Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 300(5): 107297, 2024 May.
Article in English | MEDLINE | ID: mdl-38641065

ABSTRACT

A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERß can affect the VM formation in RCC, it is unclear which factor could upregulate ERß. This is the first study to show LncRNA-SERB can be the upstream regulator of ERß to control RCC progression. Mechanistically, LncRNA-SERB may increase ERß via binding to the promoter area, and ERß functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERß/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.


Subject(s)
Carcinoma, Renal Cell , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Neovascularization, Pathologic , RNA, Long Noncoding , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Animals , Mice , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , Cell Line, Tumor , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Neoplasm Metastasis , Mice, Nude , Male , Female , Neoplasm Invasiveness
2.
Exp Cell Res ; 437(1): 113996, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38508327

ABSTRACT

Non-small cell lung cancer (NSCLC) is a kind of highly malignant tumor. Studies have shown that Vasculogenic mimicry (VM) may be responsible for dismal prognosis in NSCLC. Immunotherapy with programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) has significantly altered the treatment of assorted cancers, including NSCLC, but its role and mechanism in the formation of Vasculogenic mimicry (VM) in NSCLC remains unclear. This study aimed to investigate the role of the anti-PD-L1 antibody in the formation of VM in NSCLC and its possible mechanisms. The results showed that anti-PD-L1 antibody therapy could inhibit the growth of NSCLC-transplanted tumors and reduce the formation of VMs. In addition, this study found that anti-PD-L1 antibodies could increase the expression of the epithelial-mesenchymal transition (EMT) related factor E-cadherin. zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor regulating EMT. Knocking down ZEB1 could significantly inhibit tumor growth, as well as the expression of VE-cadherin and mmp2, while remarkably increase the expression of E-cadherin. During this process, the formation of VM was inhibited by knowing down ZEB1 in both in vitro and in vivo experiments of the constructed ZEB1 knockdown stable transfected cell strains. Therefore, in this study, we found that anti-PD-L1 antibodies may reduce the formation of VMs by inhibiting the EMT process.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , B7-H1 Antigen/genetics , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/physiology , Lung Neoplasms/genetics
3.
Cancer Metastasis Rev ; 42(1): 323-334, 2023 03.
Article in English | MEDLINE | ID: mdl-36754910

ABSTRACT

Cancer plasticity is now a recognized new hallmark of cancer which is due to disturbances of cell differentiation programs. It is manifested not only in various forms like the best-known epithelial-mesenchymal transition (EMT) but also in vasculogenic and megakaryocytic mimicries regulated by EMT-specific or less-specific transcription factors such as HIF1a or STAT1/2. Studies in the past decades provided ample data that cancer plasticity can be manifested also in the expression of a vast array of immune cell genes; best-known examples are PDL1/CD274, CD47, or IDO, and we termed it immunogenic mimicry (IGM). However, unlike other types of plasticities which are epigenetically regulated, expression of IGM genes are frequently due to gene amplifications. It is important that the majority of the IGM genes are regulated by interferons (IFNs) suggesting that their protein expressions are regulated by the immune microenvironment. Most of the IGM genes have been shown to be involved in immune escape of cancers broadening the repertoire of these mechanisms and offering novel targets for immunotherapeutics.


Subject(s)
Neoplasms , Neovascularization, Pathologic , Humans , Neovascularization, Pathologic/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Adaptation, Physiological , Immunoglobulin M/genetics , Immunoglobulin M/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics
4.
Mol Carcinog ; 63(7): 1260-1274, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38607240

ABSTRACT

DNA methylation, an epigenetic regulatory mechanism dictating gene transcription, plays a critical role in the occurrence and development of cancer. However, the molecular underpinnings of LINC00987 methylation in the regulation of lung adenocarcinoma (LUAD) remain elusive. This study investigated LINC00987 expression in LUAD patients through analysis of The Cancer Genome Atlas data sets. Quantitative real-time polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization assays were used to assess LINC00987 expression in LUAD. The bisulfite genomic sequence PCR (BSP) assay was used to determine the methylation levels of the LINC00987 promoter. The interaction between LINC00987 and SND1 was elucidated via immunoprecipitation and RNA pull-down assays. The functional significance of LINC00987 and SND1 in Calu-3 and NCI-H1688 cells was evaluated in vitro through CCK-8, EdU, Transwell, flow cytometry, and vasculogenic mimicry (VM) tube formation assays. LINC00987 expression decreased in LUAD concomitant with hypermethylation of the promoter region, while hypomethylation of the LINC00987 promoter in LUAD tissues correlated with tumor progression. Treatment with 5-Aza-CdR augmented LINC00987 expression and inhibited tumor growth. Mechanistically, LINC00987 overexpression impeded LUAD progression and VM through direct binding with SND1, thereby facilitating its phosphorylation and subsequent degradation. Additionally, overexpression of SND1 counteracted the adverse effects of LINC00987 downregulation on cell proliferation, apoptosis, cell migration, invasion, and VM in LUAD in vitro. In conclusion, this pioneering study focuses on the expression and function of LINC00987 and reveals that hypermethylation of the LINC00987 gene may contribute to LUAD progression. LINC00987 has emerged as a potential tumor suppressor gene in tumorigenesis through its binding with SND1 to facilitate its phosphorylation and subsequent degradation.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , DNA Methylation , Disease Progression , Down-Regulation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , RNA, Long Noncoding , Female , Humans , Male , Middle Aged , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Apoptosis , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Endonucleases/genetics , Endonucleases/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Phosphorylation , Promoter Regions, Genetic , RNA, Long Noncoding/genetics
5.
BMC Cancer ; 24(1): 420, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580922

ABSTRACT

BACKGROUND: Clear cell carcinoma of the kidney is a common urological malignancy characterized by poor patient prognosis and treatment outcomes. Modulation of vasculogenic mimicry in tumor cells alters the tumor microenvironment and the influx of tumor-infiltrating lymphocytes, and the combination of its inducers and immune checkpoint inhibitors plays a synergistic role in enhancing antitumor effects. METHODS: We downloaded the data from renal clear cell carcinoma samples and vasculogenic mimicry-related genes to establish a new vasculogenic mimicry-related index (VMRI) using a machine learning approach. Based on VMRI, patients with renal clear cell carcinoma were divided into high VMRI and low VMRI groups, and patients' prognosis, clinical features, tumor immune microenvironment, chemotherapeutic response, and immunotherapeutic response were systematically analyzed. Finally, the function of CDH5 was explored in renal clear cell carcinoma cells. RESULTS: VMRI can be used for prognostic and immunotherapy efficacy prediction in a variety of cancers, which consists of four vasculogenic mimicry-related genes (CDH5, MMP9, MAPK1, and MMP13), is a reliable predictor of survival and grade in patients with clear cell carcinoma of the kidney and has been validated in multiple external datasets. We found that the high VMRI group presented higher levels of immune cell infiltration, which was validated by pathological sections. We performed molecular docking prediction of vasculogenic mimicry core target proteins and identified natural small molecule drugs with the highest affinity for the target protein. Knockdown of CDH5 inhibited the proliferation and migration of renal clear cell carcinoma. CONCLUSIONS: The VMRI identified in this study allows for accurate prognosis assessment of patients with renal clear cell carcinoma and identification of patient populations that will benefit from immunotherapy, providing valuable insights for future precision treatment of patients with renal clear cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Molecular Docking Simulation , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney Neoplasms/pathology , Immunotherapy , Tumor Microenvironment/genetics
6.
BMC Cancer ; 24(1): 633, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783271

ABSTRACT

BACKGROUND: PD-L1 overexpression is commonly observed in various malignancies and is strongly correlated with poor prognoses for cancer patients. Moreover, PD-L1 has been shown to play a significant role in promoting angiogenesis and epithelial-mesenchymal transition (EMT) processes across different cancer types. METHODS: The relationship between PD-L1 and vasculogenic mimicry as well as epithelial-mesenchymal transition (EMT) was explored by bioinformatics approach and immunohistochemistry. The functions of PD-L1 in regulating the expression of ZEB1 and the EMT process were assessed by Western blotting and q-PCR assays. The impact of PD-L1 on the migratory and proliferative capabilities of A549 and H1299 cells was evaluated through wound healing, cell invasion, and CCK8 assays following siRNA-mediated PD-L1 knockdown. Tube formation assay was utilized to evaluate the presence of VM structures. RESULTS: In this study, increased PD-L1 expression was observed in A549 and H1299 cells compared to normal lung epithelial cells. Immunohistochemical analysis revealed a higher prevalence of VM structures in the PD-L1-positive group compared to the PD-L1-negative group. Additionally, high PD-L1 expression was also found to be significantly associated with advanced TNM stage and increased metastasis. Following PD-L1 knockdown, NSCLC cells exhibited a notable reduction in their ability to form tube-like structures. Moreover, the levels of key EMT and VM-related markers, including N-cadherin, MMP9, VE-cadherin, and VEGFA, were significantly decreased, while E-cadherin expression was upregulated. In addition, the migration and proliferation capacities of both cell lines were significantly inhibited after PD-L1 or ZEB1 knockdown. CONCLUSIONS: Knockdown PD-L1 can inhibit ZEB1-mediated EMT, thereby hindering the formation of VM in NSCLC.


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Lung Neoplasms , Neovascularization, Pathologic , Zinc Finger E-box-Binding Homeobox 1 , Humans , Epithelial-Mesenchymal Transition/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Male , Female , A549 Cells , Middle Aged
7.
Cell Commun Signal ; 22(1): 170, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459564

ABSTRACT

Heterogeneous cancer-associated fibroblasts (CAFs) play important roles in cancer progression. However, the specific biological functions and regulatory mechanisms involved in endometrial cancer have yet to be elucidated. We aimed to explore the potential mechanisms of heterogeneous CAFs in promoting endometrial cancer progression. The presence of melanoma cell adhesion molecule (MCAM; CD146) positive CAFs was confirmed by tissue multi-immunofluorescence (mIF), and fluorescence activated cell sorting (FACS). The biological functions were determined by wound healing assays, tuber formation assays and cord formation assays. The effects of CD146+CAFs on endometrial cancer cells were studied in vitro and in vivo. The expression level of interleukin 10 (IL-10) was measured by quantitative real time polymerase chain reaction (qRT-PCR), western boltting and enzyme linked immunosorbent assays (ELISAs). In addition, the transcription factor STAT3 was identified by bioinformatics methods and chromatin immunoprecipitation (ChIP). A subtype of CAFs marked with CD146 was found in endometrial cancer and correlated with poor prognosis. CD146+CAFs promoted angiogenesis and vasculogenic mimicry (VM) in vitro. A xenograft tumour model also showed that CD146+CAFs can facilitate tumour progression. The expression of IL-10 was elevated in CD146+CAFs. IL-10 promoted epithelial-endothelial transformation (EET) and further VM formation in endometrial cancer cells via the janus kinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) signalling pathway. This process could be blocked by the JAK1/STAT3 inhibitor niclosamide. Mechanically, STAT3 can bind to the promoter of cadherin5 (CDH5) to promote its transcription which may be stimulated by IL-10. We concluded that CD146+CAFs could promote angiogenesis and VM formation via the IL-10/JAK1/STAT3 signalling pathway. These findings may lead to the identification of potential targets for antiangiogenic therapeutic strategies for endometrial cancers.


Subject(s)
Cancer-Associated Fibroblasts , Endometrial Neoplasms , Female , Humans , Angiogenesis , Cancer-Associated Fibroblasts/metabolism , CD146 Antigen/metabolism , Cell Line, Tumor , Endometrial Neoplasms/metabolism , Interleukin-10 , Janus Kinase 1 , STAT3 Transcription Factor/metabolism
8.
Cell Commun Signal ; 22(1): 227, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610001

ABSTRACT

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck. Vasculogenic mimicry (VM) is crucial for tumor growth and metastasis and refers to the formation of fluid channels by invasive tumor cells rather than endothelial cells. However, the regulatory mechanisms underlying VM during the malignant progression of LSCC remain largely unknown. METHODS: Gene expression and clinical data for LSCC were obtained from the TCGA and Gene GEO (GSE27020) databases. A risk prediction model associated with VM was established using LASSO and Cox regression analyses. Based on their risk scores, patients with LSCC were categorized into high- and low-risk groups. The disparities in immune infiltration, tumor mutational burden (TMB), and functional enrichment between these two groups were examined. The core genes in LSCC were identified using the machine learning (SVM-RFE) and WGCNA algorithms. Subsequently, the involvement of bone morphogenetic protein 2 (BMP2) in VM and metastasis was investigated both in vitro and in vivo. To elucidate the downstream signaling pathways regulated by BMP2, western blotting was performed. Additionally, ChIP experiments were employed to identify the key transcription factors responsible for modulating the expression of BMP2. RESULTS: We established a new precise prognostic model for LSCC related to VM based on three genes: BMP2, EPO, and AGPS. The ROC curves from both TCGA and GSE27020 validation cohorts demonstrated precision survival prediction capabilities, with the nomogram showing some net clinical benefit. Multiple algorithm analyses indicated BMP2 as a potential core gene. Further experiments suggested that BMP2 promotes VM and metastasis in LSCC. The malignant progression of LSCC is promoted by BMP2 via the activation of the PI3K-AKT signaling pathway, with the high expression of BMP2 in LSCC resulting from its transcriptional activation by runt-related transcription factor 1 (RUNX1). CONCLUSION: BMP2 predicts poor prognosis in LSCC, promotes LSCC VM and metastasis through the PI3K-AKT signaling pathway, and is transcriptionally regulated by RUNX1. BMP2 may be a novel, precise, diagnostic, and therapeutic biomarker of LSCC.


Subject(s)
Bone Morphogenetic Protein 2 , Head and Neck Neoplasms , Humans , Core Binding Factor Alpha 2 Subunit , Endothelial Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Squamous Cell Carcinoma of Head and Neck/genetics , Signal Transduction
9.
Pharmacol Res ; : 107453, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39393437

ABSTRACT

Vasculogenic mimicry (VM) contributes factor to the poor prognosis of malignant melanoma. Developing deoxyhypusine synthase (DHPS) inhibitors against melanoma VM is clinically essential. In this study, we optimized and synthesized a series of compounds based on the candidate structure, and the hit compound 7k was identified through enzyme assay and cell viability inhibition screening. Both inside and outside the cell, 7k's ability to target DHPS and its high affinity were demonstrated. Molecular dynamics and point mutation indicated that mutations of K329 or V129 in DHPS abolish 7k's inhibitory activity. Using PCR arrays, solid-state antibody microarrays, and angiogenesis assays investigated 7k's impact on melanoma cells to reveal that DHPS regulates melanoma VM by promoting FGFR2 and c-KIT expression. Surprisingly, 7k was discovered to inhibit MC1R-mediated melanin synthesis in the zebrafish. Pharmacokinetic evaluations demonstrated 7k's favorable properties, and xenograft models evidenced its notable anti-melanoma efficacy, achieving a TGI of 73%. These results highlighted DHPS as key in melanoma VM formation and confirmed 7k's potential as a novel anti-melanoma agent.

10.
Biomarkers ; : 1-16, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392041

ABSTRACT

The microvessel compartment is crucial in the tumor microenvironment of endometrioid adenocarcinoma (EA). This study investigated the role of vasculogenic mimicry (VM), CD146, and CD105 microvessel density in the clinical prognosis of EA. A total of 188 EA cases were analyzed, with VM channels and microvessels detected using PAS/CD31, CD146, and CD105 staining. Mann-Whitney and Fisher exact tests were used to compare the study groups according to the evaluated criteria. ROC analysis included determination of the confidence interval (CI) and area under the ROC curve. The Mantel-Cox test was used to analyze progression-free survival. Multivariate Cox proportional hazard analysis was performed using stepwise regression. Results showed that VM channels and CD146 and CD105 microvessels were significantly higher (p < 0.0001) in cases with unfavorable prognosis. Univariate survival analysis highlighted the significant role of these factors in progression-free survival, while multivariate Cox analysis identified VM and CD146+ vessels as predictive factors. This study demonstrates, for the first time, that VM, CD146, and CD105-positive vessels are involved in EA prognosis, suggesting their potential as independent prognostic indicators and targets for antiangiogenic therapy. However, these findings require further validation through large-scale studies.

11.
Cell Biol Toxicol ; 40(1): 44, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862832

ABSTRACT

BACKGROUND: Vasculogenic mimicry (VM) is an enigmatic physiological feature that influences blood supply within glioblastoma (GBM) tumors for their sustained growth. Previous studies identify NFATC3, FOSL1 and HNRNPA2B1 as significant mediators of VEGFR2, a key player in vasculogenesis, and their molecular relationships may be crucial for VM in GBM. AIMS: The aim of this study was to understand how NFATC3, FOSL1 and HNRNPA2B1 collectively influence VM in GBM. METHODS: We have investigated the underlying gene regulatory mechanisms for VM in GBM cell lines U251 and U373 in vitro and in vivo. In vitro cell-based assays were performed to explore the role of NFATC3, FOSL1 and HNRNPA2B1 in GBM cell proliferation, VM and migration, in the context of RNA interference (RNAi)-mediated knockdown alongside corresponding controls. Western blotting and qRT-PCR assays were used to examine VEGFR2 expression levels. CO-IP was employed to detect protein-protein interactions, ChIP was used to detect DNA-protein complexes, and RIP was used to detect RNA-protein complexes. Histochemical staining was used to detect VM tube formation in vivo. RESULTS: Focusing on NFATC3, FOSL1 and HNRNPA2B1, we found each was significantly upregulated in GBM and positively correlated with VM-like cellular behaviors in U251 and U373 cell lines. Knockdown of NFATC3, FOSL1 or HNRNPA2B1 each resulted in decreased levels of VEGFR2, a key growth factor gene that drives VM, as well as the inhibition of proliferation, cell migration and extracorporeal VM activity. Chromatin immunoprecipitation (ChIP) studies and luciferase reporter gene assays revealed that NFATC3 binds to the promoter region of VEGFR2 to enhance VEGFR2 gene expression. Notably, FOSL1 interacts with NFATC3 as a co-factor to potentiate the DNA-binding capacity of NFATC3, resulting in enhanced VM-like cellular behaviors. Also, level of NFATC3 protein in cells was enhanced through HNRNPA2B1 binding of NFATC3 mRNA. Furthermore, RNAi-mediated silencing of NFATC3, FOSL1 and HNRNPA2B1 in GBM cells reduced their capacity for tumor formation and VM-like behaviors in vivo. CONCLUSION: Taken together, our findings identify NFATC3 as an important mediator of GBM tumor growth through its molecular and epistatic interactions with HNRNPA2B1 and FOSL1 to influence VEGFR2 expression and VM-like cellular behaviors.


Subject(s)
Cell Movement , Cell Proliferation , Glioblastoma , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , NFATC Transcription Factors , Neovascularization, Pathologic , Proto-Oncogene Proteins c-fos , Humans , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/blood supply , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Animals , Cell Proliferation/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Cell Movement/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Gene Expression Regulation, Neoplastic , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/blood supply , Mice, Nude
12.
J Pathol ; 259(3): 318-330, 2023 03.
Article in English | MEDLINE | ID: mdl-36484652

ABSTRACT

Vasculogenic mimicry (VM) describes the ability of highly aggressive tumor cells to develop pseudovascular structures without the participation of endothelial cells. PARP1 is implicated in the activation of hypoxia-inducible factors, which are crucial in tumor neovascularization. We have explored the role of hypoxia and PARP inhibition in VM. In uveal melanoma xenografts, the PARP inhibitor olaparib improved in vivo pericyte coverage specifically of VM channels. This was concomitant with reduced metastasis in olaparib-treated VM+ tumors. PARP inhibition and hypoxia modulated melanoma tube formation in vitro, inducing a more sparse and regular tubular architecture. Whole-transcriptome profiling revealed that olaparib treatment under hypoxic conditions modulated the expression of genes implicated in vasculogenesis during tube formation, enhancing the endothelial-like phenotype of VM+ uveal melanoma cells. PARP inhibition, especially during hypoxia, upregulated PDGFß, which is essential for pericyte recruitment. Our study indicates that PARP inhibitors may enhance the endothelial characteristics of VM+ cells, modulate pericyte coverage, and reduce metastatic spread in VM+ melanoma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Melanoma , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Endothelial Cells/metabolism , Pericytes/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Neovascularization, Pathologic/pathology , Phenotype , Cell Line, Tumor
13.
J Biochem Mol Toxicol ; 38(4): e23688, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511888

ABSTRACT

In women, breast cancer (BC) accounts for 7%-10% of all cancer cases and is one of the most common cancers. To identify a new method for treating BC, the role of CD93 and its underlying mechanism were explored. MDA-MB-231 cells were used in this study and transfected with si-CD93, si-MMRN2, oe-CD93, si-integrin ß1, or oe-SP2 lentivirus. After MDA-MB-231 cells were transfected with si-NC or si-CD93, they were injected into nude mice by subcutaneous injection at a dose of 5 × 106/mouse to construct a BC animal model. The expression of genes and proteins and cell migration, invasion and vasculogenic mimicry were detected by RT‒qPCR, western blot, immunohistochemistry, immunofluorescence, Transwell, and angiogenesis assays. In pathological samples and BC cell lines, CD93 was highly expressed. Functionally, CD93 promoted the proliferation, migration, and vasculogenic mimicry of MDA-MB-231 cells. Moreover, CD93 interacts with MMRN2 and integrin ß1. Knockdown of CD93 and MMRN2 can inhibit the activation of integrin ß1, thereby inhibiting the PI3K/AKT/SP2 signaling pathway and inhibiting BC growth and vasculogenic mimicry. In conclusion, the binding of CD93 to MMRN2 can activate integrin ß1, thereby activating the PI3K/AKT/SP2 signaling pathway and subsequently promoting BC growth and vasculogenic mimicry.


Subject(s)
Breast Neoplasms , Integrin beta1 , Membrane Glycoproteins , Receptors, Complement , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Integrin beta1/genetics , Integrin beta1/metabolism , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Receptors, Complement/metabolism , Membrane Glycoproteins/metabolism
14.
J Nanobiotechnology ; 22(1): 209, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664830

ABSTRACT

BACKGROUND: Vasculogenic mimicry (VM), when microvascular channels are formed by cancer cells independent of endothelial cells, often occurs in deep hypoxic areas of tumors and contributes to the aggressiveness and metastasis of triple-negative breast cancer (TNBC) cells. However, well-developed VM inhibitors exhibit inadequate efficacy due to their low drug utilization rate and limited deep penetration. Thus, a cost-effective VM inhibition strategy needs to be designed for TNBC treatment. RESULTS: Herein, we designed a low-intensity focused ultrasound (LIFU) and matrix metalloproteinase-2 (MMP-2) dual-responsive nanoplatform termed PFP@PDM-PEG for the cost-effective and efficient utilization of the drug disulfiram (DSF) as a VM inhibitor. The PFP@PDM-PEG nanodroplets effectively penetrated tumors and exhibited substantial accumulation facilitated by PEG deshielding in a LIFU-mediated and MMP-2-sensitive manner. Furthermore, upon exposure to LIFU irradiation, DSF was released controllably under ultrasound imaging guidance. This secure and controllable dual-response DSF delivery platform reduced VM formation by inhibiting COL1/pro-MMP-2 activity, thereby significantly inhibiting tumor progression and metastasis. CONCLUSIONS: Considering the safety of the raw materials, controlled treatment process, and reliable repurposing of DSF, this dual-responsive nanoplatform represents a novel and effective VM-based therapeutic strategy for TNBC in clinical settings.


Subject(s)
Disulfiram , Lung Neoplasms , Matrix Metalloproteinase 2 , Nanoparticles , Neovascularization, Pathologic , Triple Negative Breast Neoplasms , Disulfiram/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Matrix Metalloproteinase 2/metabolism , Animals , Female , Humans , Mice , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Nanoparticles/chemistry , Neovascularization, Pathologic/drug therapy , Mice, Inbred BALB C , Mice, Nude , Drug Repositioning , Ultrasonic Waves , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use
15.
Cell Mol Biol Lett ; 29(1): 118, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237880

ABSTRACT

BACKGROUND: Vasculogenic mimicry (VM) is a potential cause of resistance to antiangiogenic therapy and is closely related to the malignant progression of tumors. It has been shown that noncoding RNAs play an important role in the formation of VM in malignant tumors. However, the role of circRNAs in VM of bladder cancer and the regulatory mechanisms are unclear. METHODS: Firstly, hsa_circ_0000520 was identified to have circular character by Sanger sequencing and Rnase R assays. Secondly, the potential clinical value of hsa_circ_0000520 was explored by quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH) of clinical specimens. Thirdly, the role of hsa_circ_0000520 in bladder cancer invasion, migration, and VM formation was examined by in vivo and in vitro experiments. Finally, the regulatory mechanisms of hsa_circ_0000520 in the malignant progression of bladder cancer were elucidated by RNA binding protein immunoprecipitation (RIP), RNA pulldown, co-immunoprecipitation (co-IP), qRT-PCR, Western blot (WB), and fluorescence co-localization. RESULTS: Hsa_circ_0000520 was characterized as a circular RNA and was lowly expressed in bladder cancer compared with the paracancer. Bladder cancer patients with high expression of hsa_circ_0000520 had better survival prognosis. Functionally, hsa_circ_0000520 inhibited bladder cancer invasion, migration, and VM formation. Mechanistically, hsa_circ_0000520 acted as a scaffold to promote binding of UBE2V1/UBC13 to Lin28a, further promoting the ubiquitous degradation of Lin28a, improving PTEN mRNA stability, and inhibiting the phosphorylation of the PI3K/AKT pathway. The formation of hsa_circ_0000520 in bladder cancer was regulated by RNA binding protein QKI. CONCLUSIONS: Hsa_circ_0000520 inhibits metastasis and VM formation in bladder cancer and is a potential target for bladder cancer diagnosis and treatment.


Subject(s)
Cell Movement , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , RNA, Circular , RNA-Binding Proteins , Signal Transduction , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Movement/genetics , Male , Animals , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Female , Neovascularization, Pathologic/genetics , Mice, Nude , Mice , Middle Aged , Mice, Inbred BALB C
16.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 997-1010, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818582

ABSTRACT

Systemic therapies, the ultimate strategies for patients with advanced hepatocellular carcinoma (HCC), are suffering from serious clinical challenges, such as the occurrence and development of drug resistance. Treatment resistance aggravates tumor progression partly by inducing tumor metastasis. Regorafenib-resistant HCC cells exhibit a highly striking metastatic phenotype, but the detailed mechanisms underlying these aggressive behaviors remain elusive. Here, we conduct transcriptome sequencing analysis to identify COL5A2 as a crucial driver of the metastatic characteristics of regorafenib-resistant HCC cells. COL5A2 is aberrantly highly expressed in resistant cells, and its genetic depletion significantly suppresses proliferation, migration, invasion, vasculogenic mimicry (VM) formation and lung metastasis in vitro and in vivo, concomitant with the downregulation of VE-cadherin, EphA2, Twist1, p-p38 and p-STAT3 expressions. LIFR is confirmed to be an essential downstream molecule of COL5A2, and its expression is observably elevated by COL5A2 depletion. Ectopic overexpression of LIFR drastically attenuates the proliferation, migration, invasion and VM of regorafenib-resistant cells and represses the expressions of VM-related molecules and the activation of p38/STAT3 signaling pathway. Interestingly, rescue experiments show that the inhibition of the above aggressive features of resistant cells by COL5A2 loss is clearly alleviated by silencing of LIFR. Collectively, our results reveal that COL5A2 promotes the ability of regorafenib-resistant HCC cells to acquire a metastatic phenotype by attenuating LIFR expression and suggest that therapeutic regimens targeting the COL5A2/LIFR axis may be beneficial for HCC patients with therapeutic resistance.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Drug Resistance, Neoplasm , Liver Neoplasms , Phenylurea Compounds , Pyridines , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Drug Resistance, Neoplasm/genetics , Pyridines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Movement/drug effects , Cell Movement/genetics , Gene Expression Regulation, Neoplastic/drug effects , Animals , Mice , Mice, Nude , Phenotype , Neoplasm Metastasis , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Leukemia Inhibitory Factor Receptor alpha Subunit
17.
Environ Toxicol ; 39(5): 2948-2960, 2024 May.
Article in English | MEDLINE | ID: mdl-38308456

ABSTRACT

BACKGROUND: Vasculogenic mimicry (VM) refers to the direct formation of microcirculatory ducts by invasive malignant tumors via cellular phenotypic transformation. However, there is a lack of VM-based biomarkers for breast cancer. METHODS: We obtained transcriptomic expression data, single cell sequencing data, and clinical data of patients from The Cancer Genome Atlas Program (TCGA) database and GEO database, performed single cell analysis to obtain specific type annotations of breast cancer cells and analyzed their spatial expression analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analyses as well as Gene Set Enrichment Analysis (GSEA) analyses were performed to clarify the biological pathways and tumor functional enrichment relationships of the major expressed genes of VM in the breast cancer bulk data specimens. VM biomarkers were constructed. Meanwhile, the relationship between VM scores and tumor immune infiltration in breast cancer was analyzed using MCPcounter and ssGSEA methods. In addition, we assessed the specific relationship between NDRG1, a key VM gene in breast cancer, and tumor colonization, adhesion and invasion by biological experiments in breast cancer cell lines. RESULTS: The main cell types of breast cancer (BRCA) samples were annotated by single cell transcriptome analysis. Most of the VM-high group was present in epithelial cells, whereas the VM-low group was present in immune and stromal cells. Multiple tumor pathways such as TGFß p53 and MAPK were closely associated with VM-mediated breast cancer infiltration and invasion. A prognostic model of breast cancer based on VM key genes was constituted. Prognostic stratification of breast cancer was successfully achieved for the TCGA-BRCA and GSE58812 datasets. Through immune infiltration analysis, we found that differential expression of VM markers was associated with multiple immune cell regulation. In MDA-MB-231 and MDA-MB-453 cell lines, we found that the NDRG1 gene significantly promoted colony formation of breast cancer cells. CONCLUSION: Our constructed VM-related gene-based model of breast cancer biology holds promise for prognostic prediction and patient stratification of breast cancer. This may provide a potentially clinically valuable aid in promoting a deeper understanding of the biological regulation of VM in breast cancer and exploring the specific mechanisms of tumor angiogenesis and breast cancer development.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Tumor Microenvironment/genetics , Microcirculation , Cell Line, Tumor , Biomarkers
18.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791252

ABSTRACT

Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer cells. VM was measured by a 3D culture assay. Signal transducers and activators of transcription 3 (STAT3) signaling, aquaporin-1 (AQP1), and the expression of VM-related proteins, including vascular endothelial cadherin (VE-cadherin), twist, matrix metalloproteinase-2 (MMP-2), and laminin subunit 5 gamma-2 (LAMC2), were examined by Western blot. AQP1 mRNA was analyzed by a reverse transcriptase-polymerase chain reaction (RT-PCR). Leptin increased VM and upregulated phospho-STAT3, VE-cadherin, twist, MMP-2, and LAMC2. These effects were inhibited by the leptin receptor-blocking peptide, Ob-R BP, and the STAT3 inhibitor, AG490. A positive correlation between leptin and AQP1 mRNA was observed and was confirmed by RT-PCR. Leptin upregulated AQP1 expression, which was blocked by Ob-R BP and AG490. AQP1 overexpression increased VM and the expression of VM-related proteins. AQP1 silencing inhibited leptin-induced VM and the expression of VM-related proteins. Thus, these results showed that leptin facilitates VM in breast cancer cells via the Ob-R/STAT3 pathway and that AQP1 is a key mediator in leptin-induced VM.


Subject(s)
Breast Neoplasms , Leptin , Neovascularization, Pathologic , Female , Humans , Antigens, CD , Aquaporin 1/metabolism , Aquaporin 1/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Cadherins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Laminin/metabolism , Leptin/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , MCF-7 Cells , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
19.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273240

ABSTRACT

Gene expression patterns are very sensitive to external influences and are reflected in phenotypic changes. It was previously described that transferring melanoma cells from a plastic surface to Matrigel led to formation of de novo vascular networks-vasculogenic mimicry-that are characteristic to a stemness phenotype in aggressive tumors. Up to now there was no detailed data about the gene signature accompanying this process. Here, we show that this transfer shortly led to extremely strong epigenetic changes in gene expression in the melanoma cells. We observed that on Matrigel numerous genes controlling ribosome biogenesis were upregulated. However, most of the activated genes were inhibitors of the differentiation genes (ID1, ID2, and ID3). At the same time, the genes that control differentiation were downregulated. Both the upregulated and the downregulated genes are simultaneously targeted by different transcription factors shaping sets of co-expressed genes. The specific group of downregulated genes shaping contacts with rDNA genes are also associated with the H3K27me3 mark and with numerous lincRNAs and miRNAs. We conclude that the stemness phenotype of melanoma cells is due to the downregulation of developmental genes and formation of dedifferentiated cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Inhibitor of Differentiation Protein 1 , Inhibitor of Differentiation Protein 2 , Inhibitor of Differentiation Proteins , Melanoma , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Humans , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Cell Line, Tumor , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Phenotype , Cell Differentiation/genetics , Epigenesis, Genetic , Drug Combinations , Collagen , Proteoglycans , Laminin , Neoplasm Proteins
20.
Cancer Metastasis Rev ; 41(1): 173-191, 2022 03.
Article in English | MEDLINE | ID: mdl-34664157

ABSTRACT

Unexpected resistance to anti-angiogenic treatment prompted the investigation of non-angiogenic tumor processes. Vessel co-option (VC) and vasculogenic mimicry (VM) are recognized as primary non-angiogenic mechanisms. In VC, cancer cells utilize pre-existing blood vessels for support, whereas in VM, cancer cells channel and provide blood flow to rapidly growing tumors. Both processes have been implicated in the development of tumor and resistance to anti-angiogenic drugs in many tumor types. The morphology, but rare molecular alterations have been investigated in VC and VM. There is a pressing need to better understand the underlying cellular and molecular mechanisms. Here, we review the emerging circular RNA (circRNA)-mediated regulation of non-angiogenic processes, VC and VM.


Subject(s)
Neoplasms , RNA, Circular , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Humans , Immunotherapy , Neoplasms/blood supply , Neoplasms/drug therapy , Neoplasms/genetics , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , RNA, Circular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL