Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 300(5): 107215, 2024 May.
Article in English | MEDLINE | ID: mdl-38522518

ABSTRACT

Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.


Subject(s)
Fluorometry , Glucose , Oocytes , Sodium-Glucose Transporter 1 , Xenopus laevis , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/chemistry , Animals , Humans , Fluorometry/methods , Glucose/metabolism , Oocytes/metabolism , Protein Binding , Patch-Clamp Techniques , Galactose/metabolism , Fructose/metabolism , Fructose/chemistry , Binding Sites
2.
Plant J ; 119(3): 1400-1417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815085

ABSTRACT

Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.


Subject(s)
Abscisic Acid , Fragaria , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Abscisic Acid/metabolism , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Fragaria/genetics , Fragaria/metabolism , Fragaria/growth & development , Fragaria/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Signal Transduction , Sugars/metabolism , Phosphorylation , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Growth Regulators/metabolism , Plants, Genetically Modified
3.
Glycobiology ; 34(2)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38070184

ABSTRACT

Free polymannose-type oligosaccharides (fOS) are processed by cytosolic enzymes to generate Man5GlcNAc which is transferred to lysosomes and degraded. Lysosomal fOS import was demonstrated in vitro but is poorly characterized in part due to lack of convenient substrates. As chitooligosaccharides (COS, oligomers ß1,4-linked GlcNAc) block [3H]Man5GlcNAc transport into lysosomes, we asked if COS are themselves transported and if so, can they be chemically modified to generate fluorescent substrates. We show that COS are degraded by lysosomal hydrolases to generate GlcNAc, and robust ATP-dependent transport of [3H]COS2/4 di and tetrasaccharides into intact rat liver lysosomes was observed only after blocking lysosomal [3H]GlcNAc efflux with cytochalasin B. As oligosaccharides with unmodified reducing termini are the most efficient inhibitors of [3H]COS2/4 and [3H]Man5GlcNAc transport, the non-reducing GlcNAc residue of COS2-4 was de-N-acetylated using Sinorhizobium meliloti NodB, and the resulting amine substituted with rhodamine B (RB) to yield RB-COS2-4. The fluorescent compounds inhibit [3H]Man5GlcNAc transport and display temperature-sensitive, ATP-dependent transport into a sedimentable compartment that is ruptured with the lysosomotropic agent L-methyl methionine ester. Once in this compartment, RB-COS3 is converted to RB-COS2 further identifying it as the lysosomal compartment. RB-COS2/3 and [3H]Man5GlcNAc transports are blocked similarly by competing sugars, and are partially inhibited by the vacuolar ATPase inhibitor bafilomycin and high concentrations of the P-type ATPase inhibitor orthovanadate. These data show that Man5GlcNAc, COS2/4 and RB-COS2/3 are transported into lysosomes by the same or closely related mechanism and demonstrate the utility of COS modified at their non-reducing terminus to study lysosomal oligosaccharide transport.


Subject(s)
Liver , Lysosomes , Rats , Animals , Liver/metabolism , Lysosomes/metabolism , Oligosaccharides/metabolism , Biological Transport , Adenosine Triphosphate/metabolism
4.
Appl Microbiol Biotechnol ; 108(1): 83, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38189952

ABSTRACT

Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.


Subject(s)
Lactose , Sugars , Humans , Phylogeny , Biological Transport , Membrane Transport Proteins/genetics
5.
Article in English | MEDLINE | ID: mdl-38866721

ABSTRACT

Biomass degrading thermophiles play an indispensable role in building lignocellulose-based supply chains. They operate at high temperatures to improve process efficiencies and minimize mesophilic contamination, can overcome lignocellulose recalcitrance through their native carbohydrate-active enzyme (CAZyme) inventory, and can utilize a wide range of sugar substrates. However, sugar transport in thermophiles is poorly understood and investigated, as compared to enzymatic lignocellulose deconstruction and metabolic conversion of sugars to value-added chemicals. Here, we review the general modes of sugar transport in thermophilic bacteria and archaea, covering the structural, molecular, and biophysical basis of their high-affinity sugar uptake. We also discuss recent genetic studies on sugar transporter function. With this understanding of sugar transport, we discuss strategies for how sugar transport can be engineered in thermophiles, with the potential to enhance the conversion of lignocellulosic biomass into renewable products. ONE-SENTENCE SUMMARY: Sugar transport is the understudied link between extracellular biomass deconstruction and intracellular sugar metabolism in thermophilic lignocellulose bioprocessing.


Subject(s)
Archaea , Bacteria , Lignin , Sugars , Lignin/metabolism , Archaea/metabolism , Archaea/genetics , Biological Transport , Sugars/metabolism , Bacteria/metabolism , Bacteria/genetics , Biomass , Carbohydrate Metabolism , Hot Temperature
6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443220

ABSTRACT

Sugar transport across tonoplasts is essential for maintaining cellular sugar homeostasis and metabolic balance in plant cells. It remains unclear, however, how this process is regulated among different classes of sugar transporters. Here, we identified a tonoplast H+/glucose symporter, MdERDL6-1, from apples, which was highly expressed in fruits and exhibited expression patterns similar to those of the tonoplast H+/sugar antiporters MdTST1 and MdTST2. Overexpression of MdERDL6-1 unexpectedly increased not only glucose (Glc) concentration but also that of fructose (Fru) and sucrose (Suc) in transgenic apple and tomato leaves and fruits. RNA sequencing (RNA-seq) and expression analyses showed an up-regulation of TST1 and TST2 in the transgenic apple and tomato lines overexpressing MdERDL6-1 Further studies established that the increased sugar concentration in the transgenic lines correlated with up-regulation of TST1 and TST2 expression. Suppression or knockout of SlTST1 and SlTST2 in the MdERDL6-1-overexpressed tomato background reduced or abolished the positive effect of MdERDL6-1 on sugar accumulation, respectively. The findings demonstrate a regulation of TST1 and TST2 by MdERDL6-1, in which Glc exported by MdERDL6-1 from vacuole up-regulates TST1 and TST2 to import sugars from cytosol to vacuole for accumulation to high concentrations. The results provide insight into the regulatory mechanism of sugar accumulation in vacuoles mediated by the coordinated action of two classes of tonoplast sugar transporters.


Subject(s)
Gene Expression Regulation, Plant/genetics , Malus/metabolism , Monosaccharide Transport Proteins/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Vacuoles/metabolism , Cytosol/metabolism , Fructose/metabolism , Fruit/metabolism , Gene Knockout Techniques , Gene Silencing , Glucose/metabolism , Solanum lycopersicum/genetics , Malus/genetics , Monosaccharide Transport Proteins/genetics , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , RNA-Seq , Sucrose/metabolism , Up-Regulation
7.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474316

ABSTRACT

Single-cell RNA sequencing (scRNAseq) is a crucial tool in kidney research. These technologies cluster cells based on transcriptome similarity, irrespective of the anatomical location and order within the nephron. Thus, a transcriptome cluster may obscure the heterogeneity of the cell population within a nephron segment. Elevated dietary fructose leads to salt-sensitive hypertension, in part, through fructose reabsorption in the proximal tubule (PT). However, the organization of the four known fructose transporters in apical PTs (SGLT4, SGLT5, GLUT5, and NaGLT1) remains poorly understood. We hypothesized that cells within each subsegment of the proximal tubule exhibit complex, heterogeneous fructose transporter expression patterns. To test this hypothesis, we analyzed rat kidney transcriptomes and proteomes from publicly available scRNAseq and tubule microdissection databases. We found that microdissected PT-S1 segments consist of 81% ± 12% cells with scRNAseq-derived transcriptional characteristics of S1, whereas PT-S2 express a mixture of 18% ± 9% S1, 58% ± 8% S2, and 19% ± 5% S3 transcripts, and PT-S3 consists of 75% ± 9% S3 transcripts. The expression of all four fructose transporters was detectable in all three PT segments, but key fructose transporters SGLT5 and GLUT5 progressively increased from S1 to S3, and both were significantly upregulated in S3 vs. S1/S2 (Slc5a10: 1.9 log2FC, p < 1 × 10-299; Scl2a5: 1.4 log2FC, p < 4 × 10-105). A similar distribution was found in human kidneys. These data suggest that S3 is the primary site of fructose reabsorption in both humans and rats. Finally, because of the multiple scRNAseq transcriptional phenotypes found in each segment, our findings also imply that anatomical labels applied to scRNAseq clusters may be misleading.


Subject(s)
Fructose , Transcriptome , Humans , Rats , Animals , Fructose/metabolism , Nephrons/metabolism , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Membrane Transport Proteins/metabolism
8.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396836

ABSTRACT

Plant cells accumulate osmotic substances (e.g., sugar) to protect cell components and maintain osmotic balance under drought stress conditions. Previous studies found that pOsHAK1:OsFLN2 promotes sugar metabolism and improves the drought tolerance of rice plants under drought stress. This study further evaluated the effect of the ectopic expression of the OsSUT1 gene driven by the OsHAK1 promoter on the sugar transport and drought tolerance of rice. The results showed that the net photosynthetic rate and sucrose phosphate synthase activity of plants expressing the OsSUT1 gene were not significantly different from those of wild-type (WT) rice plants under drought conditions. However, the sucrose transport rate in the phloem increased in the transgenic plants, and the sucrose contents were significantly lower in the leaves but significantly higher in the roots of transgenic plants than those in WT plants. The pOsHAK1:OsSUT1 and pOsHAK1:OsFLN2 transgenic lines had similar rates of long-distance sucrose transport and drought tolerance, which were higher than those of the WT plants. The relative water content of the transgenic plants was higher, while their water loss rate, hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents were lower than those of the WT plants. The stress-responsive gene OsbZIP23 and the antioxidant-related gene OsCATB were significantly upregulated in the drought-treated transgenic lines, while the senescence indicator gene SGR and the stress-responsive gene OsNAC2 were down-regulated compared to WT plants. These results showed that promoting the long-distance sugar transport through the expression of pOsHAK1:OsSUT1 could produce an improved drought tolerance effect similar to that of pOsHAK1:OsFLN2, providing an effective way to improve the drought tolerance of cereal crops at the seedling stage.


Subject(s)
Drought Resistance , Oryza , Oryza/genetics , Oryza/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Sucrose/metabolism , Sugars/metabolism , Water/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics
9.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542145

ABSTRACT

Setaria italica is an important crop in China that plays a vital role in the Chinese dietary structure. In the last several decades, high temperature has become the most severe climate issue in the world, which causes great harm to the yield and quality formation of millet. In this study, two main cultivated varieties (ZG2 and AI88) were used to explore the photosynthesis and yield index of the whole plant under heat stress. Results implied that photosynthesis was not inhibited during the heat stress, and that the imbalance in sugar transport between different tissues may be the main factor that affects yield formation. In addition, the expression levels of seven SiSUT and twenty-four SiSWEET members were explored. Sugar transporters were heavily affected during the heat stress. The expression of SiSWEET13a was inhibited by heat stress in the stems, which may play a vital role in sugar transport between different tissues. These results provide new insights into the yield formation of crops under heat stress, which will provide guidance to crop breeding and cultivation.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Plant Breeding , Gene Expression Profiling , Heat-Shock Response/genetics , Sugars/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
10.
J Biol Chem ; 298(10): 102487, 2022 10.
Article in English | MEDLINE | ID: mdl-36113582

ABSTRACT

Serratia marcescens is an opportunistic pathogen that can utilize chitin as a carbon source, through its ability to produce chitin-degrading enzymes to digest chitin and membrane transporters to transport the degradation products (chitooligosaccharides) into the cells. Further characterization of these proteins is important to understand details of chitin metabolism. Here, we investigate the properties and function of the S. marcescens chitoporin, namely SmChiP, a chitooligosaccharide transporter. We show that SmChiP is a monomeric porin that forms a stable channel in artificial phospholipid membranes, with an average single-channel conductance of 0.5 ± 0.02 nS in 1 M KCl electrolyte. Additionally, we demonstrated that SmChiP allowed the passage of small molecules with a size exclusion limit of <300 Da and exhibited substrate specificity toward chitooligosaccharides, both in membrane and detergent-solubilized forms. We found that SmChiP interacted strongly with chitopentaose (Kd = 23 ± 2.0 µM) and chitohexaose (Kd = 17 ± 0.6 µM) but did not recognize nonchitose oligosaccharides (maltohexaose and cellohexaose). Given that S. marcescens can use chitin as a primary energy source, SmChiP may serve as a target for further development of nutrient-based antimicrobial therapies directed against multidrug antibiotic-resistant S. marcescens infections.


Subject(s)
Chitin , Porins , Serratia marcescens , Chitin/metabolism , Chitosan/metabolism , Porins/metabolism , Particle Size , Membranes, Artificial
11.
Plant J ; 109(3): 615-632, 2022 02.
Article in English | MEDLINE | ID: mdl-34780111

ABSTRACT

Photosynthetic efficiency and sink demand are tightly correlated with rates of phloem loading, where maintaining low cytosolic sugar concentrations is paramount to prevent the downregulation of photosynthesis. Sugars Will Eventually be Exported Transporters (SWEETs) are thought to have a pivotal role in the apoplastic phloem loading of C4 grasses. SWEETs have not been well studied in C4 species, and their investigation is complicated by photosynthesis taking place across two cell types and, therefore, photoassimilate export can occur from either one. SWEET13 homologues in C4 grasses have been proposed to facilitate apoplastic phloem loading. Here, we provide evidence for this hypothesis using the C4 grass Setaria viridis. Expression analyses on the leaf gradient of C4 species Setaria and Sorghum bicolor show abundant transcript levels for SWEET13 homologues. Carbohydrate profiling along the Setaria leaf shows total sugar content to be significantly higher in the mature leaf tip compared with the younger tissue at the base. We present the first known immunolocalization results for SvSWEET13a and SvSWEET13b using novel isoform-specific antisera. These results show localization to the bundle sheath and phloem parenchyma cells of both minor and major veins. We further present the first transport kinetics study of C4 monocot SWEETs by using a Xenopus laevis oocyte heterologous expression system. We demonstrate that SvSWEET13a and SvSWEET13b are high-capacity transporters of glucose and sucrose, with a higher apparent Vmax for sucrose, compared with glucose, typical of clade III SWEETs. Collectively, these results provide evidence for an apoplastic phloem loading pathway in Setaria and possibly other C4 species.


Subject(s)
Biological Transport/genetics , Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Phloem/metabolism , Setaria Plant/genetics , Setaria Plant/metabolism , Sucrose/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Photosynthesis , Transcription, Genetic
12.
Funct Integr Genomics ; 23(2): 137, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37093289

ABSTRACT

Sugar efflux transporter SWEET family is involved in multiple biological processes, from nectar secretion, pollen fertility to seed filling. Although roles of SWEETs in abiotic stress adaption have been revealed mainly in reference organism Arabidopsis, cereal crops SWEETs responses to abiotic stimulation remain largely elusive. Here, we report the characterization of maize SWEET family member ZmSWEET1b, with emphasis on its response to salinity stress. ZmSWEET1b is a canonical sugar transporter, characteristic of seven transmembrane helices and plasma membrane localization. ZmSWEET1b and its rice ortholog OsSWEET1b in phylogenetic clade I underwent convergent selection during evolution. Two independent knockout lines were created by the CRISPR/Cas9 method to functionally characterized ZmSWEET1b. Sucrose and fructose contents are significantly decreased in ZmSWEET1b knockout lines. Mature leaves of ZmSWEET1b-edited lines exhibit chlorosis, reminiscent of senescence-like phenotype. Ears and seeds of ZmSWEET1b knockout lines are small. Upon salinity treatment, ZmSWEET1b-edited lines become more wilted. Transcriptional abundance of genes for Na+ efflux from roots to the rhizosphere, including ZmSOS1, ZmH+-ATPASE 2, and ZmH+-ATPASE 8, is decreased in salt-treated ZmSWEET1b knockout lines. These findings indicate that convergently selected sugar transporter ZmSWEET1b is important for maize plant development and responses to salt stress. The manipulation of ZmSWEET1b may represent a feasible way forward in the breeding of salinity tolerant ideotypes through the optimization of assimilate allocation.


Subject(s)
Arabidopsis , Zea mays , Zea mays/genetics , Phylogeny , Plant Breeding , Salt Stress , Stress, Physiological/genetics , Arabidopsis/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Sugars/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
13.
New Phytol ; 237(2): 408-413, 2023 01.
Article in English | MEDLINE | ID: mdl-36101501

ABSTRACT

Plants have a broad capacity to regenerate damaged organs. The study of wounding in multiple developmental systems has uncovered many of the molecular properties underlying plants' competence for regeneration at the local cellular level. However, in nature, wounding is rarely localized to one place, and plants need to coordinate regeneration responses at multiple tissues with environmental conditions and their physiological state. Here, we review the evidence for systemic signals that regulate regeneration on a plant-wide level. We focus on the role of auxin and sugars as short- and long-range signals in natural wounding contexts and discuss the varied origin of these signals in different regeneration scenarios. Together, this evidence calls for a broader, system-wide view of plant regeneration competence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Indoleacetic Acids , Plants , Plant Roots/physiology
14.
Plant Cell Environ ; 46(4): 1363-1383, 2023 04.
Article in English | MEDLINE | ID: mdl-36658612

ABSTRACT

Low-light stress compromises photosynthetic and energy efficiency and leads to spikelet sterility; however, the effect of low-light stress on pollen tube elongation in the pistil remains poorly understood. The gene RGA1, which encodes a Gα-subunit of the heterotrimeric G-protein, enhanced low-light tolerance at anthesis by preventing the cessation of pollen tube elongation in the pistil of rice plants. In this process, marked increases in the activities of acid invertase (INV), sucrose synthase (SUS) and mitochondrial respiratory electron transport chain complexes, as well as the relative expression levels of SUTs (sucrose transporter), SWEETs (sugars will eventually be exported transporters), SUSs, INVs, CINs (cell-wall INV 1), SnRK1A (sucrose-nonfermenting 1-related kinase 1) and SnRK1B, were observed in OE-1 plants. Accordingly, notable increases in contents of ATP and ATPase were presented in OE-1 plants under low-light conditions, while they were decreased in d1 plants. Importantly, INV and ATPase activators (sucrose and Na2 SO3 , respectively) increased spikelet fertility by improving the energy status in the pistil under low-light conditions, and the ATPase inhibitor Na2 VO4 induced spikelet sterility and decreased ATPase activity. These results suggest that RGA1 could alleviate the low-light stress-induced impairment of pollen tube elongation to increase spikelet fertility by promoting sucrose unloading in the pistil and improving the metabolism and allocation of energy.


Subject(s)
Infertility , Oryza , Sugars/metabolism , Pollen Tube , Plants/metabolism , Membrane Transport Proteins/metabolism , Sucrose/metabolism , Adenosine Triphosphatases/metabolism , Oryza/genetics
15.
J Exp Bot ; 74(10): 2968-2986, 2023 05 19.
Article in English | MEDLINE | ID: mdl-36883216

ABSTRACT

In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers, a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalization, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel, and in the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that it functions as a high-capacity glucose and sucrose transporter. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose content and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.


Subject(s)
Setaria Plant , Sugars , Sugars/metabolism , Setaria Plant/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phloem/metabolism , Biological Transport , Membrane Transport Proteins/metabolism , Sucrose/metabolism
16.
J Theor Biol ; 562: 111415, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36669726

ABSTRACT

Several key plant hormones are synthesised in the shoot and are advected within the phloem to the root tip. In the root tip, these hormones regulate growth and developmental processes, and responses to environmental cues. However, we lack understanding of how environmental factors and biological parameters affect the delivery of hormones to the root tip. In this study, we build on existing models of phloem flow to develop a mathematical model of sugar transport alongside the transport of a generic hormone. We derive the equations for osmotically driven flow in a long, thin pipe with spatially varying membrane properties to capture the phloem loading and unloading zones. Motivated by experimental findings, we formulate solute membrane transport in terms of passive and active components, and incorporate solute unloading via bulk flow (i.e. advection with the water efflux) by including the Staverman reflection coefficient. We use the model to investigate the coupling between the sugar and hormone dynamics. The model predicts that environmental cues that lead to an increase in active sugar loading, an increase in bulk flow sugar unloading or a decrease in the relative root sugar concentration result in an increase in phloem transport velocity. Furthermore, the model reveals that such increases in phloem transport velocity result in an increase in hormone delivery to the root tip for passively loaded hormones.


Subject(s)
Carbohydrates , Phloem , Phloem/physiology , Biological Transport , Sugars , Hormones
17.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108399

ABSTRACT

As a starchy and edible tropical plant, cassava (Manihot esculenta Crantz) has been widely used as an industrial raw material and a dietary source. However, the metabolomic and genetic differences in specific germplasms of cassava storage root were unclear. In this study, two specific germplasms, M. esculenta Crantz cv. sugar cassava GPMS0991L and M. esculenta Crantz cv. pink cassava BRA117315, were used as research materials. Results showed that sugar cassava GPMS0991L was rich in glucose and fructose, whereas pink cassava BRA117315 was rich in starch and sucrose. Metabolomic and transcriptomic analysis indicated that sucrose and starch metabolism had significantly changing metabolites enrichment and the highest degree of differential expression genes, respectively. Sugar transport in storage roots may contribute to the activities of sugar, which will eventually be exported to transporters (SWEETs), such as (MeSWEET1a, MeSWEET2b, MeSWEET4, MeSWEET5, MeSWEET10b, and MeSWEET17c), which transport hexose to plant cells. The expression level of genes involved in starch biosynthesis and metabolism were altered, which may result in starch accumulation. These results provide a theoretical basis for sugar transport and starch accumulation and may be useful in improving the quality of tuberous crops and increasing yield.


Subject(s)
Manihot , Starch , Starch/metabolism , Manihot/genetics , Manihot/metabolism , Transcriptome , Plant Roots/genetics , Plant Roots/metabolism , Glucose/metabolism , Sucrose/metabolism
18.
BMC Plant Biol ; 22(1): 363, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869432

ABSTRACT

BACKGROUND: Sugarcane is an important crop for sugar production worldwide. The Sugars Will Eventually be Exported Transporters (SWEETs) are a group of sugar transporters recently identified in sugarcane. In Saccharum spontaneum, SsSWEET13c played a role in the sucrose transportation from the source to the sink tissues, which was found to be mainly active in the mature leaf. However, the function and regulation of SWEETs in sugarcane remain elusive despite extensive studies performed on sugar metabolism. RESULTS: In this study, we showed that SsSWEET13c is a member of SWEET gene family in S. spontaneum, constituting highest circadian rhythm-dependent expression. It is a functional gene that facilitates plant root elongation and increase fresh weight of Arabidopsis thaliana, when overexpressed. Furthermore, yeast one-hybrid assays indicate that 20 potential transcription factors (TFs) could bind to the SsSWEET13c promoter in S. spontaneum. We combined transcriptome data from developmental gradient leaf with distinct times during circadian cycles and stems/leaves at different growth stages. We have uncovered that 14 out of 20 TFs exhibited positive/negative gene expression patterns relative to SsSWEET13c. In the source tissues, SsSWEET13c was mainly positively regulated by SsbHLH34, SsTFIIIA-a, SsMYR2, SsRAP2.4 and SsbHLH035, while negatively regulated by SsABS5, SsTFIIIA-b and SsERF4. During the circadian rhythm, it was noticed that SsSWEET13c was more active in the morning than in the afternoon. It was likely due to the high level of sugar accumulation at night, which was negatively regulated by SsbZIP44, and positively regulated by SsbHLH34. Furthermore, in the sink tissues, SsSWEET13c was also active for sugar accumulation, which was positively regulated by SsbZIP44, SsTFIIIA-b, SsbHLH34 and SsTFIIIA-a, and negatively regulated by SsERF4, SsHB36, SsDEL1 and SsABS5. Our results were further supported by one-to-one yeast hybridization assay which verified that 12 potential TFs could bind to the promoter of SsSWEET13c. CONCLUSIONS: A module of the regulatory network was proposed for the SsSWEET13c in the developmental gradient of leaf and circadian rhythm in S. spontaneum. These results provide a novel understanding of the function and regulation of SWEET13c during the sugar transport and biomass production in S. spontaneum.


Subject(s)
Saccharum , Edible Grain/genetics , Gene Expression Regulation, Plant , Saccharomyces cerevisiae/genetics , Saccharum/genetics , Saccharum/metabolism , Sugars/metabolism , Transcriptome
19.
J Exp Bot ; 73(7): 1910-1925, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35104311

ABSTRACT

It has been increasingly recognized that CWIN (cell wall invertase) and sugar transporters including STP (sugar transport protein) and SWEET (sugar will eventually be exported transporters) play important roles in plant-pathogen interactions. However, the information available in the literature comes from diverse systems and often yields contradictory findings and conclusions. To solve this puzzle, we provide here a comprehensive assessment of the topic. Our analyses revealed that the regulation of plant-microbe interactions by CWIN, SWEET, and STP is conditioned by the specific pathosystems involved. The roles of CWINs in plant resistance are largely determined by the lifestyle of pathogens (biotrophs versus necrotrophs or hemibiotrophs), possibly through CWIN-mediated salicylic acid or jasmonic acid signaling and programmed cell death pathways. The up-regulation of SWEETs and STPs may enhance or reduce plant resistance, depending on the cellular sites from which pathogens acquire sugars from the host cells. Finally, plants employ unique mechanisms to defend against viral infection, in part through a sugar-based regulation of plasmodesmatal development or aperture. Our appraisal further calls for attention to be paid to the involvement of microbial sugar metabolism and transport in plant-pathogen interactions, which is an integrated but overlooked component of such interactions.


Subject(s)
Sugars , beta-Fructofuranosidase , Biological Transport , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/metabolism , Sugars/metabolism , beta-Fructofuranosidase/metabolism
20.
EMBO Rep ; 21(8): e49719, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32627357

ABSTRACT

Guard cells on the leaf epidermis regulate stomatal opening for gas exchange between plants and the atmosphere, allowing a balance between photosynthesis and transpiration. Given that guard cells possess several characteristics of sink tissues, their metabolic activities should largely depend on mesophyll-derived sugars. Early biochemical studies revealed sugar uptake into guard cells. However, the transporters that are involved and their relative contribution to guard cell function are not yet known. Here, we identified the monosaccharide/proton symporters Sugar Transport Protein 1 and 4 (STP1 and STP4) as the major plasma membrane hexose sugar transporters in the guard cells of Arabidopsis thaliana. We show that their combined action is required for glucose import to guard cells, providing carbon sources for starch accumulation and light-induced stomatal opening that are essential for plant growth. These findings highlight mesophyll-derived glucose as an important metabolite connecting stomatal movements with photosynthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carbon , Glucose , Light , Plant Stomata
SELECTION OF CITATIONS
SEARCH DETAIL