Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
Add more filters

Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38894347

ABSTRACT

One challenge in predicting soil parameters using in situ visible and near infrared spectroscopy is the distortion of the spectra due to soil moisture. External parameter orthogonalization (EPO) is a mathematical method to remove unwanted variability from spectra. We created two different EPO correction matrices based on the difference between spectra collected in situ and, respectively, spectra collected from the same soil samples after drying and sieving and after drying, sieving and finely grinding. Spectra from 134 soil samples recorded with two different spectrometers were split into calibration and validation sets and the two EPO corrections were applied. Clay, organic carbon and total nitrogen content were predicted by partial least squares regression for uncorrected and EPO-corrected spectra using models based on the same type of spectra ("within domain") as well as using laboratory-based models to predict in situ collected spectra ("cross-domain"). Our results show that the within-domain prediction of clay is improved with EPO corrections only for the research grade spectrometer, with no improvement for the other parameters. For the cross-domain predictions, there was a positive effect from both EPO corrections on all parameters. Overall, we also found that in situ collected spectra provided an equally successful prediction as laboratory-based spectra.

2.
J Environ Manage ; 370: 122551, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39299128

ABSTRACT

The textile printing industry discharges large volumes of effluent containing high concentrations of urea and nitrogenous compounds. Anoxic-oxic (AO) treatment is a promising method for treating printing wastewater. However, the effect of sodium sulfate (Na2SO4) salinity on the urea hydrolysis and nitrogen removal simultaneously in the AO process has received little attention. In this study, five batch reactors were used to treat synthetic printing wastewater with high urea and nitrogen concentrations. A strategy was applied to increase the Na2SO4 concentration from 0 to 19 g/L in the anoxic stage of each reactor. The effect of Na2SO4 on urea hydrolysis, total nitrogen removal and COD removal, sludge characteristics, and bacterial community structure were investigated. The findings showed that urea hydrolysis increased with increasing Na2SO4 concentration. The main mechanism of urea removal was intracellular hydrolysis, with a urea removal efficiency (URE%) of approximately 98% in all batch reactors. In addition, under the stress of Na2SO4, the total nitrogen and COD removal performances were partially inhibited. The most significant removal performances after AO treatment were observed at 0 g/L Na2SO4, with nitrogen and COD removal efficiencies of 88% and 95%, respectively. When Na2SO4 concentration reached 19 g/L, the sludge settling performance and compactness were enhanced. The extracellular polymeric substance (EPS) components in the sludge were dependent on their ability of removing organics. Bacterial community diversity analysis revealed that the enrichment of the Proteobacteria, Firmicutes, and Gemmatimonadota phyla in the anoxic stages of batch reactors was related to intracellular urea hydrolysis. Bacteriodota and Chloroflexi were responsible for total nitrogen removal in all anoxic and oxic stages. This research will develop the understanding of Na2SO4 salinity impact on simultaneous urea hydrolysis and nitrogen removal during AO treatment process.

3.
Br Poult Sci ; 65(1): 62-70, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37861269

ABSTRACT

1. A 21 d experiment was conducted to investigate whether growth performance and coefficients of amino acids digestibility (cAID) in broilers receiving reduced-protein diets supplemented with different non-essential amino acids (NEAA) were dependent on supplemented NEAA in diets with the same essential-to-total N (eN-to-tN) ratio kept at <50%.2. The experiment used 240 male broiler chicks, allocated to eight treatments with six replicate pens per treatment, and five chicks per replicate. The diets were either adequate in protein diet (PC), reduced protein (NC) diet or the NC diet supplemented with Gly, Gln, Ser, Ala, Gly + Ser or Ala + Ser. Digesta from the distal half of the ileum were collected on d 21. Tissue samples were collected for analysis for gene expression of protein synthesis and degradation (pectoralis major and liver) and peptide and AA transporters (jejunum).3. The treatments had no effects on growth performance. Generally, cAID was greater (P < 0.05) in NC compared to the PC diet. Individual supplementation of the NC diet with Gly, Gln, Ser, Ala or Ala+Ser increased (P < 0.01) cAID of Cys compared to the PC diet. There were no treatment effects on mRNA levels for the AA or peptide transporters in the jejunum. Supplementation of the NC diet with Gln, Ser, Ala, or Gly + Ser produced an upward expression (P < 0.05) of S6 kinase in the liver compared to PC and NC. In addition, there was greater (P < 0.05) expression of TRIM36 in the pectoralis major of broiler chickens receiving the NC diet supplemented with Gly.4. When reduced-protein diets have an eN-to-tN ratio of <50% and the ratio is kept constant in all the diets, growth performance response was independent of the source of non-specific amino-N, but the treatments may influence ileal digestibility of individual AA.


Subject(s)
Chickens , Dietary Supplements , Male , Animals , Liver , Amino Acids , Nitrogen
4.
Water Sci Technol ; 90(3): 665-679, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141028

ABSTRACT

Development of low-cost and reliable reactors demanding minimal supervision is a need-of-the-hour for sewage treatment in rural areas. This study explores the performance of a multi-stage sponge-filled trickling filter (SPTF) for sewage treatment, employing polyethylene (PE) and polyurethane (PU) media. Chemical oxygen demand (COD) and nitrogen transformation were evaluated at hydraulic loading rates (HLRs) ranging from 2 to 6 m/d using synthetic sewage as influent. At influent COD of ∼350 mg/L, PU-SPTF and PE-SPTF achieved a COD removal of 97% across all HLRs with most of the removal occurring in the first segments. Operation of PE-SPTF at an HLR of 6 m/d caused substantial wash-out of biomass, while PU-SPTF retained biomass and achieved effluent COD < 10 mg/L even at HLR of 8-10 m/d. The maximum Total Nitrogen removal by PE-SPTF and PU-SPTF reactors was 93.56 ± 1.36 and 92.24 ± 0.66%, respectively, at an HLR of 6 m/d. Simultaneous removal of ammonia and nitrate was observed at all the HLRs in the first segment of both SPTFs indicating ANAMMOX activity. COD removal data, media depth, and HLRs were fitted (R2 > 0.99) to a first-order kinetic relationship. For a comparable COD removal, CO2 emission by PU-SPTF was 3.5% of that of an activated sludge system.


Subject(s)
Biological Oxygen Demand Analysis , Filtration , Nitrogen , Sewage , Nitrogen/chemistry , Sewage/chemistry , Filtration/methods , Filtration/instrumentation , Bioreactors , Waste Disposal, Fluid/methods
5.
Environ Monit Assess ; 196(10): 885, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227385

ABSTRACT

Hydrobiogeochemical processes governing water quantity and quality are highly variable in space and time. Focusing on thirty river locations in Québec, Canada, three water quality hotness indices were used to classify watersheds as contaminant transport hotspots. Concentration and load data for suspended solids (SS), total nitrogen (TN), and total phosphorous (TP) were used to identify transport hotspots, and results were compared across hotness indices with different data requirements. The role of hydroclimatic and physiographic characteristics on the occurrence and temporal persistence of transport hotspots was examined. Results show that the identification of transport hotspots was dependent on both the type of data and the hotness index used. Relationships between temporal and spatial predictors, however, were generally consistent. Annual transport hotspot occurrence was found to be related to temporal characteristics such as the number of dry days, potential evapotranspiration, and snow water equivalent, while hotspot temporal persistence was correlated to landcover characteristics. Stark differences in the identification of SS, TN, and TP transport hotspots were attributed to differences in mobilization processes and provided insights into dominant water and nutrient flowpaths in the studied watersheds. This study highlighted the importance of comparing contaminant dynamics across watersheds even when high-frequency water quality data or discharge data are not available. Characterizing hotspot occurrence and persistence, among hotness indices and water quality parameters, could be useful for watershed managers when identifying problematic watersheds, exploring legacy effects, and establishing a prioritization framework for areas that would benefit from enhanced routine monitoring or targeted mitigation strategies.


Subject(s)
Environmental Monitoring , Nitrogen , Phosphorus , Rivers , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Rivers/chemistry , Quebec , Nitrogen/analysis , Water Quality , Water Movements , Water Pollution, Chemical/statistics & numerical data
6.
Environ Monit Assess ; 196(2): 195, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265509

ABSTRACT

This research aims to identify critical contamination points by nutrients, their possible origin (point and nonpoint sources), their spatial distribution, and possible attenuation by natural and anthropogenic processes. The study area is the Velhas River Basin, located in the Southeast Region of Brazil (17.0°-20.5° S; 43.5°-45.0°W). A historical series of water quality monitoring, land cover map, demographic and agricultural censuses, sewage treatment diagnostics, and local hydrographic networks were used to achieve the objectives. In addition, the regions were divided into incremental areas, enabling individualized analyses of each sub-basin. Descriptive statistics, seasonality, categorized data tests, agglomerative hierarchical cluster analysis, and principal component analysis were used. There was a significant contribution of nutrients in the most important urban agglomeration of the basin, resulting in peak concentrations measured at that place. Although the values were reduced by the mouth (650 km), the percentage of legislation violations remained high. The effects of punctual contamination were intensified by the low percentage of treated sewage in the basin, the absence of adequate treatment technologies to remove nutrients, and the disorderly urbanization. Furthermore, it was estimated that the nutrient load from animal husbandry is approximately 75% of the load from domestic effluents due to the high number of cattle in the basin and the low percentage of forests.


Subject(s)
Developing Countries , Sewage , Animals , Cattle , Environmental Monitoring , Animal Husbandry , Nitrogen , Phosphorus
7.
Environ Res ; 222: 115341, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36706905

ABSTRACT

Following the Three Gorges Reservoir (TGR) impoundment, many tributaries were turned into bays; hydrodynamic conditions of TGR profoundly changed the residence time, temperature, and nutrient distributions of bays, and nutrient enrichment occurred in these bays. However, little research has been done on the effects of water level qqfluctuations (WLFs) of TGR on the bay. In this study, Xiangxi Bay (XXB), one of the tributaries of TGR, was selected as the delegate to construct and calibrate a two-dimensional hydrodynamic-temperature-tracer-water quality model based on the CE-QUAL-W2. The results were the following: 1) In spring, as total nitrogen (TN) in the TGR tended to be higher than that in the XXB, the downward WLF increased water exchange, TGR-XXB nutrient flux and TN in the epilimnion of the XXB, and decreased the water exchange and TN in the hypolimnion of the XXB. The upward WLF did the opposite. The situation would be reversed in autumn. 2) Under a larger magnitude or a shorter period of WLF, its corresponding effects on the water exchange and TN increased. 2) Both the downward and upward modes of WLF helped to decrease the thermal stratification of XXB. 4) The upward/downward WLF could be used to decrease the epilimnetic TN of XXB in spring/autumn, and was suggested to reduce the local algal bloom. The WLFs by the TGR regulation could profoundly change the water exchange and nutrient distribution in the bay, which helped to control nutrient concentrations and prevent algal blooms.


Subject(s)
Bays , Water Pollutants, Chemical , Water Quality , Eutrophication , Rivers , Nutrients , Nitrogen/analysis , China , Environmental Monitoring , Water Pollutants, Chemical/analysis
8.
Sensors (Basel) ; 23(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37447814

ABSTRACT

The prediction of soil properties at different depths is an important research topic for promoting the conservation of black soils and the development of precision agriculture. Mid-infrared spectroscopy (MIR, 2500-25000 nm) has shown great potential in predicting soil properties. This study aimed to explore the ability of MIR to predict soil organic matter (OM) and total nitrogen (TN) at five different depths with the calibration from the whole depth (0-100 cm) or the shallow layers (0-40 cm) and compare its performance with visible and near-infrared spectroscopy (vis-NIR, 350-2500 nm). A total of 90 soil samples containing 450 subsamples (0-10 cm, 10-20 cm, 20-40 cm, 40-70 cm, and 70-100 cm depths) and their corresponding MIR and vis-NIR spectra were collected from a field of black soil in Northeast China. Multivariate adaptive regression splines (MARS) were used to build prediction models. The results showed that prediction models based on MIR (OM: RMSEp = 1.07-3.82 g/kg, RPD = 1.10-5.80; TN: RMSEp = 0.11-0.15 g/kg, RPD = 1.70-4.39) outperformed those based on vis-NIR (OM: RMSEp = 1.75-8.95 g/kg, RPD = 0.50-3.61; TN: RMSEp = 0.12-0.27 g/kg; RPD = 1.00-3.11) because of the higher number of characteristic bands. Prediction models based on the whole depth calibration (OM: RMSEp = 1.09-2.97 g/kg, RPD = 2.13-5.80; TN: RMSEp = 0.08-0.19 g/kg, RPD = 1.86-4.39) outperformed those based on the shallow layers (OM: RMSEp = 1.07-8.95 g/kg, RPD = 0.50-3.93; TN: RMSEp = 0.11-0.27 g/kg, RPD = 1.00-2.24) because the soil sample data of the whole depth had a larger and more representative sample size and a wider distribution. However, prediction models based on the whole depth calibration might provide lower accuracy in some shallow layers. Accordingly, it is suggested that the methods pertaining to soil property prediction based on the spectral library should be considered in future studies for an optimal approach to predicting soil properties at specific depths. This study verified the superiority of MIR for soil property prediction at specific depths and confirmed the advantage of modeling with the whole depth calibration, pointing out a possible optimal approach and providing a reference for predicting soil properties at specific depths.


Subject(s)
Agriculture , Soil , Spectrophotometry, Infrared , Spectroscopy, Near-Infrared , Nitrogen/analysis , Soil/chemistry , Spectrophotometry, Infrared/standards , Spectroscopy, Near-Infrared/standards , Models, Theoretical , Agriculture/instrumentation , Agriculture/methods
9.
J Environ Manage ; 330: 117096, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36608604

ABSTRACT

Healthy soils are key to sustainability and food security. In temperate grasslands, not many studies have focused on soil health comparisons between contrasting pasture systems under different management strategies and treatment applications (e.g. manures and inorganic fertilisers). The aim of this study was to assess the responses of soil health indicators to dung, urine and inorganic N fertiliser in three temperate swards: permanent pasture not ploughed for at least 20 years (PP), high sugar ryegrass with white clover targeted at 30% coverage reseeded in 2013 (WC), and high sugar ryegrass reseeded in 2014 (HG). This study was conducted on the North Wyke Farm Platform (UK) from April 2017 to October 2017. Soil health indicators including soil organic carbon (SOC, measured by loss of ignition and elemental analyser), dissolved organic carbon (DOC), total nitrogen (TN), C:N ratio, soil C and N bulk isotopes, pH, bulk density (BD), aggregate stability, ergosterol concentration (as a proxy for fungi biomass), and earthworms (abundance, mass and density) were measured and analysed before and after application of dung and N fertilizer, urine and N fertiliser, and only N fertiliser. The highest SOC, TN, DOC, ergosterol concentration and earthworms as well as the lowest BD were found in PP, likely due to the lack of ploughing. Differences among treatments were observed due to the application of dung, resulting in an improvement in chemical indicators of soil health after 50 days of its application. Ergosterol concentration was significantly higher before treatment applications than at the end of the experiment. No changes were detected in BD and aggregate stability after treatment applications. We conclude that not enough time had passed for the soil to recover after the ploughing and reseeding of the permanent pasture, independently of the sward composition (HG or WC). Our results highlight the strong influence of the soil management legacy in temperate pasture and the positive effects of dung application on soil health over the short term. In addition, we point out the relevance of using standardised methods to report soil health indicators and some methodological limitations.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis , Fertilizers/analysis , Minerals , Ergosterol , Sugars
10.
J Environ Manage ; 331: 117348, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36706603

ABSTRACT

The most commonly used model in constructed wetlands is the first-order removal model, and first order kinetic constants (k) are the key parameters. The presumption is often made that k are constants. However, it is possible that k are functions of operating conditions, but the influence of operation conditions on k is unclear. In this study, response surface methodology was used to explore the variation patterns of ka (area rate constants) and kV (volume rate constants) for the removal of total nitrogen (TN) and total phosphorus (TP) in free water surface (FWS) wetlands. The experimental variables included hydraulic loading rate (HLR), water depth, and inlet concentration (Cin). The results showed that kV was more variable than ka, and the area-based first-order model is more suitable for simulating TN and TP in FWS wetlands. Inlet concentration (Cin) was significant for ka; Cin and water depth were significant for kV; HLR and the interaction between factors were insignificant. The effects of Cin on ka and kV can be described by an upward convex quadratic curve, while the effect of water depth on kV demonstrates a downward convex quadratic curve. The first-order area rate constant for TN removal was given by k = -47.66 + 22.01 Cin - 1.154 Cin2; the first-order area rate constant for TP removal was given by k = -27.75 + 95.88 Cin - 30.73 Cin2. Based on the variation patterns, the traditional k-C model was modified to the kψ-C model. The kψ-C model produced the best results at simulating the outlet concentration and removal efficiency (RE).


Subject(s)
Waste Disposal, Fluid , Water Purification , Waste Disposal, Fluid/methods , Water Purification/methods , Wetlands , Nitrogen , Phosphorus , Water
11.
Environ Monit Assess ; 195(9): 1030, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37558936

ABSTRACT

In recent years, the discharge of major pollutants in China's wastewater has been decreasing but remains at a high level. Controlling the discharge of pollutants in sewage is of great importance for protecting water quality and maintaining ecological balance. Based on data collected from 31 provinces in China from 2011 to 2020 (except 2018), this study analyzes the spatiotemporal variation emissions of the wastewater pollutants: chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN), and total phosphorus (TP). The entropy method was used to evaluate the effectiveness of water pollution control in different provinces. Our results revealed that the total emission per gross domestic product (GDP) for COD, NH3-N, TN and TP in China decreased by 50.7%, 81.9%, 65.4% and 70.8%, respectively. In terms of regional annual emission differences, the Northwest region was the lowest compared with other regions, accounting for 4.87%-6.59% of the national pollutant emissions, and the Central China region was the highest, accounting for 22.4%-26.05% of the national pollutant emissions. The average value of pollutant emissions per unit of GDP decreased year-to-year overall, but Guangxi and Tibet showed a trend of first decreasing and then increasing. The correlation results indicated a significant correlation (0.977) between TN and TP emissions in wastewater in China during 2011-2020. Through clustering and Multidimensional Scaling model (MDS) analysis, Beijing and Shanghai have been performing well in controlling water pollution discharge, while the provinces of Tibet and Guangxi must still increase their efforts in water pollution control. Furthermore, these results demonstrate the experience and achievements of the Chinese government in the treatment of wastewater pollution and provide a useful reference for treatment of wastewater pollution in the world.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Environmental Pollutants/analysis , Environmental Monitoring/methods , Wastewater , Water Pollutants, Chemical/analysis , China , Nitrogen/analysis , Phosphorus/analysis
12.
J Environ Sci (China) ; 124: 699-711, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182175

ABSTRACT

Numerous studies support that biodiversity predict most to ecosystem functioning, but whether other factors display a more significant direct impact on ecosystem functioning than biodiversity remains to be studied. We investigated 398 samples of the phytoplankton phosphorus resource use efficiency (RUEP = chlorophyll-a concentration/dissolved phosphate) across two seasons in nine plateau lakes in Yunnan Province, China. We identified the main contributors to phytoplankton RUEP and analyzed their potential influences on RUEP at different lake trophic states. The results showed that total nitrogen (TN) contributed the most to RUEP among the nine lakes, whereas community turnover (measured as community dissimilarity) explained the most to RUEP variation across the two seasons. Moreover, TN also influenced RUEP by affecting biodiversity. Species richness (SR), functional attribute diversity (FAD2), and dendrogram-based functional diversity (FDc) were positively correlated with RUEP in both seasons, while evenness was negatively correlated with RUEP at the end of the rainy season. We also found that the effects of biodiversity and turnover on RUEP depended on the lake trophic states. SR and FAD2 were positively correlated with RUEP in all three trophic states. Evenness showed a negative correlation with RUEP at the eutrophic and oligotrophic levels, but a positive correlation at the mesotrophic level. Turnover had a negative influence on RUEP at the eutrophic level, but a positive influence at the mesotrophic and oligotrophic levels. Overall, our results suggested that multiple factors and nutrient states need to be considered when the ecosystem functioning predictors and the biodiversity-ecosystem functioning relationships are investigated.


Subject(s)
Lakes , Phytoplankton , China , Chlorophyll , Ecosystem , Nitrogen/analysis , Nutrients , Phosphates , Phosphorus/analysis
13.
Environ Res ; 211: 113003, 2022 08.
Article in English | MEDLINE | ID: mdl-35227677

ABSTRACT

The membranes of a Membrane Aerated Biofilm Reactor (MABR) function as bubble-less air diffusers and bio-carriers. Recent bench-scale experiments reported that the shape of membranes influenced the oxygen transfer and utilization rates, which in turn affected the pollutant removal performance of the MABR. In this study, two pilot-scale MABRs using multi-layer hollow fiber membranes with the relaxation rates of 0.1-1.8% (MABR 1) and 1.0-2.8% (MABR 2) were used for the treatment of organics and nitrogen in real medium-strength domestic wastewater. Higher-relaxation-rate membranes have loose and more curved fiber bunch that may allow biofilm to grow more easily and let air diffuse more efficiently. MABR 2 had achieved better performance than MABR 1 at 12- and 6-h Hydraulic Retention Time (HRT), with respectively 0.7-4.3%, 17.7-18.1%, and 5.5-9.0% higher removal efficiencies for Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH4+), and Total Nitrogen (TN). The highest COD, NH4+, and TN removal efficiencies were 94.7%, 81.1%, and 57.1%, respectively, at 12 h HRT in MABR 2. The addition of Polyvinyl Alcohol (PVA) gel beads carrying denitrifying bacteria had enhanced the denitrification in both the reactors. Increments of 5.0-9.0% and 6.6-12.3% were reported for TN removal efficiencies of MABR 1 and 2 combined with PVA gel, sequentially.


Subject(s)
Waste Disposal, Fluid , Wastewater , Biofilms , Bioreactors/microbiology , Nitrogen
14.
Ren Fail ; 44(1): 14-22, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35086422

ABSTRACT

OBJECTIVE: The protein equivalent of total nitrogen appearance (PNA) formula, based on the urea nitrogen appearance (UNA), is popularly used by stable continuous ambulatory peritoneal dialysis (CAPD) patients to estimate dietary daily protein intake (DPI). However, we found that the estimated DPI was higher than that directly evaluated from the dietary records of most of our CAPD patients. Therefore, in the present study, we tried to determine possible bias in PNA estimation by UNA with a nitrogen balance study of our CAPD patients. METHODS: Thirty-one CAPD patients with stable clinical conditions were included. Their 3-day dietary records were reviewed by a dedicated dietitian to calculate their energy, protein, and nitrogen intake (NI). The nitrogen removal (NR) from urine and dialysate was measured by the Kjeldahl technique. Then, we calculated the proportion of urea nitrogen appearance (UNA) in total nitrogen appearance (TNA) and analyzed the possible factors that could affect this proportion. RESULTS: Among these patients, 17 males and 14 females, the mean age was 64.19 ± 12.42, and the dialysate drainage volume was 6700 (2540) ml/day. The percentage of UNA in TNA was 63.22 ± 6.66%. Compared with the other classic nitrogen balance studies in the CAPD population, the protein nitrogen and other nonurea nitrogen losses in this study were all lower. Based on these 31 nitrogen balance studies, we proposed a pair of new equations to estimate PNA by UNA. (1) PNA = 9.3 + 7.73 UNA; (2) PNA = PNPNA + TPL = 6.7 + 7.28 UNA + TPL. CONCLUSION: Our study suggested that the PNA formula generated from previous European studies overestimated DPI in our CAPD patients.


Subject(s)
Blood Urea Nitrogen , Dietary Proteins , Kidney Failure, Chronic/blood , Nitrogen/blood , Peritoneal Dialysis, Continuous Ambulatory , Aged , Female , Humans , Kidney Failure, Chronic/diet therapy , Linear Models , Male , Middle Aged
15.
J Environ Manage ; 319: 115751, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35982576

ABSTRACT

Carbon (C) and nitrogen (N) cycles of terrestrial ecosystems play key roles in global climate change and ecosystem sustainability. In recent decades, climate change has threatened the nutrient balance of dryland ecosystems. However, its impact on soil organic carbon (SOC) and soil total nitrogen (STN) in drylands of China are still unclear. In this study, the structural equation model (SEM) was used to explain the relationship between environmental variables used by the best model and SOC or STN. Then Adaptive Boosting Regressor (AdaBoost), Gradient Boosting Regression (GBRT), Extreme gradient boosting Regression (XGBoost) and Random Forest Regression (RF) were used to establish the prediction model of SOC and STN based on soil samples along with environmental variables. The performance of these models was assessed based on a 10-fold cross-validation method using three statistical indicators. Finally, we predicted the SOC and STN of soil samples from 2000 to 2019 based on the best model. Overall, the RF model performed better at predicting SOC and STN in drylands than the other three prediction models (AdaBoost, GBRT, XGBoost). Climate factors were the main factors affecting SOC and STN in the study area. In the Alashan, a dryland in northern China, the precipitation in the growing season increased from 2000 to 2019, at a rate of 12.9 mm/decade. During the same period, the annual sunshine duration significantly decreased by 66 h/decade. Along with interannual hydrothermal variability, SOC showed a fluctuating upward trend at a rate of 0.04 g/kg/decade, while STN exhibited a fluctuating downward trend at 0.003 g/kg/decade from 2000 to 2019. Due to the effects of climate change, dryland were considered as potential sites for carbon sequestration. However, due to the annual hydrothermal variance causing dynamic annual changes, it was deemed unstable. Moreover, it would cause STN loss, which might reduce soil fertility. More attention should be paid to STN monitoring in dryland in the future.


Subject(s)
Carbon , Soil , Carbon/chemistry , Carbon Sequestration , China , Ecosystem , Nitrogen/analysis , Soil/chemistry
16.
J Environ Manage ; 302(Pt A): 113978, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34710759

ABSTRACT

Fire has been used for land clearing under rotational shifting cultivation (RSC) in Northern Thailand for a long time. However, the effects of fire on soil organic carbon (SOC), soil total nitrogen (STN), and soil properties are not well understood. We determined SOC, STN, and soil properties of the topsoil layer (0-30 cm) along a fallow chronosequence under RSC and assessed how fire affects SOC, STN, and soil properties. Eight fields at Ban Mae Pok, Mae Chaem District, Chiang Mai Province, Northern Thailand, were investigated. The levels of SOC, STN, and soil properties were observed at three time points: pre-burning, post-burning (5 minutes after burning), and post-harvest (nine months after burning). The highest SOC and STN stocks, organic matter (OM), and clay content were observed for the longest fallow period (7 years fallow), whereas the shortest period (1 year fallow) resulted in the lowest SOC and STN stocks. Fire caused no significant changes in SOC, STN, and some soil properties (soil texture, available P, exchangeable K, exchangeable Ca, exchangeable Mg, bulk density, and OM) because of the low fire intensity and short fire duration. Only pH and electrical conductivity were significantly increased (p ≤ 0.05) after burning due to the demobilization of base cations in burnt vegetation and incorporation into the soil with ashes and wood charcoal. Although fire may still be necessary for RSC, maintaining the fire intensity below 380 °C to reduce SOC losses and appropriate post-fire management strategies to reduce STN losses are crucial.


Subject(s)
Carbon , Fires , Carbon/analysis , Nitrogen/analysis , Soil , Thailand
17.
J Environ Manage ; 317: 115472, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35751271

ABSTRACT

Soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) are important indicators reflecting soil quality, and they can be used to effectively evaluate the effect of soil remediation. Many studies have evaluated the content of SOC, TN and TP in different ecosystems. However, after constructing protected forests for ecological restoration in the ecologically fragile coastal zone, the spatial distribution and influencing mechanism of SOC, TN and TP content is still uncertain. In this study, the spatial heterogeneity and influencing factors of SOC, TN and TP in surface (0-20 cm) soil were analyzed by traditional analysis and geostatistics. A total of 39 soil samples were collected under the coastal zone protected forest types including Quercus acutissima Carruth (QAC), Pinus thunbergii Parl (PTP), mixed PTP and QAC (QP) and Castanea mollissima BL (CMB) in the coastal zone protected forests in northern China. The results show that SOC, TN and TP content were defined as moderate variation, and they also show significant changes under different protected forest types (P < 0.05). The semivariance results indicate that SOC, TN and TP all exhibited strong spatial dependence class, with Range of 224 m, 229 m and 282 m respectively, which were more than the sampling scale of 200 m. The spatial prediction results showed that SOC, TN and TP content all appear in large areas of extremely low value in CMB, and its cross validation results showed that using vegetation and terrain factors as covariates in the spatial prediction of SOC, TN and TP can improve the prediction accuracy. The results of correlation analysis showed that the influencing factor for SOC and TN, and TP were NDVI and topographical changes, respectively. In general, vegetation and terrain factors as auxiliary factors can improved the accuracy of soil C-N-P spatial distribution prediction after afforestation in coastal zone.


Subject(s)
Quercus , Soil , Carbon/analysis , China , Ecosystem , Forests , Nitrogen/analysis , Phosphorus/analysis
18.
Bull Environ Contam Toxicol ; 108(6): 1124-1131, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35064279

ABSTRACT

Visible-near infrared spectroscopy is considered an effective method for rapidly determining total carbon (TC) and total nitrogen (TN) in terrestrial soils. However, reports on measuring them by VNIR in marine sediments are limited. This article provides an analysis and spectral model comparison of TC and TN in marine sediments using VNIR. The best TC and TN spectral models were established when using the least square support vector machine algorithm with a wavelength, which extended from 226 nm to 975 nm. The prediction results of TN have a high coefficient of determination and residual predictive deviation, providing accurate quantitative predictions. The TC spectral model comes with a disadvantage might due to its usual high concentrations of organic carbon. Characteristic wavelength extraction may lead to the loss of identification information for the characteristics of TC and TN, and full wavelength spectrum contains more information helps more to the quantification.


Subject(s)
Carbon , Spectroscopy, Near-Infrared , Carbon/analysis , Nitrogen/analysis , Soil/chemistry , Spectroscopy, Near-Infrared/methods
19.
J Environ Sci (China) ; 111: 249-262, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34949355

ABSTRACT

A pilot-scale multistage constructed wetland-pond (MCWP) system with a "pre-ecological oxidation pond, two-stage horizontal subsurface flow constructed wetland (HSCW) and surface flow constructed wetland (SFCW) as the core and postsubmerged plant pond" as the process was used to treat actual polluted river water in the field, and the variation in nitrogen removal from summer to winter was investigated. The results showed that the average total nitrogen (TN) removal efficiency in the MCWP was approximately 40.74%. The significant positive correlation between the daily highest temperature and the TN removal efficiency of the whole system was fitted with a nonlinear curve (R2 = 0.7192). The TN removal load rate in the HSCWs was 2.7-3.7 times that in the SFCW. The SFCW, which had high-density plants (35 plants/m2), increased the proportion of nitrogen removed by plant harvesting and microbial function. The TN transformed by Iris pseudacorus L. accounted for 54.53% in the SFCW. Furthermore, bacteria completed the nitrogen cycle in the SFCW through a variety of nitrogen removal pathways. This research not only investigated the TN removal performance in an MCWP system but also made it possible to predict the TN removal efficiency according to the daily highest temperature from summer to winter in the field.


Subject(s)
Nitrogen , Wetlands , Denitrification , Seasons , Waste Disposal, Fluid
20.
Glob Chang Biol ; 27(17): 4139-4153, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34021965

ABSTRACT

An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics-even in old urban greenspaces where plant-soil interactions have a long history-clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.


Subject(s)
Ecosystem , Soil , Forests , Trees , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL