-33/immunology , Mice , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Thymic Stromal Lymphopoietin
14.
Annu Rev Cell Dev Biol ; 30: 677-704, 2014.
Article in English | MEDLINE | ID: mdl-25150008

ABSTRACT

Two opposing descriptions of so-called mesenchymal stem cells (MSCs) exist at this time. One sees MSCs as the postnatal, self-renewing, and multipotent stem cells for the skeleton. This cell coincides with a specific type of bone marrow perivascular cell. In skeletal physiology, this skeletal stem cell is pivotal to the growth and lifelong turnover of bone and to its native regeneration capacity. In hematopoietic physiology, its role as a key player in maintaining hematopoietic stem cells in their niche and in regulating the hematopoietic microenvironment is emerging. In the alternative description, MSCs are ubiquitous in connective tissues and are defined by in vitro characteristics and by their use in therapy, which rests on their ability to modulate the function of host tissues rather than on stem cell properties. Here, I discuss how the two views developed, conceptually and experimentally, and attempt to clarify the confusion arising from their collision.


Subject(s)
Mesenchymal Stem Cells/cytology , Animals , Bone Marrow Cells/classification , Bone Marrow Cells/cytology , Bone and Bones/cytology , CD146 Antigen/analysis , Cell Separation/methods , Cell- and Tissue-Based Therapy , Cells, Cultured , Clone Cells/cytology , Connective Tissue/immunology , Humans , Immunomodulation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/classification , Mice , Models, Biological , Pericytes/cytology , Pluripotent Stem Cells/cytology , Radiation Chimera , Stem Cell Niche , Stromal Cells/classification , Stromal Cells/cytology , Transplantation, Heterotopic
15.
EMBO J ; 42(9): e111762, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36943004

ABSTRACT

Senescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined. Herein, we found that the expression of the splicing factor Y-box binding protein 1 (YBX1) in BMSCs decreased with aging in mice and humans. YBX1 deficiency resulted in mis-splicing in genes linked to BMSC osteogenic differentiation and senescence, such as Fn1, Nrp2, Sirt2, Sp7, and Spp1, thus contributing to BMSC senescence and differentiation shift during aging. Deletion of Ybx1 in BMSCs accelerated bone loss in mice, while its overexpression stimulated bone formation. Finally, we identified a small compound, sciadopitysin, which attenuated the degradation of YBX1 and bone loss in old mice. Our study demonstrated that YBX1 governs cell fate of BMSCs via fine control of RNA splicing and provides a potential therapeutic target for age-related osteoporosis.


Subject(s)
Mesenchymal Stem Cells , Osteoporosis , Humans , Mice , Animals , Osteogenesis/genetics , Aging/metabolism , Cellular Senescence , Cell Differentiation/genetics , Osteoporosis/metabolism , Bone Marrow Cells , Y-Box-Binding Protein 1/metabolism
16.
Development ; 151(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38240380

ABSTRACT

Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.


Subject(s)
Muscle, Skeletal , Oculomotor Muscles , Mice , Animals , Muscle, Skeletal/metabolism , Oculomotor Muscles/metabolism , Mice, Inbred C57BL , Cell Proliferation , Stem Cells
17.
Semin Immunol ; 70: 101835, 2023 11.
Article in English | MEDLINE | ID: mdl-37651849

ABSTRACT

Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.


Subject(s)
Aging , Thymus Gland , Humans , Animals , Mice , Thymus Gland/physiology , Immune System , Chemokines , Ataxia , Lymphoid Tissue
18.
Proc Natl Acad Sci U S A ; 121(32): e2404146121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074278

ABSTRACT

Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.


Subject(s)
Extracellular Matrix , Mechanotransduction, Cellular , Mesenchymal Stem Cells , RNA, Long Noncoding , Humans , Mesenchymal Stem Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Extracellular Matrix/metabolism , Hydrogels/chemistry , Gene Expression Regulation , Collagen/metabolism , Cells, Cultured , Immunomodulation/genetics
19.
EMBO J ; 41(4): e108415, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34957577

ABSTRACT

Leptin receptor (LepR)-positive cells are key components of the bone marrow hematopoietic microenvironment, and highly enrich skeletal stem and progenitor cells that maintain homeostasis of the adult skeleton. However, the heterogeneity and lineage hierarchy within this population has been elusive. Using genetic lineage tracing and single-cell RNA sequencing, we found that Lepr-Cre labels most bone marrow stromal cells and osteogenic lineage cells in adult long bones. Integrated analysis of Lepr-Cre-traced cells under homeostatic and stress conditions revealed dynamic changes of the adipogenic, osteogenic, and periosteal lineages. Importantly, we discovered a Notch3+ bone marrow sub-population that is slow-cycling and closely associated with the vasculatures, as well as key transcriptional networks promoting osteo-chondrogenic differentiation. We also identified a Sca-1+ periosteal sub-population with high clonogenic activity but limited osteo-chondrogenic potential. Together, we mapped the transcriptomic landscape of adult LepR+ stem and progenitor cells and uncovered cellular and molecular mechanisms underlying their maintenance and lineage specification.


Subject(s)
Bone and Bones/cytology , Receptors, Leptin/metabolism , Single-Cell Analysis/methods , Stem Cells/physiology , Aging/physiology , Animals , Antigens, Ly/metabolism , Cell Differentiation , Cell Lineage , Colony-Forming Units Assay , Female , Fractures, Bone , Gene Expression Profiling , Homeodomain Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Rosiglitazone/pharmacology , Stem Cells/cytology , Stem Cells/drug effects , Stress, Physiological
20.
Trends Immunol ; 44(9): 724-743, 2023 09.
Article in English | MEDLINE | ID: mdl-37573226

ABSTRACT

The natural history of advanced malignant melanoma demonstrates that, in most cases, widespread tumor dissemination is preceded by regional metastases involving tumor-draining lymph nodes [sentinel lymph nodes (SLNs)]. Under physiological conditions, LNs play a central role in immunosurveillance to non-self-antigens to which they are exposed via afferent lymph. The dysfunctional immunity in SLNs is mediated by tumor secretory factors that allow the survival of metastatic melanoma cells within the LN by creating a premetastatic niche (PMN). Recent studies outline the altered microenvironment of LNs shaped by melanoma mediators. Here, we discuss tumor secretory factors involved in subverting tumor immunity and remodeling LNs and highlight emerging therapeutic strategies to reinvigorate antitumoral immunity in SLNs.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Lymphatic Metastasis/pathology , Melanoma/pathology , Skin Neoplasms/pathology , Lymph Nodes , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL