Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
AAPS PharmSciTech ; 24(5): 130, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291443

ABSTRACT

Chemotherapy of multi-drug-resistant tuberculosis (TB) requires prolonged administration of multiple drugs. We investigated whether pulmonary delivery of minute doses of drugs, along with reduced oral doses of the same agents, would affect preclinical efficacy. We prepared dry powder inhalation (DPI) formulations comprising sutezolid (SUT), the second-generation pretomanid analog TBA-354 (TBA), or a fluorinated derivative of TBA-354 (32,625) in a matrix of the biodegradable polymer poly(L-lactide). We established formulation characteristics, doses inhaled by healthy mice, and preclinical efficacy in a mouse model of TB. Oral doses of 100 mg/kg/day or DPI doses of 0.25-0.5 mg/kg/day of drugs SUT, TBA-354, or 32,625 administered over 28 days were sub-optimally effective in reducing lung and spleen burden of Mycobacterium tuberculosis (Mtb) in infected mice. The addition of 0.25-0.5 mg/kg/day of SUT, TBA-354, or 32,625 as DPI to oral doses of 50 mg/kg/day was non-inferior in clearing Mtb from the lungs of infected mice. We concluded that adjunct therapy with inhaled second-line agents has the potential to reduce the efficacious oral dose.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Animals , Mice , Antitubercular Agents , Pharmaceutical Preparations , Drug Tapering , Tuberculosis, Multidrug-Resistant/drug therapy , Administration, Inhalation , Powders
2.
Antimicrob Agents Chemother ; 66(4): e0210821, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35285241

ABSTRACT

The primary objective of the study was to evaluate the safety and tolerability of single oral doses of sutezolid tablets administered under fasting conditions in healthy adult subjects. The secondary objective was to determine the pharmacokinetics (PK) of sutezolid and two metabolites, PNU-101603 and PNU-101244. Overall, sutezolid was well tolerated when administered as a 300-mg, 600-mg, 1,200-mg, or 1,800-mg dose in healthy adult subjects under fasting conditions. Maximum concentration (Cmax) of sutezolid, PNU-101603, and PNU-101244 increased in a less-than-proportional manner with an increase in sutezolid dose between 300 mg and 1,800 mg. Total exposure (AUClast [area under the concentration-time curve from time zero to the time of the last quantifiable concentration] and AUCinf [area under the plasma concentration time curve from time zero extrapolated to infinity]) of sutezolid, PNU-101603, and PNU-101244 increased proportionally with an increase in sutezolid dose.


Subject(s)
Oxazolidinones , Administration, Oral , Adult , Area Under Curve , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Oxazolidinones/adverse effects , Tablets
3.
Med Res Rev ; 40(1): 263-292, 2020 01.
Article in English | MEDLINE | ID: mdl-31254295

ABSTRACT

The causative agent of tuberculosis (TB), Mycobacterium tuberculosis and more recently totally drug-resistant strains of M. tuberculosis, display unique mechanisms to survive in the host. A four-drug treatment regimen was introduced 40 years ago but the emergence of multidrug-resistance and more recently TDR necessitates the identification of new targets and drugs for the cure of M. tuberculosis infection. The current efforts in the drug development process are insufficient to completely eradicate the TB epidemic. For almost five decades the TB drug development process remained stagnant. The last 10 years have made sudden progress giving some new and highly promising drugs including bedaquiline, delamanid, and pretomanid. Many of the candidates are repurposed compounds, which were developed to treat other infections but later, exhibited anti-TB properties also. Each class of drug has a specific target and a definite mode of action. These targets are either involved in cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, or metabolism. This review discusses recent progress in the discovery of newly developed and Food and Drug Administration approved drugs as well as repurposed drugs, their targets, mode of action, drug-target interactions, and their structure-activity relationship.


Subject(s)
Antitubercular Agents/pharmacology , Drug Evaluation, Preclinical , Molecular Targeted Therapy , Animals , Antitubercular Agents/chemistry , Clinical Trials as Topic , Drug Approval , Humans , Structure-Activity Relationship
4.
Article in English | MEDLINE | ID: mdl-30559131

ABSTRACT

Rifampin (RIF) plus clarithromycin (CLR) for 8 weeks is now the standard of care for Buruli ulcer (BU) treatment, but CLR may not be an ideal companion for rifamycins due to bidirectional drug-drug interactions. The oxazolidinone linezolid (LZD) was previously shown to be active against Mycobacterium ulcerans infection in mice but has dose- and duration-dependent toxicity in humans. Sutezolid (SZD) and tedizolid (TZD) may be safer than LZD. Here, we evaluated the efficacy of these oxazolidinones in combination with rifampin in a murine BU model. Mice with M. ulcerans-infected footpads received control regimens of RIF plus either streptomycin (STR) or CLR or test regimens of RIF plus either LZD (1 of 2 doses), SZD, or TZD for up to 8 weeks. All combination regimens reduced the swelling and bacterial burden in footpads after two weeks of treatment compared with RIF alone. RIF+SZD was the most active test regimen, while RIF+LZD was also no less active than RIF+CLR. After 4 and 6 weeks of treatment, neither CLR nor the oxazolidinones added significant bactericidal activity to RIF alone. By the end of 8 weeks of treatment, all regimens rendered footpads culture negative. We conclude that SZD and LZD warrant consideration as alternative companion agents to CLR in combination with RIF to treat BU, especially when CLR is contraindicated, intolerable, or unavailable. Further evaluation could prove SZD superior to CLR in this combination.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Buruli Ulcer/drug therapy , Mycobacterium ulcerans/drug effects , Oxazolidinones/therapeutic use , Tetrazoles/therapeutic use , Animals , Clarithromycin/therapeutic use , Disease Models, Animal , Female , Linezolid/adverse effects , Linezolid/therapeutic use , Mice , Mice, Inbred BALB C , Oxazolidinones/adverse effects , Rifampin/therapeutic use , Tetrazoles/adverse effects
5.
Przegl Epidemiol ; 71(2): 207-219, 2017.
Article in English | MEDLINE | ID: mdl-28872286

ABSTRACT

This paper is the fifth part of the series concerning the search for new preparations for antibacterial therapy and discussing new compounds belonging to the oxazolidinone class of antibacterial chemotherapeutics. This article presents five new substances that are currently at the stage of clinical trials (radezolid, sutezolid, posizolid, LCB01-0371 and MRX-I). The intensive search for new antibiotics and antibacterial chemotherapeutics with effective antibacterial activity is aimed at overcoming the existing resistance mechanisms in order to effectively fight against multidrug-resistant bacteria, which pose a real threat to public health. The crisis of antibiotic resistance can be overcome by the proper use of these drugs, based on bacteriological and pharmacological knowledge. Oxazolidinones, with their unique mechanism of action and favorable pharmacokinetic and pharmacodynamic parameters, represent an alternative way to effectively treat serious infections caused by Gram-positive microorganisms.

6.
Pharmaceutics ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931939

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) is a global health concern. Standard treatment involves the use of linezolid, a repurposed oxazolidinone. It is associated with severe adverse effects, including myelosuppression and mitochondrial toxicity. As such, it is imperative to identify novel alternatives that are better tolerated but equally or more effective. Therefore, this review aims to identify and explore the novel alternative oxazolidinones to potentially replace linezolid in the management of TB. The keywords tuberculosis and oxazolidinones were searched in PubMed to identify eligible compounds. The individual drug compounds were then searched with the term tuberculosis to identify the relevant in vitro, in vivo and clinical studies. The search identified sutezolid, tedizolid, delpazolid, eperezolid, radezolid, contezolid, posizolid and TBI-223, in addition to linezolid. An additional search resulted in 32 preclinical and 21 clinical studies. All novel oxazolidinones except posizolid and eperezolid resulted in positive preclinical outcomes. Sutezolid and delpazolid completed early phase 2 clinical studies with better safety and equal or superior efficacy. Linezolid is expected to continue as the mainstay therapy, with renewed interest in drug monitoring. Sutezolid, tedizolid, delpazolid and TBI-223 displayed promising preliminary results. Further clinical studies would be required to assess the safety profiles and optimize the dosing regimens.

7.
Article in English | MEDLINE | ID: mdl-36240540

ABSTRACT

OBJECTIVE: Anti-tuberculosis (antiTB) drugs are characterized by an important inter-interindividual pharmacokinetic variability poorly predictable from individual patients' characteristics. Therapeutic drug monitoring (TDM) may therefore be beneficial for patients with Mycobacterium tuberculosis infection, especially for the management of multidrug/extensively drug resistant- (MDR/XDR)-TB. Our objective was to develop robust HPLC-MS/MS methods for plasma quantification of 15 antiTB drugs and 2 metabolites, namely rifampicin, isoniazid plus N-acetyl-isoniazid, pyrazinamide, ethambutol (the conventional quadritherapy for susceptible TB) as well as combination of agents against MDR/XDR-TB: bedaquiline, clofazimine, delamanid and its metabolite M1, levofloxacin, linezolid, moxifloxacin, pretomanid, rifabutin, rifapentine, sutezolid, and cycloserine. METHODS: Plasma protein precipitation was used for all analytes except cycloserine, which was analyzed separately after derivatization with benzoyl chloride. AntiTB quadritherapy drugs (Pool1) were separated by Hydrophilic Interaction Liquid Chromatography (column Xbridge BEH Amide, 2.1 × 150 mm, 2.5 µm, Waters®) while MDR/XDR-TB agents (Pool 2) and cycloserine (as benzoyl derivative) were analyzed by reverse phase chromatography on a column XSelect HSS T3, 2.1 × 75 mm, 3.5 µm (Waters®). All runs last <7 min. Quantification was performed by selected reaction monitoring electrospray tandem mass spectrometry, using stable isotopically labelled internal standards. RESULTS: The method covers the clinically relevant plasma levels and was extensively validated based on FDA recommendations, with intra- and inter-assay precision (CV) < 15% over the validated ranges. Application of the method is illustrated by examples of TDM for two patients treated for drug-susceptible- and MDR-TB. CONCLUSION: Such convenient extraction methods and the use of stable isotope-labelled drugs as internal standards provide an accurate and precise quantification of plasma concentrations of all major clinically-used antiTB drugs regimens and is optimally suited for clinically efficient TDM against tuberculosis.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/drug therapy , Tandem Mass Spectrometry/methods , Isoniazid/therapeutic use , Cycloserine/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Isotopes
8.
Infect Drug Resist ; 14: 4689-4697, 2021.
Article in English | MEDLINE | ID: mdl-34785916

ABSTRACT

BACKGROUND: The antimicrobial activities of some new oxazolidinones against slowly growing mycobacteria (SGM) have never been well evaluated. METHODS: We evaluate the in vitro susceptibility of 20 reference strains and 157 clinical isolates, pertaining different SGM species, against four oxazolidinones, ie, delpazolid, sutezolid, tedizolid and linezolid. In addition, the association of linezolid resistance and mutations in 23srRNA, rplC, rplD were also tested. RESULTS: Sutezolid presented the strongest antimicrobial activity against the clinical isolates of M. intracellulare than the other oxazolidinones, with MIC50 at 2 µg/mL and MIC90 at 4 µg/mL. MICs of sutezolid were usually 4- to 8-fold lower than these of linezolid against M. intracellulare and M. avium. The tested isolates of M. kansasii were susceptible to all of the four oxazolidinones. According to the multiple sequence alignment, novel 23srRNA mutations (A2267C and A2266G) in M. intracellulare and rplD mutations (Thr147Ala) in M. avium were identified in this study which have plausible involvement in rendering resistance against linezolid. CONCLUSION: This study showed that sutezolid harbors the strongest inhibitory activity against M. intracellulare, M. avium and M. kansasii in vitro, which provided important insights on the potential clinical application of oxazolidinones for treating SGM infections.

9.
Int J Infect Dis ; 109: 253-260, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34216736

ABSTRACT

BACKGROUND: The natural resistance of rapidly growing mycobacteria (RGM) to multiple antibiotics renders the treatment of the infections caused less successful. The objective of this study was to evaluate the in vitro susceptibilities of four oxazolidinones against different RGM species. METHODS: The microplate alamarBlue assay was performed to identify the minimum inhibitory concentrations (MICs) of four oxazolidinones - delpazolid, sutezolid, tedizolid, and linezolid - for 32 reference strains and 115 clinical strains of different RGM species. The MIC breakpoint concentration was defined as 16 µg/ml for linezolid. Next, the gene fragments associated with oxazolidinone resistance were amplified and sequenced, and mutations were defined in contrast with the sequences of the reference strains. RESULTS: Tedizolid showed the strongest inhibitory activity against the Mycobacterium abscessus isolates. Delpazolid exhibited better antimicrobial activity against the Mycobacterium fortuitum isolates when compared to linezolid, with 4-fold lower MIC values. The protein alignment and structure-based analysis showed that there might be no correlation between oxazolidinone resistance and mutations in the rplC, rplD, and 23S rRNA genes in the tested RGM. CONCLUSIONS: Tedizolid had the strongest inhibitory activity against M. abscessus in vitro, while delpazolid presented the best inhibitory activity against M. fortuitum. This provides important insights into the potential clinical application of oxazolidinones to treat RGM infections.


Subject(s)
Mycobacterium abscessus , Oxazolidinones , Anti-Bacterial Agents/pharmacology , Beijing , Humans , Linezolid/pharmacology , Microbial Sensitivity Tests , Oxazolidinones/pharmacology , Tetrazoles
10.
Eur J Pharm Sci ; 151: 105421, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32531349

ABSTRACT

Non-human primates (NHP) are thought to be a good preclinical animal model for tuberculosis because they develop disease characteristics that are similar to humans. The objective of the current study was to determine if NHPs can also be used to reliably predict the exposure of tedizolid, sutezolid, and its biologically active metabolite sutezolid-M1 in humans. The prodrug tedizolid phosphate and sutezolid were administered orally to NHPs either once or twice daily for up to eight days. The active moieties, tedizolid, and sutezolid showed linear pharmacokinetics and respective concentration-time profiles could be described by one-compartment body models with first-order elimination. One additional metabolite compartment with first-order elimination was found appropriate to capture the pharmacokinetics of sutezolid-M1. Once allometrically scaled to humans with a fixed exponent of 0.75 for apparent clearance and 1 for apparent volume of distribution, the AUCs of tedizolid and sutezolid were predicted reasonably well, whereas Cmax was under-predicted for sutezolid. Both NHP and humanized concentration-time profiles will now be used in vitro hollow-fiber pharmacodynamic experiments to determine if differences in drug exposures result in differences in Mycobacterium tuberculosis kill and emergence of resistance.


Subject(s)
Anti-Bacterial Agents , Oxazoles , Animals , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Organophosphates , Oxazolidinones , Primates , Tetrazoles
11.
J Pharm Biomed Anal ; 169: 49-59, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30836246

ABSTRACT

A method for the enantioseparation of sutezolid, the next analogue after linezolid and tedizolid, belonging to the truly new class of antibacterial agents, the oxazolidinones, was developed based on non-aqueous capillary electrophoresis (NACE), using a single isomer of cyclodextrins as a chiral pseudophase. During the experiment, the enantioseparation of sutezolid together with its predecessor, linezolid, both weak base antibacterial agents, was evaluated using anionic single-isomers of cyclodextrins from hydrophilic, up to hydrophobic: heptakis-(2,3-dihydroxy-6-sulfo)-ß-cyclodextrin, heptakis-(2,3-diacetyl-6-sulfo)-ß-cyclodextrin (HDAS-ß-CD), as well as heptakis-(2,3-dimethyl-6-sulfo)-ß-cyclodextrin (HDMS-ß-CD), respectively. Based on the observed results, the cyclodextrins, HDAS-ß-CD and HDMS-ß-CD which carry the acetyl and methyl groups at the C2 and C3 positions, respectively, provided the baseline separation of sutezolid enantiomers. However, HDMS-ß-CD led to a reversal of enantiomer migration order (EMO) in comparison to HDAS-ß-CD. Instead, enantiomers of linezolid were separated only by HDMS-ß-CD. During the experiments, different organic solvents and their mixtures in various ratios were tested. The selectivity and separation efficiency were critically affected by the nature of the buffer system, the type of organic solvent, and the concentrations of trifluoroacetic acid (TFA) in the NACE buffer system. Focusing on the desired EMO in which the eutomers (S)-sutezolid and (S)-linezolid migrated last, the highest enantioresolution using the NACE method was achieved at normal polarity mode with 45 mM HDMS-ß-CD dissolved in MeOH/ACN (85:15, v/v) containing 200 mM TFA/20 mM ammonium formate. Moreover, infrared spectroscopy, NMR and molecular modelling were investigated to provide information about complex formation.


Subject(s)
Cyclodextrins/chemistry , Oxazolidinones/chemistry , Electrophoresis, Capillary/methods , Linezolid/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Spectrophotometry, Infrared/methods , Stereoisomerism , Tetrazoles/chemistry , beta-Cyclodextrins/chemistry
12.
J Pharm Biomed Anal ; 169: 196-207, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30877931

ABSTRACT

Sutezolid was a new oxazolidinone compound used for the treatment of M. tuberculosis. This study describes the separation, characterization and in silico toxicity prediction of three degradation products and one process-related impurity of sutezolid. Sutezolid was subjected to forced degradation including hydrolytic (acidic, alkaline and neutral), oxidative, photolytic and thermal conditions according to the ICH guidelines Q1A(R2) and Q3A(R2) and yielded three degradation products. Two degradation products were formed under oxidative condition and one degradation product was formed in hydrolytic condition. This drug substance was found to be stable in thermal and photolytic conditions. The three forced degradation products were identified and characterized based on QTRAP MSn, Q-TOF and NMR techniques. One process-related impurity was found in sutezolid substance and was identified and characterized by QTRAP MSn and Q-TOF. The in silico toxicity prediction of the four impurities were performed using CISOC-PSCT system and CISOC-PSMT system. To the best of our knowledge, the hydrolysis product and the process-related impurity were identified for the first time.


Subject(s)
Oxazolidinones/chemistry , Chromatography, Liquid/methods , Drug Contamination , Drug Stability , Hydrolysis , Magnetic Resonance Spectroscopy/methods , Oxidation-Reduction , Photolysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
13.
Adv Drug Deliv Rev ; 102: 55-72, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27151308

ABSTRACT

Inadequate dosing and incomplete treatment regimens, coupled with the ability of the tuberculosis bacilli to cause latent infections that are tolerant of currently used drugs, have fueled the rise of multidrug-resistant tuberculosis (MDR-TB). Treatment of MDR-TB infections is a major clinical challenge that has few viable or effective solutions; therefore patients face a poor prognosis and years of treatment. This review focuses on emerging drug classes that have the potential for treating MDR-TB and highlights their particular strengths as leads including their mode of action, in vivo efficacy, and key medicinal chemistry properties. Examples include the newly approved drugs bedaquiline and delaminid, and other agents in clinical and late preclinical development pipeline for the treatment of MDR-TB. Herein, we discuss the challenges to developing drugs to treat tuberculosis and how the field has adapted to these difficulties, with an emphasis on drug discovery approaches that might produce more effective agents and treatment regimens.


Subject(s)
Antitubercular Agents , Drug Discovery , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/chemistry , Antitubercular Agents/therapeutic use , Humans
SELECTION OF CITATIONS
SEARCH DETAIL