Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Molecules ; 28(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005236

ABSTRACT

In dead biological tissues such as human hair, the ability of antioxidants to minimise autoxidation is determined by their chemical reactions with reactive oxygen species. In order to improve our understanding of factors determining such antioxidant properties, the mechanistic chemistry of four phenolic antioxidants found in tea and rosemary extracts (epicatechin, epigallocatechin gallate, rosmarinic and carnosic acids) has been investigated. The degradation of N-acetyl alanine by photochemically generated hydroxyl radicals was used as a model system. A relatively high concentration of the antioxidants (0.1 equivalent with respect to the substrate) tested the ability of the antioxidants to intercept both initiating hydroxyl radicals (preventive action) and propagating peroxyl radicals (chain-breaking action). LC-MS data showed the formation of hydroxylated derivatives, quinones and hydroperoxides of the antioxidants. The structure of the assignment was aided by deuterium exchange experiments. Tea polyphenolics (epicatechin and epigallocatechin gallate) outperformed the rosemary compounds in preventing substrate degradation and were particularly effective in capturing the initiating radicals. Carnosic acid was suggested to act mostly as a chain-breaking antioxidant. All of the antioxidants except for rosmarinic acid generated hydroperoxides which was tentatively ascribed to the insufficient lability of the benzylic C-H bond of rosmarinic acid.


Subject(s)
Catechin , Rosmarinus , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Hydroxyl Radical , Rosmarinus/chemistry , Catechin/chemistry , Oxidation-Reduction , Tea/chemistry , Rosmarinic Acid
2.
Environ Geochem Health ; 45(12): 9691-9707, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812370

ABSTRACT

This study focuses on a flushing-electrokinetic remediation technology of hexavalent chromium from the chromium slag dump site. A suspension of nanoscale zero-valent iron/nickel fabricated from green tea (GT-nZVI/Ni), was employed as an eluent to degrade Cr (VI) and enhance the remediation effectiveness of a single EK. The removal efficiency of Cr (VI) was compared under different voltages, electrode spacings and pH values of the anolyte. The results demonstrated that the combined flushing and EK achieved a removal rate of Cr (VI) in the soil throughout all the experiments ranging from 83.08 to 96.97% after 120 h. The optimal result was obtained when the voltage was 28 V, the pH value of anolyte was 3 and the electrode spacing was 15 cm. The removal of Cr (VI) reached 91.49% and the energy consumption was 0.32606 kW·h·g-1. The underlying mechanisms responsible for the removal of Cr (VI) by GT-nZVI/Ni flushing-EK primarily involved electromigration, reduction and adsorption co-precipitation processes. The fractionation analysis of Cr (VI) concentration in the soil after remediation showed that the presence of GT-nZVI/Ni facilitated the conversion of Cr (VI) into oxidizable and residual states with low mobility and toxicity. The results of toxicity characteristic leaching procedure (TCLP) indicated that the leaching concentration of Cr (VI) was below 1 mg·L-1, complying with the standards set by the Environmental Protection Agency. Additionally, the phytotoxicity testing revealed that the germination index (GI) of the remediated soil reached 54.75%, indicating no potential harm to plants.


Subject(s)
Environmental Restoration and Remediation , Water Pollutants, Chemical , Iron/analysis , Nickel/analysis , Tea , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Soil , Chromium/toxicity , Chromium/analysis , Adsorption
3.
Eur J Nutr ; 61(4): 1905-1918, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35066640

ABSTRACT

PURPOSE: The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. METHODS: The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. RESULTS: We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity. CONCLUSION: Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.


Subject(s)
Insulin Resistance , Protein Tyrosine Phosphatases , Receptor, Insulin , Tea , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Insulin/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Tea/chemistry
4.
Biofouling ; 38(1): 42-54, 2022 01.
Article in English | MEDLINE | ID: mdl-34886732

ABSTRACT

Previous work in the authors' lab demonstrated that tea extracts significantly suppressed streptococcal colonization of abiotic substrata by coating the bacterial cell surfaces with tea components. In this study, the physico-chemical mechanisms by which the tea coating inhibits cellular attachment are demonstrated. The changes in the cell surface physico-chemical properties of streptococci, induced by tea extracts, were measured. Using these results, surface interaction energies were calculated between streptococcal cells and hard surfaces (glass, stainless steel, hydroxyapatite and titanium) within the cellular attachment system exploiting the extended Derjaguin-Landau-Verwey-Overbeek theory. The net energy outcomes were compared with experiment results of attachment assays to validate the predictability of the model. The results showed that the tea extracts inhibited the attachment of the bacteria by 11.1%-91.5%, and reduced the interaction energy by 15.4%-94.9%. It was also demonstrated that the abilities of the bacteria to attach to hard surfaces correlated well with their net interaction energies. The predominant interaction in the systems was found to be hydrogen bonding. In conclusion, tea extracts suppress streptococcal attachment to hard substrata by limiting the formation of hydrogen bonds.


Subject(s)
Bacterial Adhesion , Biofilms , Hydrogen Bonding , Plant Extracts/pharmacology , Streptococcus , Surface Properties , Tea/chemistry
5.
Regul Toxicol Pharmacol ; 129: 105087, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34826597

ABSTRACT

Some events of hepatotoxicity have been linked to consumption of green tea supplements. The association between consumption of green tea or green tea supplements and abnormal liver biomarkers in adults was investigated using cross-sectional data from the 2009-2014 United States National Health and Nutrition Examination Survey (U.S. NHANES). Individuals with levels of either bilirubin or GGT, ALT, AST, and/or ALP in excess of the age- and gender-specific upper limits of normal ranges were classified as having abnormal liver biomarkers. Associations between green tea or green tea supplement use (consumption vs. not) and liver function were determined using multiple logistic regression modelling. 12,289 persons were included in the green tea analyses and 12,274 in the green tea supplement analyses. The odds of having one or more abnormal liver biomarkers were significantly reduced (p = 0.01) with consumption of green tea (OR: 0.49; 95% CI: 0.28, 0.85), while no significant association (p = 0.78) was determined for consumption of green tea supplements (OR: 0.92; 95% CI: 0.52, 1.64). Based on data from the 2009-2014 U.S. NHANES, green tea consumption was associated with reduced odds of having one or more abnormal liver biomarkers; whereas, no significant association was determined with consumption of green tea supplements.


Subject(s)
Dietary Supplements , Liver/drug effects , Tea , Adult , Age Factors , Aged , Bilirubin/analysis , Biomarkers , Comorbidity , Cross-Sectional Studies , Female , Health Behavior , Humans , Liver Function Tests , Logistic Models , Male , Middle Aged , Nutrition Surveys , Sex Factors , Sociodemographic Factors , United States , Young Adult
6.
Lett Appl Microbiol ; 74(1): 2-7, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34695222

ABSTRACT

It is well known that black and green tea extracts, particularly polyphenols, have antimicrobial activity against various pathogenic microbes including viruses. However, there is limited data on the antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged rapidly in China in late 2019 and which has been responsible for coronavirus disease 2019 (COVID-19) pandemic globally. In this study, 20 compounds and three extracts were obtained from black and green tea and found that three tea extracts showed significant antiviral activity against SARS-CoV-2, whereby the viral titre decreased about 5 logs TCID50 per ml by 1·375 mg ml-1 black tea extract and two-fold diluted tea bag infusion obtained from black tea when incubated at 25°C for 10 s. However, when concentrations of black and green tea extracts were equally adjusted to 344 µg ml-1 , green tea extracts showed more antiviral activity against SARS-CoV-2. This simple and highly respected beverage may be a cheap and widely acceptable means to reduce SARS-CoV-2 viral burden in the mouth and upper gastrointestinal and respiratory tracts in developed as well as developing countries.


Subject(s)
COVID-19 , Camellia sinensis , Catechin , Antiviral Agents/pharmacology , Humans , SARS-CoV-2 , Tea
7.
J Food Sci Technol ; 59(4): 1317-1325, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35250057

ABSTRACT

The purpose of the current study was to examine the effect of adding secondary ingredients such as green tea derived water-soluble polysaccharides (GTP) and flavonol aglycone rich fractions derived from cellulase treated green tea extract (FVN) into catechin rich green tea extracts (GTE) on wheat starch digestion and intestinal glucose transport using in vitro digestion with Caco-2 cells. Co-digestion of wheat starch with GTE (16.88 g L-1) or GTE + GTP + FVN (16.69 g L-1) appeared to promote starch hydrolysis compared to control (15.49 g L-1). In case of major flavonoids, addition of epigallocatechin gallate (EGCG), EGCG + myricetin (M) into wheat starch significantly increased the digestion of starch into glucose. Glucose transport rate decreased by 22.35% in wheat starch + GTE + GTP + FVN (1.39%), while the least amount of glucose (1.70%) was transported in EGCG mixed with M (1% of EGCG) as secondary ingredients among individual flavonoids formulation. It indicated that inhibitory effect on glucose transport was higher in addition of GTE, GTP, and FVN as excipients ingredients rather than targeted major flavonoids. Results from the current study suggest that whole green tea including flavonoid rich fractions could enhance hypoglycemic potential of GTE. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05140-2.

8.
Biomed Chromatogr ; 33(4): e4469, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30549069

ABSTRACT

Green tea extracts (GTE) has been reported to be a kinase inhibitor and modulator for various drug metabolizing enzymes. It may give synergetic antioncogenic effect, but with a possibility of pharmacokinetic interactions with various co-administered anticancer agents like palbociclib (PAL), a selective inhibitor of CDK-4/6 primarily metabolized by CYP3A enzyme. To explore the impact of GTE on PAL pharmacokinetics in Sprague-Dawley rats, a rapid and sensitive UHPLC-QTOF-MS method was established. Chromatographic separation was carried out on an Acquity UPLC BEH C18 (100 × 2.1 mm, 1.7 µm) column using a gradient mobile phase system consisting of 0.1% formic acid and acetonitrile. Sample preparation was based on a simple protein precipitation method. Estimation of target ions [M + H]+ at m/z 448.2455 for PAL and m/z 441.2044 for ibrutinib (IS) was performed in selective ion mode ESI-HRMS. Good sensitivity (1.0 ng/mL) and linearity over a wide concentration range of 1-2000 ng/mL was exhibited by the method. The results indicated that the administration of GTE resulted in decreased oral bioavailability of PAL in both short- and long-term conditions. However, when both conditions were compared, the variation was less for the peak concentration and area under the concentration-time curve level of PAL.


Subject(s)
Chromatography, High Pressure Liquid/methods , Herb-Drug Interactions , Piperazines , Plant Extracts/pharmacology , Pyridines , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tea/chemistry , Animals , Drug Stability , Limit of Detection , Linear Models , Male , Piperazines/blood , Piperazines/chemistry , Piperazines/pharmacokinetics , Pyridines/blood , Pyridines/chemistry , Pyridines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Reproducibility of Results
9.
Cell Physiol Biochem ; 47(3): 1230-1243, 2018.
Article in English | MEDLINE | ID: mdl-29913456

ABSTRACT

BACKGROUND/AIMS: Dietary polyphenols from green tea have been shown to possess cardio-protective activities in different experimental models of heart diseases and age-related ventricular dysfunction. The present study was aimed at evaluating whether long term in vivo administration of green tea extracts (GTE), can exert positive effects on the normal heart, with focus on the underlying mechanisms. METHODS: The study population consisted of 20 male adult Wistar rats. Ten animals were given 40 mL/day tap water solution of GTE (concentration 0.3%) for 4 weeks (GTE group). The same volume of water was administered to the 10 remaining control rats (CTRL). Then, in vivo and ex vivo measurements of cardiac function were performed in the same animal, at the organ (hemodynamics) and cellular (cardiomyocyte mechanical properties and intracellular calcium dynamics) levels. On cardiomyocytes and myocardial tissue samples collected from the same in vivo studied animals, we evaluated: (1) the intracellular content of ATP, (2) the endogenous mitochondrial respiration, (3) the expression levels of the Sarcoplasmic Reticulum Ca2+-dependent ATPase 2a (SERCA2), the Phospholamban (PLB) and the phosphorylated form of PLB, the L-type Ca2+ channel, the Na+-Ca2+ exchanger, and the ryanodine receptor 2. RESULTS: GTE cardiomyocytes exhibited a hyperdynamic contractility compared with CTRL (the rate of shortening and re-lengthening, the fraction of shortening, the amplitude of calcium transient, and the rate of cytosolic calcium removal were significantly increased). A faster isovolumic relaxation was also observed at the organ level. Consistent with functional data, we measured a significant increase in the intracellular ATP content supported by enhanced endogenous mitochondrial respiration in GTE cardiomyocytes, as well as higher values of the ratios phosphorylated-PLB/PLB and SERCA2/PLB. CONCLUSIONS: Long-term in vivo administration of GTE improves cell mechanical properties and intracellular calcium dynamics in normal cardiomyocytes, by increasing energy availability and removing the inhibitory effect of PLB on SERCA2.


Subject(s)
Adenosine Triphosphate/biosynthesis , Calcium Signaling/drug effects , Calcium-Binding Proteins/metabolism , Energy Metabolism/drug effects , Myocytes, Cardiac/metabolism , Polyphenols/pharmacology , Tea/chemistry , Administration, Oral , Animals , Male , Myocytes, Cardiac/cytology , Phosphorylation/drug effects , Polyphenols/chemistry , Rats , Rats, Wistar , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
10.
Ecotoxicol Environ Saf ; 163: 544-550, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30077151

ABSTRACT

Nanoscale zero-valent iron/nickel (GT-nZVI/Ni) was prepared by green synthesis technology using green tea extracts in this study. The obtained material was characterized by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and BET analyses. Batch experiments were carried out to investigate the effect of pH, initial concentration of Cr(VI), temperature and co-existing anions(CO32-, HCO3-, SO42- and NO3-) on the removal efficiency of Cr(VI) in groundwater. Results showed that 100% Cr(VI) was removed from the aqueous solution containing 5 mg L-1 of Cr(VI) in 30 min when pH value was 5 and reaction temperature was 303 K. Temperature and pH value had a significant effect of reduction rate of Cr(VI). The presence of co-existing anions (CO32-, HCO3-, SO42- and NO3-) inhibited the removal of Cr(VI) by GT-nZVI/Ni and the most significant one was CO32-, the removal efficiency of Cr(VI) decreased to 52.9% when the concentration of CO32- was 10 mmol L-1. The adsorption behavior of Cr(VI) fitted better with Langmuir-Hinshelwood first order reaction kinetic model. Thermodynamic studies indicated the process was spontaneous and endothermic(ΔG°<0, ΔS°>0, ΔH°>0). Therefore, this study provides a reference for further research of GT-nZVI/Ni and practical application of GT-nZVI/Ni in groundwater treatment.


Subject(s)
Chromium/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Anions/chemistry , Chromium/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Kinetics , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Temperature , Water Pollutants, Chemical/chemistry , Water Purification/methods , X-Ray Diffraction
11.
J Biomed Sci ; 23(1): 51, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27353642

ABSTRACT

BACKGROUND: Diastolic dysfunction refers to an impaired relaxation and an abnormality in a heart's filling during diastole while left ventricular systolic function is preserved. Diastolic dysfunction is commonly observed in patients with primary hypertension, diabetes and cardiomyopathies such as hypertrophic cardiomyopathy or restrictive cardiomyopathy. We have generated a restrictive cardiomyopathy (RCM) mouse model with troponin mutations in the heart to mimic the human RCM patients carrying the same mutations. RESULTS: In the present study, we have investigated the ventricular muscle internal dynamics and pressure developed during systole and diastole by inserting a micro-catheter into the left ventricle of the RCM mice with or without treatment of desensitizer green tea extracts catechins. Our results demonstrate that green tea catechin is able to correct diastolic dysfunction in RCM mainly by improving ventricular compliance and reducing the internal muscle rigidity caused by myofibril hypersensitivity to Ca(2+). CONCLUSION: Green tea extract catechin is effective in correcting diastolic dysfunction and improving ventricular muscle intrinsic compliance in RCM caused by troponin mutations.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Muscle Relaxation/drug effects , Myocardium/metabolism , Plant Extracts/pharmacology , Tea/chemistry , Animals , Calcium Signaling/genetics , Mice , Mice, Transgenic , Muscle Relaxation/genetics , Myofibrils/metabolism , Plant Extracts/chemistry
12.
BMC Complement Altern Med ; 16(1): 378, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27681250

ABSTRACT

BACKGROUND: Natural products have being used as potential inhibitors against carbohydrate-hydrolyzing enzymes to treat diabetes mellitus. Chinese dark tea has various interesting bioactivities. In this study, the active compounds from Qingzhuan dark tea were separated and their anti-diabetic activity was examined using an in vitro enzymatic model. METHODS: The chloroform, ethyl acetate, n-butanol, sediment and residual aqua fractions of a Chinese dark tea (Qingzhuan tea) were prepared by successively isolating the water extract with different solvents and their in vitro inhibitory activities against α-glucosidase were assessed. The fraction with the highest inhibitory activity was further characterized to obtain the main active components of Qingzhuan tea. RESULTS: The ethyl acetate fraction had the greatest inhibitory effect on α-glucosidase, followed by n-butanol, sediment and residual aqua fractions (with the IC50 values of 0.26 mg/mL, 2.94 mg/mL, 3.02 mg/mL, and 5.24 mg/mL, respectively), mainly due to the high content of polyphenols. Among the eight subfractions (QEF1-8) isolated from the ethyl acetate fraction, QEF8 fraction showed the highest α-glucosidase inhibitory potential in a competitive inhibitory manner (the K i value of 77.10 µg/mL). HPLC-MS analysis revealed that (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) were the predominant active components in QEF8. CONCLUSION: These results indicated that Qingzhuan tea extracts exerted potent inhibitory effects against α-glucosidase, EGCG and ECG were likely responsible for the inhibitory activity in Qingzhuan tea. Qingzhuan tea may be recommended as an oral antidiabetic diet.

13.
Molecules ; 21(8)2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27472310

ABSTRACT

Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.


Subject(s)
Polyphenols/chemistry , Polyphenols/pharmacology , Tea/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Chitosan/chemistry , Drug Compounding , Gum Arabic/chemistry , Particle Size , Plant Extracts/chemistry , Plant Leaves/chemistry , Polysaccharides/chemistry , Temperature
14.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39338343

ABSTRACT

Atopic dermatitis (AD) is a persistent and recurrent inflammatory skin condition with a genetic basis. However, the fundamental reasons and mechanisms behind this phenomenon remain incompletely understood. While tea extracts are known to reduce histamine-induced skin allergies and inflammation, the specific mechanisms by which various types of Chinese tea provide their protective effects are still not fully elucidated. In this study, a model of skin itching induced by histamine is used to explore the functions and mechanisms of three types of tea extract (Keemun black tea (HC), Hangzhou green tea (LC), and Fujian white tea (BC)) in alleviating histamine-induced dermatitis. The components of three tea extracts are identified by UPLC-Q-TOF-MS, and we found that their main components are alkaloids, fatty acyls, flavonoids, organic acids, and phenols. The inhibitory effects of three types of tea extract on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in skin injury are investigated by MIC and flow cytometry. The three types of tea extract have an inhibitory effect on the growth of bacterial flora, with HC showing the best inhibitory activity. The effect of the three types of tea extract on histamine-induced dermatitis is also evaluated. Furthermore, itchy skin experiments, HE staining, toluidine blue staining, and immunohistochemical staining of mouse skin tissues were performed to determine the variations of scratching, epidermal thickness, mast cell number, IL-1ß, and NGF content after the administration of the tea extracts. The three types of tea extracts all alleviate and inhibit skin itching, epidermal hyperplasia, and allergic dermatitis. BC effectively alleviates epidermal hyperplasia caused by skin allergies, and LC significantly downregulates NGF. HC reduces histamine-induced mast cell infiltration and downregulates IL-1ß to alleviate skin itching. Consequently, tea emerges a potent natural product that can inhibit the growth of skin wound bacterial flora and exhibit skin repair effects on histamine-induced allergic dermatitis.

15.
Toxicol In Vitro ; 97: 105813, 2024 May.
Article in English | MEDLINE | ID: mdl-38522493

ABSTRACT

The aims of the current study included characterizing the intestinal transport mechanism of polystyrene microplastics (MPs) with different charges and sizes in the intestinal epithelial cell model and determining the inhibitory effect of green tea extracts (GTEs) on the intestinal absorption of MPs in Caco-2 cells. The smaller sizes, which included diameters of 0.2 µm, of amine-modified MPs compared to either larger size (1 µm diameter, or carboxylate-MPs (0.2 and 1 µm diameter) significantly lowered the cell viability of caco-2 cells that were measured by MTT assay (p < 0.05). The transported amount (particles/mL of the cell media) of amine-modified MPs by the Caco-2 cell, was not dependent according to the concentrations, energy, or temperature, but it was higher than the carboxylate-modified MPs. The co-treatment of GTEs with the amine-modified MPs inhibited Caco-2 cell cytotoxicity as well as reduced the production of intracellular reactive oxygen species (ROS) in HepG2 generated by the exposure of amine-modified MPs. The GTEs co-treatment also increased trans-epithelial electrical resistances (TEER) and reduced the transportation of Lucifer Yellow via the Caco-2 monolayer compared to only the amine-modified MPs exposure. The GTEs treatment led to a decrease in the number of amine-modified MPs transported to the basal side of the Caco-2 monolayer. The results from our study suggest that the consumption of GTEs could enhance the intestinal barrier function by recovering intestinal epithelial cell damage induced by MPs, which resulted in a decrease of the intestinal absorption of MPs.


Subject(s)
Microplastics , Polystyrenes , Humans , Polystyrenes/toxicity , Microplastics/toxicity , Plastics , Caco-2 Cells , Antioxidants , Intestinal Absorption , Tea , Amines
16.
Arch Razi Inst ; 78(1): 485-492, 2023 02.
Article in English | MEDLINE | ID: mdl-37312721

ABSTRACT

Herbal medicines, such as plants and their constituents, have been used globally to treat and cure disorders since antiquity, long before the discovery of modern drugs. Some of these items require an addition to make them more appealing to consumers. This study is an in vitro evaluation of the antibacterial activity of tea (black and green tea aqueous extracts) against salivary Mutans streptococci, followed by an analysis of the effect of non-nutritive sweeteners on the antibacterial activity of these extracts against salivary Mutans streptococci. The examined bacteria were sensitive to various doses of black and green tea aqueous extract, with the inhibition zone expanding as the concentration of the extracts rose. At a dosage of 225mg/ml for black tea extracts and 200mg/ml for green tea extracts, all Mutans isolates were destroyed. In this trial, 1% stevia or sucralose did not inhibit the antibacterial activity of any tea extract, nor did 5% stevia inhibit the antimicrobial activity of black tea extract. In addition, this concentration inhibits the antimicrobial properties of green tea extracts. In this investigation, it found that increasing the content of nonnutritive sweeteners interfered with the antibacterial activity of black and green tea aqueous extract against salivary Mutans streptococci.


Subject(s)
Biological Products , Non-Nutritive Sweeteners , Anti-Bacterial Agents/pharmacology , Antioxidants , Tea , Humans
17.
J Food Sci ; 88(12): 5291-5308, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37889079

ABSTRACT

Oral cavity contains the second largest microbial community in the human body. Due to the highly vascularized feature of mouth, oral microbes could directly access the bloodstream and affect the host healthy systemically. The imbalance of oral microbiota is closely related to various oral and systemic diseases. Green tea extracts (GTE) mainly contain tea polyphenols, alkaloids, amino acid, flavones, and so on, which equipped with excellent anti-inflammatory activities. Previous studies have demonstrated the beneficial effects of GTE on oral health. However, most researches used in vitro models or focused on limited microorganisms. In this study, the regulatory effect of GTE on oral microbiome and the alleviative effect on oral inflammation in vivo were evaluated. The results showed that GTE could efficiently alleviate the inflammations of the tongue, cheek pouch, as well as throat. GTE effectively inhibited the activation of NF-κB through the upregulation of the anti-inflammatory cytokine interleukin (IL)-10, consequently leading to reduced expression of pro-inflammatory cytokines IL-6 and tumor necrosis factor-α. The indexes of spleen and thymus were also elevated by GTE in stomatitis mice. Moreover, GTE promoted the growth of probiotics Lactobacillus and Bacillus, inhibited the reproduction of pathogens Achromobacter, reversing the microbiota disorders in oral cavity. This study not only presents a novel approach for enhancing oral microecology but also facilitates the wider adoption of tea consumption.


Subject(s)
Acetic Acid , Tea , Mice , Humans , Animals , Tea/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Cytokines
18.
Plants (Basel) ; 12(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836180

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) infections are still a major problem in hospitals. The excellent safety profile, accessibility and anti-infective activity of tea extracts make them promising agents for the treatment of infected wounds. To investigate the possibility of sterilising MRSA-infected surfaces, including skin with tea extracts, we determined the MICs for different extracts from green and black tea (Camellia sinensis), including epigallocatechin gallate (EGCG), on a large number of clinical isolates of MRSA, selected to represent a high genetic diversity. The extracts were prepared to achieve the maximal extraction of EGCG from tea and were used as stable lyophilisate with a defined EGCG content. All extracts showed a complete inhibition of cell growth at a concentration of approx. 80 µg/mL of EGCG after a contact time of 24 h. Time-kill plots were recorded for the extract with the highest amount of EGCG. The reduction factor (RF) was 5 after a contact time of 240 min. EGCG and tea extracts showed an RF of 2 in methicillin-sensitive S. aureus. Extracts from green and black tea showed lower MICs than an aqueous solution with the same concentration of pure EGCG. To the best of our knowledge, we are the first to show a reduction of 99.999% of clinically isolated MRSA by green tea extract within 4 h.

19.
Front Nutr ; 10: 1241848, 2023.
Article in English | MEDLINE | ID: mdl-37867491

ABSTRACT

Background: There are many studies on the association of tea and its extracts with colorectal adenomas, but the results have varied. The study aims to investigate the effect of tea and its extracts on colorectal adenomas using meta analysis and systematic review. Methods: Literature was obtained through PubMed, Cochrane Library, Embase and Chinese BioMedical Literature Service System since the establishment of the database until April 31, 2023. Search terms include adenomas, polyps, colorectal, rectal, rectum, tea, epigallocatechin, drinking and beverages. Meta-regression analysis was used to infer the source of heterogeneity. Heterogeneity was assessed using I2 statistics and Q test. The effect measures were odds ratio (OR) and 95% confidence interval (95% CI). Stata17.0 software was used for data processing. Results: The findings indicated that study design (t = 0.78, P = 0.454), types of tea intake (t = 1.35, P = 0.205), occurrences (t = -0.19, P = 0.852), regions (t = 1.13, P = 0.281) and grades of adenomas (t = 0.06, P = 0.952) were statistical homogeneity. Tea and its extracts were negatively correlated with the risk of colorectal adenomas (OR = 0.81, 95% CI: 0.66-0.98). No publication bias was found in this study (t = -0.22, P = 0.828) and the results are robust. Conclusion: This study suggests that tea and its extracts have a certain protective effect on colorectal adenomas, which provides scientific evidence for preventive strategies for colorectal adenomas. As for the causal relationship between tea and its extracts on colorectal adenomas, further prospective studies are needed.

20.
J Chromatogr A ; 1690: 463786, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36641939

ABSTRACT

In this work, a solute retention optimization method (SRO) was proposed to exploit the purification potential of two-dimensional liquid chromatography (2D-LC). According to our findings, the complementarity of 2D-LC correlates with some specific impurities. In the two methods used in 2D-LC, the retention order of these impurities and target compound is completely opposite. Taking full advantage of the complementarity is crucial to enhance the saturation capacity (wmax) of 2D-LC by SRO. For the purpose of validating the effectiveness of SRO, a reverse-phase liquid chromatography (RPLC) coupled with hydrophilic interaction chromatography (HILIC) was developed to purify p-chlorobenzoic acid from substituted benzenes. By using the overloading effects of analytes as indicators, the wmax of RPLC × HILIC was determined by the bisection method, and finally defined by the extremely high loading volume of 4.9 mL. A touch-peak separation of impurities and the target compound occurred precisely during the secondary separation. The effectiveness of SRO was also verified by the greater purification efficiency of RPLC × HILIC than that of HILIC × RPLC. Subsequently, a RPLC × RPLC method was developed by SRO to prepare the reference materials of caffeine from tea extracts. Only by an analytical C18 column, 15.6 mg of caffeine with the purity of 98.3% was obtained at once with the recovery up to 82.3%. However, without the aid of SRO, the purity rapidly decreased to 62.0%. Compared to other methods, SRO-based 2D-LC offers certain advantages in terms of purity, recovery, and the purification efficiency, suggesting that it is particularly effective in developing preparative 2D-LC facing complex matrices.


Subject(s)
Caffeine , Chromatography, Reverse-Phase , Chromatography, Reverse-Phase/methods , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL