Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 430
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(37): e2303080120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669371

ABSTRACT

Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.


Subject(s)
Aedes , Alphavirus Infections , Chikungunya virus , Superinfection , Yellow Fever , Animals , Sindbis Virus
2.
J Virol ; : e0104524, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225468

ABSTRACT

In the context of the virosphere, viral particles can compete for host cells. In this scenario, some viruses block the entry of exogenous virions upon infecting a cell, a phenomenon known as superinfection inhibition. The molecular mechanisms associated with superinfection inhibition vary depending on the viral species and the host, but generally, blocking superinfection ensures the genetic supremacy of the virus's progeny that first infects the cell. Giant amoeba-infecting viruses have attracted the scientific community's attention due to the complexity of their particles and genomes. However, there are no studies on the occurrence of superinfection and its inhibition induced by giant viruses. This study shows that mimivirus, moumouvirus, and megavirus, exhibit different strategies related to the infection of Acanthamoeba. For the first time, we have reported that mimivirus and moumouvirus induce superinfection inhibition in amoebas. Interestingly, megaviruses do not exhibit this ability, allowing continuous entry of exogenous virions into infected amoebas. Our investigation into the mechanisms behind superinfection blockage reveals that mimivirus and moumouvirus inhibit amoebic phagocytosis, leading to significant changes in the morphology and activity of the host cells. In contrast, megavirus-infected amoebas continue incorporating newly formed virions, negatively affecting the available viral progeny. This effect, however, is reversible with chemical inhibition of phagocytosis. This work contributes to the understanding of superinfection and its inhibition in mimivirus, moumouvirus, and megavirus, demonstrating that despite their evolutionary relatedness, these viruses exhibit profound differences in their interactions with their hosts.IMPORTANCESome viruses block the entry of new virions upon infecting a cell, a phenomenon known as superinfection inhibition. Superinfection inhibition in giant viruses has yet to be studied. This study reveals that even closely related viruses, such as mimivirus, moumouvirus, and megavirus, have different infection strategies for Acanthamoeba. For the first time, we have reported that mimivirus and moumouvirus induce superinfection inhibition in amoebas. In contrast, megaviruses do not exhibit this ability, allowing continuous entry of exogenous virions into infected amoebas. Our investigation shows that mimivirus and moumouvirus inhibit amoebic phagocytosis, causing significant changes in host cell morphology and activity. Megavirus-infected amoebas, however, continue incorporating newly formed viruses, affecting viral progeny. This research enhances our understanding of superinfection inhibition in these viruses, highlighting their differences in host interactions.

3.
J Virol ; 98(3): e0185923, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411948

ABSTRACT

Superinfection exclusion (SIE) is a phenomenon in which a preexisting infection prevents a secondary infection. SIE has been described for several flaviviruses, such as West Nile virus vs Nhumirim virus and Dengue virus vs yellow fever virus. Zika virus (ZIKV) is an emerging flavivirus posing threats to human health. The SIE between ZIKV and Japanese encephalitis virus (JEV) is investigated in this study. Our results demonstrate for the first time that JEV inhibits ZIKV infection in both mammalian and mosquito cells, whether co-infects or subsequently infects after ZIKV. The exclusion effect happens at the stage of ZIKV RNA replication. Further studies show that the expression of JEV NS2B protein is sufficient to inhibit the replication of ZIKV, and the outer membrane region of NS2B (46-103 aa) is responsible for this SIE. JEV infection and NS2B expression also inhibit the infection of the vesicular stomatitis virus. In summary, our study characterized a SIE caused by JEV NS2B. This may have potential applications in the prevention and treatment of ZIKV or other RNA viruses.IMPORTANCEThe reemerged Zika virus (ZIKV) has caused severe symptoms in humans and poses a continuous threat to public health. New vaccines or antiviral agents need to be developed to cope with possible future pandemics. In this study, we found that infection of Japanese encephalitis virus (JEV) or expression of NS2B protein well inhibited the replication of ZIKV. It is worth noting that both the P3 strain and vaccine strain SA14-14-2 of JEV exhibited significant inhibitory effects on ZIKV. Additionally, the JEV NS2B protein also had an inhibitory effect on vesicular stomatitis virus infection, suggesting that it may be a broad-spectrum antiviral factor. These findings provide a new way of thinking about the prevention and treatment of ZIKV.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Superinfection , Viral Nonstructural Proteins , Zika Virus Infection , Animals , Humans , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/metabolism , Encephalitis, Japanese/virology , Vesicular Stomatitis , Zika Virus , Viral Nonstructural Proteins/metabolism
4.
Mol Ther ; 32(8): 2519-2534, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38894543

ABSTRACT

Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.


Subject(s)
Alphavirus , Recombination, Genetic , mRNA Vaccines , Animals , Mice , Alphavirus/genetics , Alphavirus/immunology , Mice, Inbred C57BL , Humans , Receptor, Interferon alpha-beta/genetics , Virus Replication , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/adverse effects , Mice, Knockout , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/adverse effects
5.
Proc Natl Acad Sci U S A ; 119(42): e2211672119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215462

ABSTRACT

A key but poorly understood stage of the bacteriophage life cycle is the binding of phage receptor-binding proteins (RBPs) to receptors on the host cell surface, leading to injection of the phage genome and, for lytic phages, host cell lysis. To prevent secondary infection by the same or a closely related phage and nonproductive phage adsorption to lysed cell fragments, superinfection exclusion (SE) proteins can prevent the binding of RBPs via modulation of the host receptor structure in ways that are also unclear. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the phage T5 outer membrane (OM) receptor FhuA in complex with the T5 RBP pb5, and the crystal structure of FhuA complexed to the OM SE lipoprotein Llp. Pb5 inserts four loops deeply into the extracellular lumen of FhuA and contacts the plug but does not cause any conformational changes in the receptor, supporting the view that DNA translocation does not occur through the lumen of OM channels. The FhuA-Llp structure reveals that Llp is periplasmic and binds to a nonnative conformation of the plug of FhuA, causing the inward folding of two extracellular loops via "reverse" allostery. The inward-folded loops of FhuA overlap with the pb5 binding site, explaining how Llp binding to FhuA abolishes further infection of Escherichia coli by phage T5 and suggesting a mechanism for SE via the jamming of TonB-dependent transporters by small phage lipoproteins.


Subject(s)
Bacteriophages , Escherichia coli Proteins , Superinfection , Bacterial Outer Membrane Proteins/metabolism , Bacteriophage Receptors , Bacteriophages/genetics , Bacteriophages/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Humans , Lipoproteins/metabolism , Receptors, Virus/metabolism , T-Phages/chemistry , T-Phages/metabolism
6.
Clin Infect Dis ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189831

ABSTRACT

BACKGROUND: Prosthetic joint infection (PJI) caused by Candida spp is a severe complication of arthroplasty. We investigated the outcomes of Candida PJI. METHODS: This was a retrospective observational multinational study including patients diagnosed with Candida-related PJI between 2010 and 2021. Treatment outcome was assessed at 2-year follow-up. RESULTS: A total of 269 patients were analyzed. Median age was 73.0 (interquartile range [IQR], 64.0-79.0) years; 46.5% of patients were male and 10.8% were immunosuppressed. Main infection sites were hip (53.0%) and knee (43.1%), and 33.8% patients had fistulas. Surgical procedures included debridement, antibiotics, and implant retention (DAIR) (35.7%), 1-stage exchange (28.3%), and 2-stage exchange (29.0%). Candida spp identified were Candida albicans (55.8%), Candida parapsilosis (29.4%), Candida glabrata (7.8%), and Candida tropicalis (5.6%). Coinfection with bacteria was found in 51.3% of cases. The primary antifungal agents prescribed were azoles (75.8%) and echinocandins (30.9%), administered for a median of 92.0 (IQR, 54.5-181.3) days. Cure was observed in 156 of 269 (58.0%) cases. Treatment failure was associated with age >70 years (OR, 1.811 [95% confidence interval {CI}: 1.079-3.072]), and the use of DAIR (OR, 1.946 [95% CI: 1.157-3.285]). Candida parapsilosis infection was associated with better outcome (OR, 0.546 [95% CI: .305-.958]). Cure rates were significantly different between DAIR versus 1-stage exchange (46.9% vs 67.1%, P = .008) and DAIR versus 2-stage exchange (46.9% vs 69.2%, P = .003), but there was no difference comparing 1- to 2-stage exchanges (P = .777). CONCLUSIONS: Candida PJI prognosis seems poor, with high rate of failure, which does not appear to be linked to immunosuppression, use of azoles, or treatment duration.

7.
J Gen Virol ; 105(3)2024 03.
Article in English | MEDLINE | ID: mdl-38471041

ABSTRACT

Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Superinfection , Humans , Cell Adhesion Molecules/metabolism , Cell Line , Down-Regulation , Herpesvirus 1, Human/physiology , Keratinocytes , Receptors, Virus/metabolism , Viral Envelope Proteins/genetics
8.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39189607

ABSTRACT

West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and C. tarsalis mosquitoes. The titres of both WNV strains - WN02-1956 and NY99 - were suppressed by EILV in C6/36 cells as early as 48-72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In C. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in C. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.


Subject(s)
Culex , Mosquito Vectors , Superinfection , West Nile virus , Animals , Culex/virology , West Nile virus/physiology , Mosquito Vectors/virology , Superinfection/virology , Cell Line , West Nile Fever/transmission , West Nile Fever/virology , Virus Replication
9.
Infection ; 52(1): 105-115, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37326938

ABSTRACT

BACKGROUND: Bacterial co-infections are believed to be less frequent in patients with Covid-19 than influenza, but frequencies varied between studies. METHODS: This single-center retrospective, propensity score-matched analysis included adult patients with Covid-19 or influenza admitted to normal-care wards between 02/2014 and 12/2021. Covid-19 cases were propensity score matched to influenza cases at a 2:1 ratio. Community-acquired and hospital-acquired bacterial co-infections were defined as positive blood or respiratory cultures ≤ 48 h or > 48 h after hospital admission, respectively. The primary outcome was comparison of community-acquired and hospital-acquired bacterial infections between patients with Covid-19 and influenza in the propensity score-matched cohort. Secondary outcomes included frequency of early and late microbiological testing. RESULTS: A total of 1337 patients were included in the overall analysis, of which 360 patients with Covid-19 were matched to 180 patients with influenza. Early (≤ 48 h) microbiological sampling was performed in 138 (38.3%) patients with Covid-19 and 75 (41.7%) patients with influenza. Community-acquired bacterial co-infections were found in 14 (3.9%) of 360 patients with Covid-19 and 7 (3.9%) of 180 patients with influenza (OR 1.0, 95% CI 0.3-2.7). Late (> 48 h) microbiological sampling was performed in 129 (35.8%) patients with Covid-19 and 74 (41.1%) patients with influenza. Hospital-acquired bacterial co-infections were found in 40 (11.1%) of 360 patients with Covid-19 and 20 (11.1%) of 180 patients with influenza (OR 1.0, 95% CI 0.5-1.8). CONCLUSION: The rate of community-acquired and hospital-acquired bacterial co-infections was similar in hospitalized Covid-19 and influenza patients. These findings contrast previous literature reporting that bacterial co-infections are less common in Covid-19 than influenza.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Community-Acquired Infections , Cross Infection , Influenza, Human , Adult , Humans , COVID-19/epidemiology , Influenza, Human/epidemiology , Retrospective Studies , Coinfection/epidemiology , Bacterial Infections/epidemiology , Cross Infection/epidemiology , Community-Acquired Infections/epidemiology , Hospitals
10.
Hepatol Res ; 54(2): 142-150, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37706554

ABSTRACT

AIM: This study aimed to evaluate the cost-effectiveness of hepatitis E vaccination strategies in chronic hepatitis B (CHB) patients. METHODS: Based on the societal perspective, the cost-effectiveness of three hepatitis E vaccination strategies-vaccination without screening, screening-based vaccination, and no vaccination-among CHB patients was evaluated using a decision tree-Markov model, and incremental cost-effectiveness ratios (ICERs) were calculated. Values for treatment costs and health utilities were estimated from a prior investigation on disease burden, and values for transition probabilities and vaccination-related costs were obtained from previous studies and government agencies. Sensitivity analyses were undertaken for assessing model uncertainties. RESULTS: It was estimated that CHB patients superinfected with hepatitis E virus (HEV) incurred significantly longer disease course, higher economic burden, and more health loss compared to those with HEV infection alone (all p < 0.05). The ICERs of vaccination without screening and screening-based vaccination compared to no vaccination were 41,843.01 yuan/quality-adjusted life year (QALY) and 29,147.32 yuan/QALY, respectively, both lower than China's per-capita gross domestic product (GDP) in 2018. The screening-based vaccination reduced the cost and gained more QALYs than vaccination without screening. One-way sensitivity analyses revealed that vaccine price, vaccine protection rate, and decay rate of vaccine protection had the greatest impact on the cost-effectiveness analysis. Probabilistic sensitivity analyses confirmed the base-case results, and if the willingness-to-pay value reached per-capita GDP, the probability that screening-based vaccination would be cost-effective was approaching 100%. CONCLUSIONS: The disease burden in CHB patients superinfected with HEV is relatively heavy in China, and the screening-based hepatitis E vaccination strategy for CHB patients is the most cost-effective option.

11.
J Math Biol ; 89(1): 7, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772937

ABSTRACT

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Subject(s)
Epidemiological Models , Malaria, Vivax , Mosquito Vectors , Plasmodium vivax , Humans , Animals , Plasmodium vivax/growth & development , Plasmodium vivax/physiology , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Superinfection/immunology , Superinfection/parasitology , Liver/parasitology , Probability
12.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000573

ABSTRACT

Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.


Subject(s)
DNA-Binding Proteins , Mycobacteriophages , Mycobacterium smegmatis , Viral Proteins , Mycobacteriophages/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mycobacterium smegmatis/virology , Mycobacterium smegmatis/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/chemistry , Lysogeny/genetics , Genome, Viral , DNA, Viral/genetics
13.
Infect Immun ; 91(4): e0050122, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36877065

ABSTRACT

Many vector-borne pathogens, including Anaplasma spp., Borrelia spp., Trypanosoma spp., and Plasmodium spp., establish persistent infection in the mammalian host by using antigenic variation. These pathogens are also able to establish strain superinfection, defined as infection of an infected host with additional strains of the same pathogen despite an adaptive immune response. The ability to establish superinfection results in a population of susceptible hosts even with high pathogen prevalence. It is likely that antigenic variation, responsible for persistent infection, also plays a role in the establishment of superinfection. Anaplasma marginale, an antigenically variable, obligate intracellular, tickborne bacterial pathogen of cattle, is well suited for the study of the role of antigenically variant surface proteins in the establishment of superinfection. Anaplasma marginale establishes persistent infection by variation in major surface protein 2 (msp2), which is encoded by approximately six donor alleles that recombine into a single expression site to produce immune escape variants. Nearly all cattle in regions of high prevalence are superinfected. By tracking the acquisition of strains in calves through time, the complement of donor alleles, and how those donor alleles are expressed, we determined that simple variants derived from a single donor allele, rather than multiple donor alleles, were predominant. Additionally, superinfection is associated with the introduction of new donor alleles, but these new donor alleles are not predominantly used to establish superinfection. These findings highlight the potential for competition among multiple strains of a pathogen for resources within the host and the balance between pathogen fitness and antigenic variation.


Subject(s)
Anaplasma marginale , Anaplasmosis , Cattle Diseases , Superinfection , Ticks , Cattle , Animals , Anaplasma marginale/genetics , Anaplasmosis/microbiology , Superinfection/microbiology , Ghana/epidemiology , Persistent Infection , Antigens, Bacterial , Mammals , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Cattle Diseases/microbiology
14.
Infect Immun ; 91(3): e0036022, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36794959

ABSTRACT

Prior exposure to a pathogen can greatly influence the outcome of a secondary infection, and although invertebrates lack classically defined adaptive immunity, their immune response is still influenced by prior immune challenges. While the strength and specificity of such immune priming depends highly on the host organism and infecting microbe, chronic bacterial infection of the fruit fly Drosophila melanogaster with species isolated from wild-caught fruit flies provides broad nonspecific protection against a later secondary bacterial infection. To determine how chronic infection influences progression of secondary infection, we specifically tested how chronic infection with Serratia marcescens and Enterococcus faecalis impacted both resistance and tolerance to a secondary infection with an unrelated bacterium, Providencia rettgeri, by simultaneously tracking survival and bacterial load postinfection across a range of infectious doses. We found that these chronic infections increased both tolerance and resistance to P. rettgeri. Further investigation of S. marcescens chronic infection also revealed robust protection against the highly virulent Providencia sneebia, and that protection was dependent on the initial infectious dose for S. marcescens with protective doses corresponding with significantly increased diptericin expression. While the increased expression of this antimicrobial peptide gene likely explains the increased resistance, increased tolerance is likely due to other alterations in organismal physiology, such as increased negative regulation of immunity or tolerance of ER stress. These findings provide a foundation for future studies on how chronic infection influences tolerance to secondary infection.


Subject(s)
Bacterial Infections , Coinfection , Animals , Drosophila melanogaster , Persistent Infection , Bacteria , Bacterial Infections/microbiology
15.
Retrovirology ; 20(1): 14, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37605152

ABSTRACT

BACKGROUND: Using pigs as organ donors has advanced xenotransplantation to the point that it is almost ready for clinical use. However, there is still a zoonotic risk associated with xenotransplantation, and the potential transmission of porcine endogenous retroviruses needs to be surveyed. Despite significant attempts to eliminate this risk, by the selection of PERV-C free pigs with low expression of PERV-A, -B, and by the genome-wide inactivation of PERV using CRISPR/Cas9, the impact of superinfection resistance (SIR) was not investigated. SIR is a viral trait that prevents reinfection (superinfection). For PERV, the underlying mechanism is unclear, whether and how cells, that harbor functional PERV, are protected. Using PERV-C(5683) as a reference virus, we investigated SIR in a newly developed in vitro model to pursue the mechanism and confirm its protective effect. RESULTS: We developed three PERV-C constructs on the basis of PERV-C(5683), each of which carries a hemagglutinin tag (HA-tag) at a different position of the envelope gene (SP-HA, HA-VRA, and RPep-HA), to distinguish between primary infection and superinfection. The newly generated PERV-C(5683)-HA viruses were characterized while quantifying the viral RNA, reverse transcriptase activity, protein expression analysis, and infection studies. It was demonstrated that SP-HA and RPep-HA were comparable to PERV-C(5683), whereas HA-VRA was not replication competent. SP-HA and RPep-HA were chosen to challenge PERV-C(5683)-positive ST-IOWA cells demonstrating that PERV-C-HA viruses are not able to superinfect those cells. They do not integrate into the genome and are not expressed. CONCLUSIONS: The mechanism of SIR applies to PERV-C. The production of PERV-C particles serves as a defense mechanism from superinfection with exogenous PERV-C. It was demonstrated by newly generated PERV-C(5683)-HA clones that might be used as a cutting-edge tool. The HA-tagging of PERV-C is novel, providing a blueprint for the tagging of other human tropic PERV viruses. The tagged viruses are suitable for additional in vitro and in vivo infection studies and will contribute, to basic research on viral invasion and pathogenesis. It will maintain the virus safety of XTx.


Subject(s)
Gammaretrovirus , Superinfection , Humans , Animals , Swine , Genes, env , Phenotype , RNA, Viral
16.
J Virol ; 96(18): e0091022, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36094315

ABSTRACT

Reassortment, or genome segment exchange, increases diversity among viruses with segmented genomes. Previous studies on the limitations of reassortment have largely focused on parental incompatibilities that restrict generation of viable progeny. However, less is known about whether factors intrinsic to virus replication influence reassortment. Mammalian orthoreovirus (reovirus) encapsidates a segmented, double-stranded RNA (dsRNA) genome, replicates within cytoplasmic factories, and is susceptible to host antiviral responses. We sought to elucidate the influence of infection multiplicity, timing, and compartmentalized replication on reovirus reassortment in the absence of parental incompatibilities. We used an established post-PCR genotyping method to quantify reassortment frequency between wild-type and genetically barcoded type 3 reoviruses. Consistent with published findings, we found that reassortment increased with infection multiplicity until reaching a peak of efficient genome segment exchange during simultaneous coinfection. However, reassortment frequency exhibited a substantial decease with increasing time to superinfection, which strongly correlated with viral transcript abundance. We hypothesized that physical sequestration of viral transcripts within distinct virus factories or superinfection exclusion also could influence reassortment frequency during superinfection. Imaging revealed that transcripts from both wild-type and barcoded viruses frequently co-occupied factories, with superinfection time delays up to 16 h. Additionally, primary infection progressively dampened superinfecting virus transcript levels with greater time delay to superinfection. Thus, in the absence of parental incompatibilities and with short times to superinfection, reovirus reassortment proceeds efficiently and is largely unaffected by compartmentalization of replication and superinfection exclusion. However, reassortment may be limited by superinfection exclusion with greater time delays to superinfection. IMPORTANCE Reassortment, or genome segment exchange between viruses, can generate novel virus genotypes and pandemic virus strains. For viruses to reassort their genome segments, they must replicate within the same physical space by coinfecting the same host cell. Even after entry into the host cell, many viruses with segmented genomes synthesize new virus transcripts and assemble and package their genomes within cytoplasmic replication compartments. Additionally, some viruses can interfere with subsequent infection of the same host or cell. However, spatial and temporal influences on reassortment are only beginning to be explored. We found that infection multiplicity and transcript abundance are important drivers of reassortment during coinfection and superinfection, respectively, for reovirus, which has a segmented, double-stranded RNA genome. We also provide evidence that compartmentalization of transcription and packaging is unlikely to influence reassortment, but the length of time between primary and subsequent reovirus infection can alter reassortment frequency.


Subject(s)
Coinfection , Genome, Viral , Reoviridae , Superinfection , Animals , Genome, Viral/genetics , RNA, Double-Stranded , Reassortant Viruses/genetics , Reoviridae/genetics , Superinfection/genetics
17.
J Viral Hepat ; 30(2): 101-107, 2023 02.
Article in English | MEDLINE | ID: mdl-36177994

ABSTRACT

In individuals with underlying chronic liver disease (CLD), hepatitis E virus (HEV) infection is a potential trigger of acute-on-chronic liver failure. In this systematic review, seven electronic databases were searched. Pooled incidence rates with 95% confidence intervals (95% CIs) were calculated by the Freeman-Tukey double arcsine transformation method. The association between death or liver failure and HEV superinfection in CLD patients was estimated by the odds ratios (OR) with a 95% CI. A total of 18 studies from 5 countries were eligible for systematic review. The prevalence of acute HEV infection in hospitalized CLD patients with clinical manifestations of hepatitis was 13.6%, which was significantly higher than that in CLD patients from the community (pooled prevalence 1.1%). The overall rates of liver failure and mortality in CLD patients with HEV superinfection were 35.8% (95% CI: 26.7%-45.6%) and 14.3% (95% CI: 10.6%-18.5%), respectively, with the rates in cirrhotic patients being approximately 2-fold and 4-fold higher than those in noncirrhotic patients, respectively. The risks of liver failure (OR = 5.5, 95% CI: 1.5-20.1) and mortality (OR = 5.0, 95% CI: 1.9-13.3) were significantly higher in CLD patients with HEV superinfection than in those without HEV superinfection. HEV testing in hospitalized CLD patients is necessary due to the high prevalence of HEV infection observed in hospitalized CLD patients. HEV superinfection could accelerate disease progression in patients with underlying CLD and increase mortality in these patients. HEV vaccination is appropriate for patients with pre-existing CLD.


Subject(s)
Acute-On-Chronic Liver Failure , Hepatitis E virus , Hepatitis E , Superinfection , Humans , Hepatitis E/complications , Hepatitis E/epidemiology , Superinfection/epidemiology , Superinfection/complications , Prognosis , Acute-On-Chronic Liver Failure/epidemiology , Acute-On-Chronic Liver Failure/complications
18.
New Phytol ; 239(1): 240-254, 2023 07.
Article in English | MEDLINE | ID: mdl-37148189

ABSTRACT

Chlorosis is frequently incited by viroids, small nonprotein-coding, circular RNAs replicating in nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae). Here, we investigated how chrysanthemum chlorotic mottle viroid (CChMVd, Avsunviroidae) colonizes, evolves and initiates disease. Progeny variants of natural and mutated CChMVd sequence variants inoculated in chrysanthemum plants were characterized, and plant responses were assessed by molecular assays. We showed that: chlorotic mottle induced by CChMVd reflects the spatial distribution and evolutionary behaviour in the infected host of pathogenic (containing a UUUC tetranucleotide) and nonpathogenic (lacking such a pathogenic determinant) variants; and RNA silencing is involved in the initiation of the chlorosis in symptomatic leaf sectors through a viroid-derived small RNA containing the pathogenic determinant that directs AGO1-mediated cleavage of the mRNA encoding the chloroplastic transketolase. This study provides the first evidence that colonization of leaf tissues by CChMVd is characterized by segregating variant populations differing in pathogenicity and with the ability to colonize leaf sectors (bottlenecks) and exclude other variants (superinfection exclusion). Importantly, no specific pathogenic viroid variants were found in the chlorotic spots caused by chrysanthemum stunt viroid (Pospiviroidae), thus establishing a clear distinction on how members of the two viroid families trigger chlorosis in the same host.


Subject(s)
Chrysanthemum , Viroids , Viroids/genetics , RNA Interference , Plant Diseases , Chrysanthemum/genetics , RNA, Messenger , RNA, Viral/genetics
19.
J Med Virol ; 95(1): e28403, 2023 01.
Article in English | MEDLINE | ID: mdl-36515422

ABSTRACT

This study investigated the bacterial causes of superinfections and their antibiotic resistance pattern in severe coronavirus disease 2019 (COVID-19) patients admitted to the intensive care unit (ICU) of Razi Hospital in Ahvaz, southwest Iran. In this cross-sectional study, endotracheal tube (ETT) secretion samples of 77 intubated COVID-19 patients, confirmed by reverse transcription-quantitative polymerase chain reaction, were investigated by standard microbiology test and analytical profile index kit. Antibiotic susceptibility testing was performed by disc diffusion. The presence of Haemophilus influenzae and Mycoplasma pneumoniae was investigated by the polymerase chain reaction (PCR). Using culture and PCR methods, 56 (72.7%) of the 77 COVID-19 patients (mean age of 55 years, 29 male and 27 female) had superinfections. Using culture, 67 isolates including 29 (43.2%) Gram-positive and 38 (56.7%) Gram-negative bacteria (GNB) were identified from 49 COVID-19 patients. The GNB were more predominant than the Gram-positive pathogens. Klebsiella pneumoniae (28.4%, n = 19/67) was the most common isolate followed by Staphylococcus aureus (22.4%, n = 15/67). Using PCR, 10.4% (8/77) and 11.7% (9/77) of ETT secretion specimens had H. influenzae and M. pneumoniae amplicons, respectively. Gram-positive and Gram-negative isolates showed high resistance rates (>70.0%) to majority of the tested antibiotics including fluoroquinolone, carbapenems, and cephalosporins and 68.7% (46/67) of isolates were multidrug-resistant (MDR). This study showed a high frequency rate of superinfections by MDR bacteria among COVID-19 patients in southwest Iran. The prevention of long-term consequences caused by COVID-19, demands continuous antibiotic surveillance particularly in management of bacterial superinfections.


Subject(s)
COVID-19 , Superinfection , Humans , Male , Female , Middle Aged , Iran/epidemiology , Cross-Sectional Studies , COVID-19/epidemiology , Microbial Sensitivity Tests , Bacteria/genetics , Gram-Negative Bacteria/genetics , Intensive Care Units , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial
20.
J Med Virol ; 95(3): e28686, 2023 03.
Article in English | MEDLINE | ID: mdl-36938992

ABSTRACT

Recent findings in permanent cell lines suggested that SARS-CoV-2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in air-liquid interface cultures of primary human bronchial epithelial cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active types I (α/ß) and III (λ) interferons and protected cells from super-infection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenza-like illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicron-induced interferon signaling was mediated via double-stranded RNA recognition by MDA5, as MDA5 knockout prevented it. The JAK/STAT inhibitor baricitinib inhibited the Omicron-mediated antiviral response, suggesting it is caused by MDA5-mediated interferon production, which activates interferon receptors that then trigger JAK/STAT signaling. In conclusion, our study (1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, (2) shows that Omicron infection protects cells from influenza A virus super-infection, and (3) indicates that BA.1 and BA.5 induce comparable antiviral states.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Janus Kinase Inhibitors , Humans , SARS-CoV-2 , Interferons , Antiviral Agents
SELECTION OF CITATIONS
SEARCH DETAIL