Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.588
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 39: 537-556, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33577346

ABSTRACT

The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.


Subject(s)
Autoimmune Diseases , Interleukin-17 , Animals , Autoimmune Diseases/etiology , Cytokines , Humans , Intention , Receptors, Interleukin-17
2.
Cell ; 187(12): 3024-3038.e14, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38781969

ABSTRACT

Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.


Subject(s)
Plant Proteins , Regeneration , Signal Transduction , Solanum lycopersicum , Plant Proteins/metabolism , Plant Proteins/genetics , Solanum lycopersicum/metabolism , Gene Expression Regulation, Plant , Peptides/metabolism
3.
Cell ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39168124

ABSTRACT

During wound healing, different pools of stem cells (SCs) contribute to skin repair. However, how SCs become activated and drive the tissue remodeling essential for skin repair is still poorly understood. Here, by developing a mouse model allowing lineage tracing and basal cell lineage ablation, we monitor SC fate and tissue dynamics during regeneration using confocal and intravital imaging. Analysis of basal cell rearrangements shows dynamic transitions from a solid-like homeostatic state to a fluid-like state allowing tissue remodeling during repair, as predicted by a minimal mathematical modeling of the spatiotemporal dynamics and fate behavior of basal cells. The basal cell layer progressively returns to a solid-like state with re-epithelialization. Bulk, single-cell RNA, and epigenetic profiling of SCs, together with functional experiments, uncover a common regenerative state regulated by the EGFR/AP1 axis activated during tissue fluidization that is essential for skin SC activation and tissue repair.

4.
Cell ; 186(17): 3606-3618.e16, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37480850

ABSTRACT

Injury induces systemic responses, but their functions remain elusive. Mechanisms that can rapidly synchronize wound responses through long distances are also mostly unknown. Using planarian flatworms capable of whole-body regeneration, we report that injury induces extracellular signal-regulated kinase (Erk) activity waves to travel at a speed 10-100 times faster than those in other multicellular tissues. This ultrafast propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. The morphological properties of muscles allow them to act as superhighways for propagating and disseminating wound signals. Inhibiting Erk propagation prevents tissues distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues shortly after the first injury. Our findings provide a mechanism for long-range signal propagation in large, complex tissues to coordinate responses across cell types and highlight the function of feedback between spatially separated tissues during whole-body regeneration.


Subject(s)
Planarians , Regeneration , Animals , MAP Kinase Signaling System , Muscles , Phosphorylation , Planarians/physiology , Protein Processing, Post-Translational
5.
Cell ; 186(7): 1337-1351.e20, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36870332

ABSTRACT

Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as ß-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Glycoside Hydrolases/metabolism , Glucosinolates/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Insecta
6.
Cell ; 185(25): 4717-4736.e25, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493752

ABSTRACT

Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.


Subject(s)
Reindeer , Wound Healing , Adult , Animals , Humans , Cicatrix/pathology , Fibroblasts/pathology , Skin Transplantation , Skin/pathology , Fetus/pathology
7.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677291

ABSTRACT

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Subject(s)
B7-1 Antigen , Hair Follicle , Inflammation , Skin , Stem Cells , T-Lymphocytes, Regulatory , Wound Healing , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Wound Healing/immunology , Skin/immunology , Skin/injuries , Skin/pathology , Stem Cells/immunology , Stem Cells/metabolism , Inflammation/immunology , Hair Follicle/immunology , B7-1 Antigen/metabolism , Mice, Inbred C57BL , Mice, Knockout , Re-Epithelialization/immunology , Cell Movement/immunology , Cell Proliferation
8.
Cell ; 169(4): 636-650.e14, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28434617

ABSTRACT

Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.


Subject(s)
Carcinoma, Squamous Cell/pathology , Cell Lineage , Epidermal Cells , Hair Follicle/cytology , Skin Neoplasms/pathology , Skin/cytology , Stem Cells/metabolism , Animals , Cell Line, Tumor , Chromatin/metabolism , Epidermis/metabolism , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Skin Neoplasms/metabolism , Transcription Factors/metabolism , Transcriptome , Transplantation, Heterologous , Wound Healing
9.
Annu Rev Cell Dev Biol ; 34: 333-355, 2018 10 06.
Article in English | MEDLINE | ID: mdl-30028641

ABSTRACT

Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.


Subject(s)
Hepatic Stellate Cells/metabolism , Inflammation/genetics , Neoplasms/genetics , Pancreatic Stellate Cells/metabolism , Cell Transdifferentiation/genetics , Hepatic Stellate Cells/pathology , Humans , Inflammation/pathology , Liver/metabolism , Liver/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Neoplasms/pathology , Pancreas/injuries , Pancreas/metabolism , Pancreas/pathology , Pancreatic Stellate Cells/pathology , Tumor Microenvironment/genetics , Wound Healing
10.
Cell ; 167(5): 1323-1338.e14, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863246

ABSTRACT

Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.


Subject(s)
Aging/physiology , Lymphocyte Subsets/cytology , Signal Transduction , Wound Healing , Animals , Interleukin-6/administration & dosage , Keratinocytes/metabolism , Mice , Skin/cytology , Skin Physiological Phenomena , Wound Healing/drug effects
11.
Immunity ; 53(2): 371-383.e5, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32673566

ABSTRACT

Cutaneous wound healing is associated with the unpleasant sensation of itching. Here we investigated the mechanisms underlying this type of itch, focusing on the contribution of soluble factors released during healing. We found high amounts of interleukin 31 (IL-31) in skin wound tissue during the peak of itch responses. Il31-/- mice lacked wound-induced itch responses. IL-31 was released by dermal conventional type 2 dendritic cells (cDC2s) recruited to wounds and increased itch sensory neuron sensitivity. Transfer of cDC2s isolated from late-stage wounds into healthy skin was sufficient to induce itching in a manner dependent on IL-31 expression. Addition of the cytokine TGF-ß1, which promotes wound healing, to dermal DCs in vitro was sufficient to induce Il31 expression, and Tgfbr1f/f CD11c-Cre mice exhibited reduced scratching and decreased Il31 expression in wounds in vivo. Thus, cDC2s promote itching during skin would healing via a TGF-ß-IL-31 axis with implications for treatment of wound itching.


Subject(s)
Interleukins/metabolism , Langerhans Cells/physiology , Pruritus/pathology , Sensory Receptor Cells/physiology , Transforming Growth Factor beta1/metabolism , Animals , Female , Humans , Interleukins/genetics , Langerhans Cells/transplantation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Receptors, Interleukin/metabolism , Skin/cytology , Skin/growth & development , Skin/injuries , TRPV Cation Channels/metabolism , Wound Healing/physiology
12.
Immunity ; 51(2): 241-257.e9, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31303399

ABSTRACT

Cytokine tumor necrosis factor (TNF)-mediated macrophage polarization is important for inflammatory disease pathogenesis, but the mechanisms regulating polarization are not clear. We performed transcriptomic and epigenomic analysis of the TNF response in primary human macrophages and revealed late-phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from an inflammatory to a reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a function and mechanism of action for SREBPs in augmenting TNF-induced macrophage activation and inflammation and open therapeutic avenues for promoting wound repair.


Subject(s)
Inflammation/metabolism , Macrophages/immunology , Peritonitis/metabolism , Receptors, G-Protein-Coupled/metabolism , Skin Diseases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Epigenomics , Female , Humans , Macrophage Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , RNA, Small Interfering/genetics , Receptors, G-Protein-Coupled/genetics , Transcriptome , Wound Healing
13.
Immunol Rev ; 323(1): 241-256, 2024 May.
Article in English | MEDLINE | ID: mdl-38553621

ABSTRACT

The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.


Subject(s)
Autoimmune Diseases , Autoimmunity , Dendritic Cells , Inflammation , Interferon Type I , Signal Transduction , Toll-Like Receptors , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Inflammation/immunology , Toll-Like Receptors/metabolism , Autoimmune Diseases/immunology , Interferon Type I/metabolism , Blood Platelets/immunology , Blood Platelets/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immune Tolerance , Immunomodulation , Chemokines/metabolism
14.
Development ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177163

ABSTRACT

One of the key tissue movements driving closure of a wound is re-epithelialisation. Earlier wound healing studies have described the dynamic cell behaviours that contribute to wound re-epithelialisation, including cell division, cell shape changes and cell migration, as well as the signals that might regulate these cell behaviours. Here, we use a series of deep learning tools to quantify the contributions of each of these cell behaviours from movies of repairing wounds in the Drosophila pupal wing epithelium. We test how each is altered following knockdown of the conserved wound repair signals, Ca2+ and JNK, as well as ablation of macrophages which supply growth factor signals believed to orchestrate aspects of the repair process. Our genetic perturbation experiments provide quantifiable insights regarding how these wound signals impact cell behaviours. We find that Ca2+ signalling is a master regulator required for all contributing cell behaviours; JNK signalling primarily drives cell shape changes and divisions, whereas signals from macrophages regulate largely cell migration and proliferation. Our studies show AI to be a valuable tool for unravelling complex signalling hierarchies underlying tissue repair.

15.
Proc Natl Acad Sci U S A ; 121(24): e2400639121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838018

ABSTRACT

Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phloem , Plant Leaves , Signal Transduction , Plant Leaves/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Phloem/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors, Glutamate/metabolism , Xylem/metabolism , Gene Expression Regulation, Plant
16.
Proc Natl Acad Sci U S A ; 121(29): e2322864121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976727

ABSTRACT

Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.


Subject(s)
Cell Differentiation , Neurons , Animals , Neurons/metabolism , Neurons/cytology , Regeneration/physiology , Regeneration/genetics , Brain/metabolism , Brain/cytology
17.
Proc Natl Acad Sci U S A ; 121(14): e2318391121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527207

ABSTRACT

The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.


Subject(s)
Platinum , Wound Infection , Humans , Platinum/pharmacology , Wound Healing , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silk/chemistry , Bacteria , Hydrogels/pharmacology
18.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771877

ABSTRACT

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Subject(s)
Nanoparticles , RNA, Messenger , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Nanoparticles/chemistry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Macrophages/drug effects , Interleukin-4/metabolism , Diabetes Mellitus, Experimental , Humans , Lipids/chemistry , Disease Models, Animal , Male , Liposomes
19.
Immunol Rev ; 317(1): 30-41, 2023 08.
Article in English | MEDLINE | ID: mdl-36908237

ABSTRACT

Leukotriene B4 (LTB4 ) was recognized as an arachidonate-derived chemotactic factor for inflammatory cells and an important drug target even before the molecular identification of its receptors. We cloned the high- and low-affinity LTB4 receptors, BLT1 and BLT2, respectively, and examined their functions by generating and studying gene-targeted mice. BLT1 is involved in the pathogenesis of various inflammatory and immune diseases, including asthma, psoriasis, contact dermatitis, allergic conjunctivitis, age-related macular degeneration, and immune complex-mediated glomerulonephritis. Meanwhile, BLT2 is a high-affinity receptor for 12-hydroxyheptadecatrienoic acid, which is involved in the maintenance of dermal and intestinal barrier function, and the acceleration of skin and corneal wound healing. Thus, BLT1 antagonists and BLT2 agonists are promising candidates in the treatment of inflammatory diseases.


Subject(s)
Asthma , Leukotriene B4 , Mice , Humans , Animals , Skin , Wound Healing , Receptors, Leukotriene B4/genetics
20.
EMBO J ; 41(7): e109470, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35212000

ABSTRACT

Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that ß1 integrin from αSMA+ myofibroblasts, but not TGFßRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in ß1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.


Subject(s)
Collagen Type I , Myofibroblasts , Wound Healing , Animals , Collagen Type I/genetics , Fibroblasts , Integrin beta1/genetics , Mice , Skin
SELECTION OF CITATIONS
SEARCH DETAIL