Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106.063
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 37: 1-17, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30379594

ABSTRACT

Each of us is a story. Mine is a story of doing science for 60 years, and I am honored to be asked to tell it. Even though this autobiography was written for the Annual Review of Immunology, I have chosen to describe my whole career in science because the segment that was immunology is so intertwined with all else I was doing. This article is an elongation and modification of a talk I gave at my 80th birthday celebration at Caltech on March 23, 2018.


Subject(s)
Allergy and Immunology/history , NF-kappa B/metabolism , RNA Viruses/physiology , Virus Diseases/immunology , Animals , Disease Models, Animal , Gene Rearrangement , History, 20th Century , History, 21st Century , Humans , Mice , Protein-Tyrosine Kinases/metabolism , Reverse Transcription , United States
2.
Annu Rev Immunol ; 37: 73-95, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026414

ABSTRACT

Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.


Subject(s)
Brain/immunology , Immunity, Innate , Microglia/physiology , RNA Virus Infections/immunology , RNA Viruses/physiology , Animals , Blood-Brain Barrier , Brain/virology , Humans , Neurogenic Inflammation , Neuroimmunomodulation
3.
Cell ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39389057

ABSTRACT

Current metagenomic tools can fail to identify highly divergent RNA viruses. We developed a deep learning algorithm, termed LucaProt, to discover highly divergent RNA-dependent RNA polymerase (RdRP) sequences in 10,487 metatranscriptomes generated from diverse global ecosystems. LucaProt integrates both sequence and predicted structural information, enabling the accurate detection of RdRP sequences. Using this approach, we identified 161,979 potential RNA virus species and 180 RNA virus supergroups, including many previously poorly studied groups, as well as RNA virus genomes of exceptional length (up to 47,250 nucleotides) and genomic complexity. A subset of these novel RNA viruses was confirmed by RT-PCR and RNA/DNA sequencing. Newly discovered RNA viruses were present in diverse environments, including air, hot springs, and hydrothermal vents, with virus diversity and abundance varying substantially among ecosystems. This study advances virus discovery, highlights the scale of the virosphere, and provides computational tools to better document the global RNA virome.

4.
Cell ; 187(20): 5587-5603.e19, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39293445

ABSTRACT

Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.


Subject(s)
Ebolavirus , Electron Microscope Tomography , Nucleocapsid , Virus Assembly , Ebolavirus/ultrastructure , Ebolavirus/chemistry , Ebolavirus/metabolism , Ebolavirus/physiology , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Nucleocapsid/chemistry , Humans , Cryoelectron Microscopy/methods , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/ultrastructure , Nucleoproteins/chemistry , Nucleoproteins/metabolism , Nucleoproteins/ultrastructure , Animals , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Models, Molecular , Virion/ultrastructure , Virion/metabolism , Hemorrhagic Fever, Ebola/virology , Chlorocebus aethiops
5.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38614100

ABSTRACT

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Subject(s)
Bluetongue virus , Capsid Proteins , Capsid , Cryoelectron Microscopy , RNA, Viral , Viral Genome Packaging , Bluetongue virus/genetics , Bluetongue virus/physiology , Bluetongue virus/metabolism , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , Animals , RNA, Viral/metabolism , RNA, Viral/genetics , Genome, Viral/genetics , Virus Assembly , Electron Microscope Tomography , Virion/metabolism , Virion/genetics , Virion/ultrastructure , Models, Molecular , Cell Line , Cricetinae
6.
Cell ; 187(16): 4213-4230.e19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013471

ABSTRACT

Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.


Subject(s)
Cryoelectron Microscopy , Spumavirus , Virus Assembly , Virus Internalization , Spumavirus/genetics , Capsid/metabolism , Capsid/chemistry , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Humans , Evolution, Molecular , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Models, Molecular
7.
Cell ; 187(11): 2735-2745.e12, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38723628

ABSTRACT

Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.


Subject(s)
Hepatitis B virus , Reverse Transcription , Humans , Genome, Viral/genetics , Hepatitis B virus/genetics , Mutation , Ribosomes/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Cell Line
8.
Cell ; 187(6): 1363-1373.e12, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38366591

ABSTRACT

In response to the 2022 outbreak of mpox driven by unprecedented human-to-human monkeypox virus (MPXV) transmission, we designed BNT166, aiming to create a highly immunogenic, safe, accessible, and scalable next-generation vaccine against MPXV and related orthopoxviruses. To address the multiple viral forms and increase the breadth of immune response, two candidate multivalent mRNA vaccines were evaluated pre-clinically: a quadrivalent vaccine (BNT166a; encoding the MPXV antigens A35, B6, M1, H3) and a trivalent vaccine (BNT166c; without H3). Both candidates induced robust T cell responses and IgG antibodies in mice, including neutralizing antibodies to both MPXV and vaccinia virus. In challenge studies, BNT166a and BNT166c provided complete protection from vaccinia, clade I, and clade IIb MPXV. Furthermore, immunization with BNT166a was 100% effective at preventing death and at suppressing lesions in a lethal clade I MPXV challenge in cynomolgus macaques. These findings support the clinical evaluation of BNT166, now underway (NCT05988203).


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Smallpox Vaccine , Animals , Humans , Mice , Macaca fascicularis , Monkeypox virus/genetics , Mpox (monkeypox)/immunology , Mpox (monkeypox)/prevention & control , Vaccines, Combined , Vaccinia virus/genetics
9.
Cell ; 187(19): 5468-5482.e11, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303692

ABSTRACT

Zoonotic spillovers of viruses have occurred through the animal trade worldwide. The start of the COVID-19 pandemic was traced epidemiologically to the Huanan Seafood Wholesale Market. Here, we analyze environmental qPCR and sequencing data collected in the Huanan market in early 2020. We demonstrate that market-linked severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity is consistent with market emergence and find increased SARS-CoV-2 positivity near and within a wildlife stall. We identify wildlife DNA in all SARS-CoV-2-positive samples from this stall, including species such as civets, bamboo rats, and raccoon dogs, previously identified as possible intermediate hosts. We also detect animal viruses that infect raccoon dogs, civets, and bamboo rats. Combining metagenomic and phylogenetic approaches, we recover genotypes of market animals and compare them with those from farms and other markets. This analysis provides the genetic basis for a shortlist of potential intermediate hosts of SARS-CoV-2 to prioritize for serological and viral sampling.


Subject(s)
Animals, Wild , COVID-19 , Phylogeny , SARS-CoV-2 , Animals , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Animals, Wild/virology , Humans , Pandemics
10.
Cell ; 187(4): 831-845.e19, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38301645

ABSTRACT

The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.


Subject(s)
Antigens, Neoplasm , Neoplasms , Nerve Tissue Proteins , Paraneoplastic Syndromes, Nervous System , Animals , Humans , Mice , Autoantibodies , Capsid/metabolism , Epitopes , Neoplasms/complications , Paraneoplastic Syndromes, Nervous System/metabolism , Paraneoplastic Syndromes, Nervous System/pathology , Antigens, Neoplasm/metabolism , Nerve Tissue Proteins/metabolism
11.
Cell ; 187(16): 4246-4260.e16, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38964326

ABSTRACT

The human seasonal coronavirus HKU1-CoV, which causes common colds worldwide, relies on the sequential binding to surface glycans and transmembrane serine protease 2 (TMPRSS2) for entry into target cells. TMPRSS2 is synthesized as a zymogen that undergoes autolytic activation to process its substrates. Several respiratory viruses, in particular coronaviruses, use TMPRSS2 for proteolytic priming of their surface spike protein to drive membrane fusion upon receptor binding. We describe the crystal structure of the HKU1-CoV receptor binding domain in complex with TMPRSS2, showing that it recognizes residues lining the catalytic groove. Combined mutagenesis of interface residues and comparison across species highlight positions 417 and 469 as determinants of HKU1-CoV host tropism. The structure of a receptor-blocking nanobody in complex with zymogen or activated TMPRSS2 further provides the structural basis of TMPRSS2 activating conformational change, which alters loops recognized by HKU1-CoV and dramatically increases binding affinity.


Subject(s)
Serine Endopeptidases , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Humans , Crystallography, X-Ray , Coronavirus/metabolism , Coronavirus/chemistry , Enzyme Precursors/metabolism , Enzyme Precursors/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Models, Molecular , Protein Binding , HEK293 Cells , Animals , Enzyme Activation , Virus Internalization
12.
Cell ; 187(15): 4078-4094.e21, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38897196

ABSTRACT

Reversing CD8+ T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8+ T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS. While blocking co-inhibitory receptors had minimal effect, activating 4-1BB and OX40 converted them into antiviral effectors. Prolonged stimulation led to a self-renewing, long-lived, heterogeneous population with a unique transcriptional profile. This includes dysfunctional progenitor/stem-like (TSL) cells and two distinct dysfunctional tissue-resident memory (TRM) populations. While 4-1BB expression is ubiquitously maintained, OX40 expression is limited to TSL. In chronic settings, only 4-1BB stimulation conferred antiviral activity. In HBeAg+ chronic patients, 4-1BB activation showed the highest potential to rejuvenate dysfunctional CD8+ T cells. Targeting all dysfunctional T cells, rather than only stem-like precursors, holds promise for treating chronic HBV infection.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatitis B virus , Hepatitis B, Chronic , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Signal Transduction , Animals , Receptors, OX40/metabolism , Mice , Programmed Cell Death 1 Receptor/metabolism , Antigens, CD/metabolism
13.
Cell ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39276775

ABSTRACT

Major histocompatibility complex class II (MHC-II) is the most significant genetic risk factor for systemic lupus erythematosus (SLE), but the nature of the self-antigens that trigger autoimmunity remains unclear. Unusual self-antigens, termed neoself-antigens, are presented on MHC-II in the absence of the invariant chain essential for peptide presentation. Here, we demonstrate that neoself-antigens are the primary target for autoreactive T cells clonally expanded in SLE. When neoself-antigen presentation was induced by deleting the invariant chain in adult mice, neoself-reactive T cells were clonally expanded, leading to the development of lupus-like disease. Furthermore, we found that neoself-reactive CD4+ T cells were significantly expanded in SLE patients. A high frequency of Epstein-Barr virus reactivation is a risk factor for SLE. Neoself-reactive lupus T cells were activated by Epstein-Barr-virus-reactivated cells through downregulation of the invariant chain. Together, our findings imply that neoself-antigen presentation by MHC-II plays a crucial role in the pathogenesis of SLE.

14.
Annu Rev Immunol ; 34: 575-608, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27168245

ABSTRACT

Mucosal surfaces provide a remarkably effective barrier against potentially dangerous pathogens. Therefore, enhancing mucosal immunity through vaccines-strengthening that first line of defense-holds significant promise for reducing the burden of viral diseases. The large and varied class of viral pathogens, however, continues to present thorny challenges to vaccine development. Two primary difficulties exist: Viruses exhibit a stunning diversity of strategies for evading the host immune response, and even when we understand the nature of effective immune protection against a given virus, eliciting that protection is technically challenging. Only a few mucosal vaccines have surmounted these obstacles thus far. Recent developments, however, could greatly improve vaccine design. In this review, we first sketch out our understanding of mucosal immunity and then compare the herpes simplex virus, human immunodeficiency virus, and influenza virus to illustrate the distinct challenges of developing successful vaccines and to outline potential solutions.


Subject(s)
HIV/immunology , Immune Evasion , Immunity, Mucosal , Orthomyxoviridae/immunology , Simplexvirus/immunology , Viral Vaccines/immunology , Virus Diseases/immunology , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Humans , Immunologic Memory , Virus Diseases/prevention & control
15.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36580912

ABSTRACT

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Subject(s)
COVID-19 , Respiratory System , SARS-CoV-2 , Humans , Cilia/physiology , Cilia/virology , COVID-19/virology , Respiratory System/cytology , Respiratory System/virology , SARS-CoV-2/physiology , Microvilli/physiology , Microvilli/virology , Virus Internalization , Epithelial Cells/physiology , Epithelial Cells/virology
16.
Cell ; 186(17): 3642-3658.e32, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37437570

ABSTRACT

A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.


Subject(s)
Cytological Techniques , Genetic Techniques , RNA , Animals , Biological Transport , Mammals/metabolism , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viruses/genetics , Molecular Typing , Sequence Analysis, RNA
17.
Cell ; 186(15): 3291-3306.e21, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37413987

ABSTRACT

The number of sequenced viral genomes has surged recently, presenting an opportunity to understand viral diversity and uncover unknown regulatory mechanisms. Here, we conducted a screening of 30,367 viral segments from 143 species representing 96 genera and 37 families. Using a library of viral segments in 3' UTR, we identified hundreds of elements impacting RNA abundance, translation, and nucleocytoplasmic distribution. To illustrate the power of this approach, we investigated K5, an element conserved in kobuviruses, and found its potent ability to enhance mRNA stability and translation in various contexts, including adeno-associated viral vectors and synthetic mRNAs. Moreover, we identified a previously uncharacterized protein, ZCCHC2, as a critical host factor for K5. ZCCHC2 recruits the terminal nucleotidyl transferase TENT4 to elongate poly(A) tails with mixed sequences, delaying deadenylation. This study provides a unique resource for virus and RNA research and highlights the potential of the virosphere for biological discoveries.


Subject(s)
RNA , Regulatory Sequences, Nucleic Acid , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Base Sequence , Proteins/genetics , DNA-Directed DNA Polymerase/metabolism , RNA Stability , RNA, Viral/genetics , RNA, Viral/metabolism
18.
Cell ; 186(22): 4834-4850.e23, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37794589

ABSTRACT

Regulation of viral RNA biogenesis is fundamental to productive SARS-CoV-2 infection. To characterize host RNA-binding proteins (RBPs) involved in this process, we biochemically identified proteins bound to genomic and subgenomic SARS-CoV-2 RNAs. We find that the host protein SND1 binds the 5' end of negative-sense viral RNA and is required for SARS-CoV-2 RNA synthesis. SND1-depleted cells form smaller replication organelles and display diminished virus growth kinetics. We discover that NSP9, a viral RBP and direct SND1 interaction partner, is covalently linked to the 5' ends of positive- and negative-sense RNAs produced during infection. These linkages occur at replication-transcription initiation sites, consistent with NSP9 priming viral RNA synthesis. Mechanistically, SND1 remodels NSP9 occupancy and alters the covalent linkage of NSP9 to initiating nucleotides in viral RNA. Our findings implicate NSP9 in the initiation of SARS-CoV-2 RNA synthesis and unravel an unsuspected role of a cellular protein in orchestrating viral RNA production.


Subject(s)
COVID-19 , RNA, Viral , Humans , COVID-19/metabolism , Endonucleases/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics , Virus Replication
19.
Cell ; 186(26): 5705-5718.e13, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38091993

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the CNS. Epstein-Barr virus (EBV) contributes to the MS pathogenesis because high levels of EBV EBNA386-405-specific antibodies cross react with the CNS-derived GlialCAM370-389. However, it is unclear why only some individuals with such high autoreactive antibody titers develop MS. Here, we show that autoreactive cells are eliminated by distinct immune responses, which are determined by genetic variations of the host, as well as of the infecting EBV and human cytomegalovirus (HCMV). We demonstrate that potent cytotoxic NKG2C+ and NKG2D+ natural killer (NK) cells and distinct EBV-specific T cell responses kill autoreactive GlialCAM370-389-specific cells. Furthermore, immune evasion of these autoreactive cells was induced by EBV-variant-specific upregulation of the immunomodulatory HLA-E. These defined virus and host genetic pre-dispositions are associated with an up to 260-fold increased risk of MS. Our findings thus allow the early identification of patients at risk for MS and suggest additional therapeutic options against MS.


Subject(s)
Autoimmunity , Epstein-Barr Virus Infections , Multiple Sclerosis , Humans , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/genetics , Histocompatibility Antigens Class I , Multiple Sclerosis/immunology , Killer Cells, Natural/immunology
20.
Cell ; 186(21): 4597-4614.e26, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37738970

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/virology , Immunity, Innate/genetics , Pandemics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL