Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
Add more filters

Publication year range
1.
Circulation ; 149(8): 605-626, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38018454

ABSTRACT

BACKGROUND: A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS: Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS: ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS: Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Defects, Congenital , Heart Valve Diseases , Humans , Animals , Mice , Zebrafish/genetics , Heart Valve Diseases/metabolism , Endothelial Cells/metabolism , Disintegrins/genetics , Disintegrins/metabolism , In Situ Hybridization, Fluorescence , Aortic Valve/metabolism , Heart Defects, Congenital/complications , Extracellular Matrix/metabolism , Thrombospondins/metabolism , Metalloproteases/metabolism , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism
2.
J Pathol ; 262(1): 90-104, 2024 01.
Article in English | MEDLINE | ID: mdl-37929635

ABSTRACT

Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation of stellate cells into myofibroblasts that drives tumour progression. To assess cooperative mechanisms in a 3D context, we generated chimeric spheroids using human and mouse cancer and stellate cells. Species-specific deconvolution of bulk-RNA sequencing data revealed cell type-specific transcriptomes underpinning invasion. This dataset highlighted stellate-specific expression of transcripts encoding the collagen-processing enzymes ADAMTS2 and ADAMTS14. Strikingly, loss of ADAMTS2 reduced, while loss of ADAMTS14 promoted, myofibroblast differentiation and invasion independently of their primary role in collagen-processing. Functional and proteomic analysis demonstrated that these two enzymes regulate myofibroblast differentiation through opposing roles in the regulation of transforming growth factor ß availability, acting on the protease-specific substrates, Serpin E2 and fibulin 2, for ADAMTS2 and ADAMTS14, respectively. Showcasing a broader complexity for these enzymes, we uncovered a novel regulatory axis governing malignant behaviour of the pancreatic cancer stroma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Myofibroblasts , Pancreatic Neoplasms , Animals , Humans , Mice , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism , Cell Differentiation , Collagen/metabolism , Myofibroblasts/metabolism , Pancreatic Neoplasms/pathology , Proteomics
3.
Am J Physiol Cell Physiol ; 326(3): C756-C767, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38284126

ABSTRACT

The extracellular matrix (ECM) determines functional properties of connective tissues through structural components, such as collagens, elastic fibers, or proteoglycans. The ECM also instructs cell behavior through regulatory proteins, including proteases, growth factors, and matricellular proteins, which can be soluble or tethered to ECM scaffolds. The secreted a disintegrin and metalloproteinase with thrombospondin type 1 repeats/motifs-like (ADAMTSL) proteins constitute a family of regulatory ECM proteins that are related to ADAMTS proteases but lack their protease domains. In mammals, the ADAMTSL protein family comprises seven members, ADAMTSL1-6 and papilin. ADAMTSL orthologs are also present in the worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster. Like other matricellular proteins, ADAMTSL expression is characterized by tight spatiotemporal regulation during embryonic development and early postnatal growth and by cell type- and tissue-specific functional pleiotropy. Although largely quiescent during adult tissue homeostasis, reexpression of ADAMTSL proteins is frequently observed in the context of physiological and pathological tissue remodeling and during regeneration and repair after injury. The diverse functions of ADAMTSL proteins are further evident from disorders caused by mutations in individual ADAMTSL proteins, which can affect multiple organ systems. In addition, genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) in ADAMTSL genes to complex traits, such as lung function, asthma, height, body mass, fibrosis, or schizophrenia. In this review, we summarize the current knowledge about individual members of the ADAMTSL protein family and highlight recent mechanistic studies that began to elucidate their diverse functions.


Subject(s)
Drosophila melanogaster , Genome-Wide Association Study , Female , Animals , Extracellular Matrix/genetics , ADAMTS Proteins/genetics , Caenorhabditis elegans , Connective Tissue , Mammals
4.
Breast Cancer Res ; 26(1): 19, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287441

ABSTRACT

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for about 20% of all breast cancer cases and is correlated with a high relapse rate and poor prognosis. ADAMTS18 is proposed as an important functional tumor suppressor gene involved in multiple malignancies, including breast cancer. It functions as an extracellular matrix (ECM) modifier. However, it remains unclear whether ADAMTS18 affects mammary tumorigenesis and malignant progression through its essential ECM regulatory function. METHODS: To elucidate the role of ADAMTS18 in HER2-positive mammary tumorigenesis and metastasis in vivo, we compared the incidence of mammary tumor and metastasis between Adamts18-knockout (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18-/-) and Adamts18-wildtype (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18+/+). The underlying mechanisms by which ADAMTS18 regulates HER2-positive tumorigenesis and metastasis were investigated by pathology, cell culture, Western blot and immunochemistry. RESULTS: Adamts18 mRNA is mainly expressed in myoepithelial cells of the mammary duct. ADAMTS18 deficiency leads to a significantly increased incidence of mammary tumors and metastasis, as well as mammary hyperplasia in mice, over 30 months of observation. The proliferation, migration and invasion capacities of primary Her2t/w/Adamts18-/- mammary tumor cells are significantly higher than those of primary Her2t/w/Adamts18+/+ mammary tumor cells in vitro. At 30 months of age, the expression levels of laminin (LNα5), fibronectin (FN) and type I collagen (ColI) in the mammary glands of Her2t/w/Adamts18-/- mice are significantly increased, and the activities of integrin-mediated PI3K/AKT, ERK and JNK signaling pathways are enhanced. CONCLUSIONS: ADAMTS18 deficiency leads to alterations in mammary ECM components (e.g., LNα5, FN, ColI), which are associated with a higher risk of HER2-positive mammary tumorigenesis and metastasis.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Mice , Humans , Animals , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Phosphatidylinositol 3-Kinases , Neoplasm Recurrence, Local , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Mice, Transgenic , Carcinogenesis/genetics , Mammary Neoplasms, Animal/metabolism , Extracellular Matrix/metabolism , ADAMTS Proteins/genetics
5.
FASEB J ; 37(11): e23237, 2023 11.
Article in English | MEDLINE | ID: mdl-37819632

ABSTRACT

Adamalysins, a family of metalloproteinases containing a disintegrin and metalloproteinases (ADAMs) and ADAM with thrombospondin motifs (ADAMTSs), belong to the matrisome and play important roles in various biological and pathological processes, such as development, immunity and cancer. Using a liver cancer dataset from the International Cancer Genome Consortium, we developed an extensive in silico screening that identified a cluster of adamalysins co-expressed in livers from patients with hepatocellular carcinoma (HCC). Within this cluster, ADAMTS12 expression was highly associated with recurrence risk and poorly differentiated HCC signatures. We showed that ADAMTS12 was expressed in the stromal cells of the tumor and adjacent fibrotic tissues of HCC patients, and more specifically in activated stellate cells. Using a mouse model of carbon tetrachloride-induced liver injury, we showed that Adamts12 was strongly and transiently expressed after a 24 h acute treatment, and that fibrosis was exacerbated in Adamts12-null mice submitted to carbon tetrachloride-induced chronic liver injury. Using the HSC-derived LX-2 cell line, we showed that silencing of ADAMTS12 resulted in profound changes of the gene expression program. In particular, genes previously reported to be induced upon HSC activation, such as PAI-1, were mostly down-regulated following ADAMTS12 knock-down. The phenotype of these cells was changed to a less differentiated state, showing an altered actin network and decreased nuclear spreading. These phenotypic changes, together with the down-regulation of PAI-1, were offset by TGF-ß treatment. The present study thus identifies ADAMTS12 as a modulator of HSC differentiation, and a new player in chronic liver disease.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Cirrhosis/metabolism , Carcinoma, Hepatocellular/metabolism , Carbon Tetrachloride/toxicity , Plasminogen Activator Inhibitor 1/metabolism , Liver Neoplasms/metabolism , Liver/metabolism , Metalloproteases/metabolism , Hepatic Stellate Cells/metabolism , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism
6.
J Biochem Mol Toxicol ; 38(1): e23628, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229317

ABSTRACT

This study aimed to explore the mechanism by which postembryonic renal ADAMTS18 methylation influences obstructive renal fibrosis in rats. After exposure to transforming growth factor (TGF)-ß1 during the embryonic period, analysis of postembryonic renal ADAMTS18 methylation and expression levels was conducted. Histological analysis was performed to assess embryonic kidney lesions and damage. Western blot analysis was used to determine the expression of renal fibrosis markers. Rats with ureteral obstruction and a healthy control group were selected. The methylation levels of ADAMTS18 in the different groups were analyzed. Western blot analysis and immunohistochemistry were performed to analyze the expression of renal fibrosis markers, and kidney-related indicators were measured. Treatment with TGF-ß1 resulted in abnormal development of the postembryonic kidney, which was characterized by rough kidney surfaces with mild depressions and irregularities on the outer surface. TGF-ß1 treatment significantly promoted ADAMTS18 methylation and activated the protein kinase B (AKT)/Notch pathway. Ureteral obstruction was induced to establish a renal hydronephrosis model, which led to renal fibrotic injury in newborn rats. Overexpression of the ADAMTS18 gene alleviated renal fibrosis. The western blot results showed that compared to that in the control group, the expression of renal fibrosis markers was significantly decreased after ADAMTS18 overexpression, and there was a thicker renal parenchymal tissue layer and significantly reduced p-AKT/AKT and Notch1 levels. TGF-ß1 can induce ADAMTS18 gene methylation in the postembryonic kidney, and the resulting downregulation of ADAMTS18 expression has long-term effects on kidney development, potentially leading to increased susceptibility to obstructive renal fibrosis. This mechanism may involve activation of the AKT/Notch pathway. Reversing ADAMTS18 gene methylation may reverse this process.


Subject(s)
ADAMTS Proteins , Kidney Diseases , Ureteral Obstruction , Animals , Rats , Fibrosis , Kidney , Kidney Diseases/metabolism , Methylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , ADAMTS Proteins/genetics
7.
PLoS Genet ; 17(3): e1009458, 2021 03.
Article in English | MEDLINE | ID: mdl-33755662

ABSTRACT

Precise regulation of ocular size is a critical determinant of normal visual acuity. Although it is generally accepted that ocular growth relies on a cascade of signaling events transmitted from the retina to the sclera, the factors and mechanism(s) involved are poorly understood. Recent studies have highlighted the importance of the retinal secreted serine protease PRSS56 and transmembrane glycoprotein MFRP, a factor predominantly expressed in the retinal pigment epithelium (RPE), in ocular size determination. Mutations in PRSS56 and MFRP constitute a major cause of nanophthalmos, a condition characterized by severe reduction in ocular axial length/extreme hyperopia. Interestingly, common variants of these genes have been implicated in myopia, a condition associated with ocular elongation. Consistent with these findings, mice with loss of function mutation in PRSS56 or MFRP exhibit a reduction in ocular axial length. However, the molecular network and cellular processes involved in PRSS56- and MFRP-mediated ocular axial growth remain elusive. Here, we show that Adamts19 expression is significantly upregulated in the retina of mice lacking either Prss56 or Mfrp. Importantly, using genetic mouse models, we demonstrate that while ADAMTS19 is not required for ocular growth during normal development, its inactivation exacerbates ocular axial length reduction in Prss56 and Mfrp mutant mice. These results suggest that the upregulation of retinal Adamts19 is part of an adaptive molecular response to counteract impaired ocular growth. Using a complementary genetic approach, we show that loss of PRSS56 or MFRP function prevents excessive ocular axial growth in a mouse model of early-onset myopia caused by a null mutation in Irbp, thus, demonstrating that PRSS56 and MFRP are also required for pathological ocular elongation. Collectively, our findings provide new insights into the molecular network involved in ocular axial growth and support a role for molecular crosstalk between the retina and RPE involved in refractive development.


Subject(s)
ADAMTS Proteins/genetics , Eye Proteins/genetics , Eye/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Membrane Proteins/genetics , Organogenesis/genetics , Serine Proteases/genetics , ADAMTS Proteins/metabolism , Animals , Biomarkers , Eye/embryology , Eye/growth & development , Eye Proteins/metabolism , Immunohistochemistry , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Retinol-Binding Proteins/genetics , Serine Proteases/metabolism , Signal Transduction
8.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396702

ABSTRACT

Interaction between extracellular matrix (ECM) components plays an important role in the regulation of cellular behavior and hence in tissue function. Consequently, characterization of new interactions within ECM opens the possibility of studying not only the functional but also the pathological consequences derived from those interactions. We have previously described the interaction between fibulin2 and ADAMTS-12 in vitro and the effects of that interaction using cellular models of cancer. Now, we generate a mouse deficient in both ECM components and evaluate functional consequences of their absence using different cancer and inflammation murine models. The main findings indicate that mice deficient in both fibulin2 and ADAMTS12 markedly increase the development of lung tumors following intraperitoneal urethane injections. Moreover, inflammatory phenotype is exacerbated in the lung after LPS treatment as can be inferred from the accumulation of active immune cells in lung parenchyma. Overall, our results suggest that protective effects in cancer or inflammation shown by fibulin2 and ADAMTS12 as interactive partners in vitro are also shown in a more realistic in vivo context.


Subject(s)
Calcium-Binding Proteins , Extracellular Matrix Proteins , Inflammation , Neoplasms , Pneumonia , Animals , Mice , Inflammation/genetics , Lung , Phenotype , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism
9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339175

ABSTRACT

The present study examines the relationship between circular RNA (circRNA) derived from three genes of the family a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs): ADAMTS6, ADAMTS9 and ADAMTS12 and the host gene expression in non-small-cell lung cancer (NSCLC) with regard to various clinical factors. Notably, an association was identified between ADAMTS12 expression and specific circRNA molecules, as well as certain expression patterns of ADAMTS6 and its derived circRNA that were specific to histopathological subtypes. The survival analysis demonstrated that a lower ADAMTS6 expression in squamous cell carcinoma was associated with extended survival. Furthermore, the higher ADAMTS9 expression was linked to prolonged survival, while the overexpression of ADAMTS12 was correlated with a shorter survival. These findings suggest that circRNA molecules may serve as potential diagnostic or prognostic biomarkers for NSCLC, highlighting the importance of considering molecular patterns in distinct cancer subtypes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Metalloendopeptidases , Survival Analysis , Cell Proliferation , ADAMTS Proteins/genetics
10.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891949

ABSTRACT

Childhood glaucoma encompasses congenital and juvenile primary glaucoma, which are heterogeneous, uncommon, and irreversible optic neuropathies leading to visual impairment with a poorly understood genetic basis. Our goal was to identify gene variants associated with these glaucoma types by assessing the mutational burden in 76 matrix metalloproteinase-related genes. We studied 101 childhood glaucoma patients with no identified monogenic alterations using next-generation sequencing. Gene expression was assessed through immunohistochemistry. Functional analysis of selected gene variants was conducted in cultured cells and in zebrafish. Patients presented a higher proportion of rare variants in four metalloproteinase-related genes, including CPAMD8 and ADAMTSL4, compared to controls. ADAMTSL4 protein expression was observed in the anterior segment of both the adult human and zebrafish larvae's eye, including tissues associated with glaucoma. In HEK-293T cells, expression of four ADAMTSL4 variants identified in this study showed that two variants (p.Arg774Trp and p.Arg98Trp) accumulated intracellularly, inducing endoplasmic reticulum stress. Additionally, overexpressing these ADAMTSL4 variants in zebrafish embryos confirmed partial loss-of-function effects for p.Ser719Leu and p.Arg1083His. Double heterozygous functional suppression of adamtsl4 and cpamd8 zebrafish orthologs resulted in reduced volume of both the anterior eye chamber and lens within the chamber, supporting a genetic interaction between these genes. Our findings suggest that accumulation of partial functional defects in matrix metalloproteinase-related genes may contribute to increased susceptibility to early-onset glaucoma and provide further evidence supporting the notion of a complex genetic inheritance pattern underlying the disease.


Subject(s)
Glaucoma , Zebrafish , Humans , Animals , Zebrafish/genetics , Glaucoma/genetics , Child , Male , Female , Child, Preschool , HEK293 Cells , Genetic Predisposition to Disease , Mutation , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism , Adolescent , Infant , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Endoplasmic Reticulum Stress/genetics
11.
Zhonghua Yan Ke Za Zhi ; 60(1): 78-83, 2024 Jan 11.
Article in Zh | MEDLINE | ID: mdl-38199772

ABSTRACT

This case report presents a family with developmental glaucoma accompanied by microcornea resulting from novel mutations in the ADAMTS18 gene. The index case involves a 5-year-old twin brother, who, during a routine examination, exhibited elevated intraocular pressure persisting for over a month. The peak intraocular pressure reached approximately 25 mmHg (1 mmHg=0.133 kPa) in both eyes, with a corneal diameter of less than 10 mm. Ocular examination revealed an enlarged cup-to-disc ratio, and optical coherence tomography (OCT) demonstrated thinning of the retinal nerve fiber layer and ganglion cell layer. Ultrasound biomicroscopy combined with gonioscopy indicated partial angle closure and abnormal anterior chamber angle development. The ocular manifestations in the twin brother were consistent with those observed in the twin sister. The clinical diagnosis was bilateral developmental glaucoma with microcornea. Genetic sequencing identified two novel compound heterozygous mutations in the ADAMTS18 gene in the twins: Mutation 1 (M1) involving the variant site 1 (c.3436C>T:p.R1146W) and Mutation 2 (M2) involving the variant site 2 (c.1454T>G:p.F485C). Ocular examinations of four additional family members were normal. Genetic testing revealed that the twins' father and sister carried M1, while the index case's mother and brother carried M2. This report underscores a unique association between ADAMTS18 gene mutations and developmental glaucoma with microcornea within a familial context, emphasizing the importance of genetic screening for early diagnosis and targeted management strategies.


Subject(s)
Eye Abnormalities , Glaucoma , Male , Humans , Child, Preschool , Genetic Testing , Glaucoma/genetics , Mutation , Retina , ADAMTS Proteins/genetics
12.
Mol Med ; 29(1): 86, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400752

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease with lacking effective prevention targets. A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) is a member of the ADAMTS family and is upregulated in OA pathologic tissues with no fully understood molecular mechanisms. METHODS: The anterior cruciate ligament transection (ACL-T) method was used to establish rat OA models, and interleukin-1 beta (IL-1ß) was administered to induce rat chondrocyte inflammation. Cartilage damage was analyzed via hematoxylin-eosin, Periodic Acid-Schiff, safranin O-fast green, Osteoarthritis Research Society International score, and micro-computed tomography assays. Chondrocyte apoptosis was detected by flow cytometry and TdT dUTP nick-end labeling. Signal transducer and activator of transcription 1 (STAT1), ADAMTS12, and methyltransferase-like 3 (METTL3) levels were detected by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blot, or immunofluorescence assay. The binding ability was confirmed by chromatin immunoprecipitation-qPCR, electromobility shift assay, dual-luciferase reporter, or RNA immunoprecipitation (RIP) assay. The methylation level of STAT1 was analyzed by MeRIP-qPCR assay. STAT1 stability was investigated by actinomycin D assay. RESULTS: The STAT1 and ADAMTS12 expressions were significantly increased in the human and rat samples of cartilage injury, as well as in IL-1ß-treated rat chondrocytes. STAT1 is bound to the promoter region of ADAMTS12 to activate its transcription. METTL3/ Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) mediated N6-methyladenosine modification of STAT1 promoted STAT1 mRNA stability, resulting in increased expression. ADAMTS12 expression was reduced and the IL-1ß-induced inflammatory chondrocyte injury was attenuated by silencing METTL3. Additionally, knocking down METTL3 in ACL-T-produced OA rats reduced ADAMTS12 expression in their cartilage tissues, thereby alleviating cartilage damage. CONCLUSION: METTL3/IGF2BP2 axis increases STAT1 stability and expression to promote OA progression by up-regulating ADAMTS12 expression.


Subject(s)
MicroRNAs , Osteoarthritis , Rats , Humans , Animals , Osteoarthritis/metabolism , X-Ray Microtomography , Cells, Cultured , Cartilage/metabolism , Chondrocytes/metabolism , Interleukin-1beta/metabolism , MicroRNAs/metabolism , Apoptosis , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism , Methyltransferases/metabolism , RNA-Binding Proteins/metabolism
13.
Br J Haematol ; 201(2): 343-352, 2023 04.
Article in English | MEDLINE | ID: mdl-36602125

ABSTRACT

Ischaemic stroke is a common complication of sickle cell disease (SCD) and without intervention can affect 11% of children with SCD before the age of 20. Within the Trans-Omics for Precision Medicine (TOPMed), a genome-wide association study (GWAS) of ischaemic stroke was performed on 1333 individuals with SCD from Brazil (178 cases, 1155 controls). Via a novel Cox proportional-hazards analysis, we searched for variants associated with ischaemic stroke occurring at younger ages. Variants at genome-wide significance (p < 5 × 10-8 ) include two near genes previously linked to non-SCD early-onset stroke (<65 years): ADAMTS2 (rs147625068, p = 3.70 × 10-9 ) and CDK18 (rs12144136, p = 2.38 × 10-9 ). Meta-analysis, which included the independent SCD cohorts Walk-PHaSST and PUSH, exhibited consistent association for variants rs1209987 near gene TBC1D32 (p = 3.36 × 10-10 ), rs188599171 near CUX1 (p = 5.89 × 10-11 ), rs77900855 near BTG1 (p = 4.66 × 10-8 ), and rs141674494 near VPS13C (1.68 × 10-9 ). Findings from this study support a multivariant model of early ischaemic stroke risk and possibly a shared genetic architecture between SCD individuals and non-SCD individuals younger than 65 years.


Subject(s)
Anemia, Sickle Cell , Brain Ischemia , Ischemic Stroke , Stroke , Adolescent , Adult , Child , Humans , Middle Aged , Young Adult , ADAMTS Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Brain Ischemia/genetics , Brazil/epidemiology , Genome-Wide Association Study , Stroke/genetics
14.
Mamm Genome ; 34(4): 559-571, 2023 12.
Article in English | MEDLINE | ID: mdl-37656189

ABSTRACT

The spontaneous mutation stubby (stb) in mice causes chondrodysplasia and male infertility due to impotence through autosomal recessive inheritance. In this study, we conducted linkage analysis to localize the stb locus within a 1.6 Mb region on mouse chromosome 2 and identified a nonsense mutation in Adamtsl2 of stb/stb mice. Histological analysis revealed disturbed endochondral ossification with a reduced hypertrophic chondrocyte layer and stiff skin with a thickened dermal layer. These phenotypes are similar to those observed in humans and mice with ADAMTSL2/Adamtsl2 mutations. Moreover, stb/stb female mice exhibited severe uterine hypoplasia at 5 weeks of age and irregular estrous cycles at 10 weeks of age. In normal mice, Adamtsl2 was more highly expressed in the ovary and pituitary gland than in the uterus, and this expression was decreased in stb/stb mice. These findings suggest that Adamtsl2 may function in these organs rather than in the uterus. Thus, we analyzed Gh expression in the pituitary gland and plasma estradiol and IGF1 levels, which are required for the development of the female reproductive tract. There was no significant difference in Gh expression and estradiol levels, whereas IGF1 levels in stb/stb mice were significantly reduced to 54-59% of those in +/+ mice. We conclude that Adamtsl2 is required for the development of the uterus and regulation of the estrous cycle in female mice, and decreased IGF1 may be related to these abnormalities.


Subject(s)
Codon, Nonsense , Estradiol , Humans , Animals , Mice , Male , Female , Codon, Nonsense/genetics , Mutation , Uterus , Estrous Cycle/genetics , ADAMTS Proteins/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism
15.
Cancer Invest ; 41(2): 119-132, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36346393

ABSTRACT

A disintegrin-like and metalloprotease with therombospondin type1 motif 8 (ADAMTS8) plays an important role in many malignancies. However, the clinical and biological significance of ADAMTS8 in breast cancer remain unknown. In this study, the clinical data from 1066 breast cancer patients were analyzed by The Cancer Genome Atlas (TCGA) database, and were analyzed using the correlation between ADAMTS8 expression and the clinicopathological features and prognoses. The CCK-8 assay, clone formation assay, flow cytometry and Transwell assay were used to characterize the effects of ADAMTS8 on proliferation, migration and invasion of breast cancer cells. Gene set enrichment analysis (GSEA) and western blotting were used to identify the potential molecular mechanism on how ADAMTS8 exert its biological function. ADAMTS8 overexpression correlated longer overall survival (OS) and progression-free survival (PFS). ADAMTS8 was considered as an independent prognostic factor for OS. ADAMTS8 overexpression inhibited breast cancer cell proliferation, migration and invasion in vitro, and induced G2/M cell cycle arrest. ADAMTS8 was also involved in cell cycle regulation and was associated with the EGFR/Akt signaling pathway. ADAMTS8 knockdown showed the reverse effect. Together, the results showed that ADAMTS8 functioned as a tumor suppressor gene (TGS) and could be a prognostic biomarker for breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Prognosis , Cell Line, Tumor , Genes, Tumor Suppressor , Signal Transduction/genetics , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism
16.
Exp Eye Res ; 234: 109606, 2023 09.
Article in English | MEDLINE | ID: mdl-37506754

ABSTRACT

Weill-Marchesani syndrome (WMS) manifests as ectopia lentis (EL), microspherophakia and short stature, which is caused by ADAMTS10, LTBP2, or ADAMTS17 gene defects. This study aims to investigate the characteristics and genotype-phenotype correlations of WMS with ADAMTS17 mutations. WMS patients with ADAMTS17 variants were identified by whole-exome sequencing from 185 patients with EL. All the included patients underwent comprehensive ocular and systemic examinations. ADAMTS17 variants were reviewed from included patients, published literature, and public databases. Bioinformatics analysis, co-segregation analysis, species sequence analysis, and protein silico modeling were used to verify the pathogenic mutations. A total of six novel ADAMTS17 mutations (c.1297C > T, c.2948C > T, c.1322+2T > C, c.1716C > G, c.1630G > A, and c.1669C > T) were identified in four WMS probands in our EL cohort (4/185, 2.16%). All probands and their biological parents presented with apparent short stature compared with the standard value. In particular, one child was detected with valvular heart disease, which has not previously been reported in patients with ADAMTS17 mutations. Conserved residues were greatly affected by the substitution of amino acids caused by these six mutations. Short stature could be considered a clue for EL patients with ADAMTS17 mutations, and much more attention needs to be paid to heart disorders among these patients. This study not only reported the characteristics of ADAMTS17 mutation-related WMS but also helped to recognize the genotype-phenotype correlations in these patients.


Subject(s)
Ectopia Lentis , Glaucoma , Weill-Marchesani Syndrome , Humans , Weill-Marchesani Syndrome/genetics , Mutation , Ectopia Lentis/genetics , Genetic Association Studies , ADAMTS Proteins/genetics , Latent TGF-beta Binding Proteins/genetics
17.
Exp Cell Res ; 410(1): 112953, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34856162

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignant tumors of digestive system, and its main cause of death is tumor metastasis. The occurrence of CRC is a polygenic and multi-step complex process involving genetic and epigenetic alterations. It has been demonstrated that ADAMTS14 (A disintegrin and metalloproteinase with thrombospondin motifs 14) was hypermethylated in esophageal cancer using whole-genome methylation microarray in our previous report. The present study revealed that ADAMTS14 was highly methylated accompanied with low expression in CRC. In addition, demethylation agent 5-Aza-dC could demethylate ADAMTS14 promoter region and reactivate ADAMTS14 expression effectively in vitro. Therefore, promoter hypermethylation was probably contributed to ADAMTS14 epigenetic silencing in CRC. Furthermore, ADAMTS14 protein expression was higher at invasive tumor front than at the tumor center or other areas of tumor. Kaplan-meier survival analysis indicated that the high ADAMTS14 expression was correlated with poor prognosis in CRC patients, suggesting the possibility that ADAMTS14 is a promising indicator in the evaluation of CRC prognosis.


Subject(s)
ADAMTS Proteins/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , DNA Methylation/genetics , Aged , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , Humans , Male , Middle Aged , Neoplasm Metastasis , Prognosis , Promoter Regions, Genetic/genetics
18.
Nature ; 542(7640): 186-190, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28146470

ABSTRACT

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.


Subject(s)
Body Height/genetics , Gene Frequency/genetics , Genetic Variation/genetics , ADAMTS Proteins/genetics , Adult , Alleles , Cell Adhesion Molecules/genetics , Female , Genome, Human/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosaminoglycans/biosynthesis , Hedgehog Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interferon Regulatory Factors/genetics , Interleukin-11 Receptor alpha Subunit/genetics , Male , Multifactorial Inheritance/genetics , NADPH Oxidase 4 , NADPH Oxidases/genetics , Phenotype , Pregnancy-Associated Plasma Protein-A/metabolism , Procollagen N-Endopeptidase/genetics , Proteoglycans/biosynthesis , Proteolysis , Receptors, Androgen/genetics , Somatomedins/metabolism
19.
Nucleic Acids Res ; 49(14): 8078-8096, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34320216

ABSTRACT

Super-enhancers are clusters of enhancers associated with cell lineage. They can be powerful gene-regulators and may be useful in cell-type specific viral-vector development. Here, we have screened for endothelial super-enhancers and identified an enhancer from within a cluster that conferred 5-70-fold increase in transgene expression. Importantly, CRISPR/Cas9 deletion of enhancers demonstrated regulation of ADAMTS18, corresponding to evidence of chromatin contacts between these genomic regions. Cell division-related pathways were primarily affected by the enhancer deletions, which correlated with significant reduction in cell proliferation. Furthermore, we observed changes in angiogenesis-related genes consistent with the endothelial specificity of this SE. Indeed, deletion of the enhancers affected tube formation, resulting in reduced or shortened sprouts. The super-enhancer angiogenic role is at least partly due to its regulation of ADAMTS18, as siRNA knockdown of ADAMTS18 resulted in significantly shortened endothelial sprouts. Hence, functional characterization of a novel endothelial super-enhancer has revealed substantial downstream effects from single enhancer deletions and led to the discovery of the cis-target gene ADAMTS18 and its role in endothelial function.


Subject(s)
ADAMTS Proteins/genetics , Chromatin/genetics , Enhancer Elements, Genetic/genetics , Neovascularization, Physiologic/genetics , CRISPR-Cas Systems/genetics , Cell Division/genetics , Cell Lineage/genetics , Endothelial Cells/metabolism , Humans , RNA, Small Interfering/genetics , Signal Transduction/genetics
20.
Eur Spine J ; 32(4): 1106-1114, 2023 04.
Article in English | MEDLINE | ID: mdl-36810712

ABSTRACT

PURPOSE: LDH caused by lumbar disc degeneration is associated with genetic factors. However, the role of ADAMTS6 and ADAMTS17 genes in LDH risk is still unknown. METHODS: To investigate the interaction between ADAMTS6 and ADAMTS17 variants in the susceptibility of LDH, five SNPs were genotyped in 509 patients and 510 healthy individuals. The experiment used logistic regression to calculate odds ratio (OR) and 95% confidence interval (CI). Multi-factor dimensionality reduction (MDR) was chosen to evaluate impact of interaction of SNP-SNP on susceptibility to LDH. RESULTS: ADAMTS17-rs4533267 is significantly associated with reducing risk of LDH (OR = 0.72, 95% CI = 0.57-0.90, p = 0.005). Stratified analysis indicates that ADAMTS17-rs4533267 is significantly associated with the reducing risk of LDH among participants aged ≤ 48 years old. In addition, we observed that ADAMTS6-rs2307121 was associated with increasing risk of LDH in females. MDR analysis shows that single-locus model composed by ADAMTS17-rs4533267 can be chosen as the best model for predicting susceptibility to LDH (CVC = 10/10, test accuracy = 0.543). CONCLUSION: ADAMTS6-rs2307121 and ADAMTS17-rs4533267 are potentially associated with LDH susceptibility. In particular, ADAMTS17-rs4533267 has a strong association with reducing risk of LDH.


Subject(s)
ADAMTS Proteins , Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Female , Humans , Middle Aged , ADAMTS Proteins/genetics , Case-Control Studies , East Asian People , Gene Frequency , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Displacement/genetics , Lumbar Vertebrae , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL