Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.026
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 86: 277-304, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28654323

ABSTRACT

Metabolites are the small biological molecules involved in energy conversion and biosynthesis. Studying metabolism is inherently challenging due to metabolites' reactivity, structural diversity, and broad concentration range. Herein, we review the common pitfalls encountered in metabolomics and provide concrete guidelines for obtaining accurate metabolite measurements, focusing on water-soluble primary metabolites. We show how seemingly straightforward sample preparation methods can introduce systematic errors (e.g., owing to interconversion among metabolites) and how proper selection of quenching solvent (e.g., acidic acetonitrile:methanol:water) can mitigate such problems. We discuss the specific strengths, pitfalls, and best practices for each common analytical platform: liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), and enzyme assays. Together this information provides a pragmatic knowledge base for carrying out biologically informative metabolite measurements.


Subject(s)
Chromatography, Liquid/standards , Gas Chromatography-Mass Spectrometry/standards , Magnetic Resonance Spectroscopy/standards , Mass Spectrometry/standards , Metabolomics/standards , Adenosine Triphosphate/analysis , Animals , Glutathione/analysis , Guidelines as Topic , Humans , Liquid Phase Microextraction/methods , Metabolomics/instrumentation , Metabolomics/methods , Mice , NADP/analysis , Solvents
2.
Anal Chem ; 96(22): 9218-9227, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38781682

ABSTRACT

In situ monitoring of cell secretions and communications plays a fundamental role in screening of disease diagnostic biomarkers and drugs. Quantitative detection of cell secretions and monitoring of intercellular communication have been separately reported, which often rely on target labeling or complex pretreatment steps, inevitably causing damage to the target. Simultaneous in situ noninvasive detection of cell secretions and monitoring of intercellular communication are challenging and have never been reported. Herein, we smartly developed a portable device for in situ label-free monitoring of cell secretions and communications with fluorescence and ion-transport-based nanochannel electrochemistry. Based on the dual signal mode, a series of nonelectroactive secretions were sensitively and accurately quantified. The detection limits for VEGF, MUC1, and ATP were 3.84 pg/mL, 32.7 pg/mL, and 47.4 fM (3σ/S), which were 1/3.9, 1/1.1, and 1/41 of those of commercial ELISA kits, respectively. More interestingly, under the released secretions, the gradual opening of the nanochannel connected the two cells in the left and right chambers of the device; thus, the secretion mediated intercellular communication can be monitored. The proposed platform may provide a promising tool for understanding the mechanism of intercellular communication and discovering new therapeutic targets.


Subject(s)
Electrochemical Techniques , Humans , Electrochemical Techniques/instrumentation , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Mucin-1/analysis , Mucin-1/metabolism , Cell Communication , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor A/metabolism , Fluorescence , Limit of Detection
3.
Anal Chem ; 96(16): 6202-6208, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598750

ABSTRACT

New strategies for accurate and reliable detection of adenosine triphosphate (ATP) with portable devices are significant for biochemical analysis, while most recently reported approaches cannot satisfy the detection accuracy and independent of large instruments simultaneously, which are unsuitable for fast, simple, and on-site ATP monitoring. Herein, a unique, convenient, and label-free point-of-care sensing strategy based on novel copper coordination polymer nanoflowers (CuCPNFs) was fabricated for multimode (UV-vis, photothermal, and RGB values) onsite ATP determination with high selectivity, sensitivity, and accuracy. The resulting CuCPNFs with a 3D hierarchical structure exhibit the ATP-triggered decomposition behavior because the competitive coordination between ATP and the copper ions of CuCPNFs can result in the formation of ATP-Cu, which reveals preeminent peroxidase mimics activity and can accelerate the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form oxTMB. During this process, the detection system displayed not only color changes but also a strong NIR laser-driven photothermal effect. Thus, the photothermal and color signal variations are easily monitored by a portable thermometer and a smartphone. This multimode point-of-care platform can meet the requirements of onsite, without bulky equipment, accuracy, and reliability all at once, greatly enhancing its application in practice and paving a new way in ATP analysis.


Subject(s)
Adenosine Triphosphate , Copper , Polymers , Copper/chemistry , Adenosine Triphosphate/analysis , Polymers/chemistry , Point-of-Care Systems , Humans , Nanostructures/chemistry , Limit of Detection , Colorimetry , Benzidines/chemistry , Point-of-Care Testing
4.
Anal Chem ; 96(23): 9408-9415, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804776

ABSTRACT

Reactive oxygen species play a pivotal role in liver disease, contributing to severe liver damage and chronic inflammation. In liver injury driven by inflammation, adenosine-5'-triphosphate (ATP) and hypochlorite ion (ClO-) emerge as novel biomarkers, reflecting mitochondrial dysfunction and amplified oxidative stress, respectively. However, the dynamic fluctuations of ATP and ClO- in hepatocytes and mouse livers remain unclear, and multidetection techniques for these biomarkers are yet to be developed. This study presents RATP-NClO, a dual-channel fluorescent bioprobe capable of synchronously detecting ATP and ClO- ions. RATP-NClO exhibits excellent selectivity and sensitivity for ATP and ClO- ions, demonstrating a dual-channel fluorescence response in a murine hepatocyte cell line. Upon intravenous administration, RATP-NClO reveals synchronized ATP depletion and ClO- amplification in the livers of mice with experimental metabolic dysfunction-associated steatohepatitis (MASH). Through a comprehensive analysis of the principal mechanism of the developed bioprobe and the verification of its reliable detection ability in both in vitro and in vivo settings, we propose it as a unique tool for monitoring changes in intracellular ATP and ClO- level. These findings underscore its potential for practical image-based monitoring and functional phenotyping of MASH pathogenesis.


Subject(s)
Adenosine Triphosphate , Hypochlorous Acid , Inflammation , Animals , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/analysis , Hypochlorous Acid/analysis , Hypochlorous Acid/metabolism , Mice , Inflammation/metabolism , Fluorescent Dyes/chemistry , Liver/metabolism , Liver/pathology , Hepatocytes/metabolism , Mice, Inbred C57BL , Male , Ions/chemistry
5.
Anal Chem ; 96(22): 9097-9103, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768044

ABSTRACT

Herein, a fluorescence light-up 3D DNA walker (FLDW) was powered and accelerated by endogenous adenosine-5'-triphosphate (ATP) molecules to construct a biosensor for sensitive and rapid label-free detection and imaging of microRNA-221 (miRNA-221) in malignant tumor cells. Impressively, ATP as the driving force and accelerator for FLDW could significantly accelerate the operation rate of FLDW, reduce the likelihood of errors in signaling, and improve the sensitivity of detection and imaging. When FLDW was initiated by output DNA H1-op transformed by target miRNA-221, G-rich sequences in the S strand, anchored to AuNP, were exposed to form G-quadruplexes (G4s), and thioflavin T (ThT) embedded in the G4s emitted intense fluorescence to realize sensitive and rapid detection of target miRNA-221. Meanwhile, the specific binding of ThT to G4 with a weak background fluorescence response was utilized to enhance the signal-to-noise ratio of the label-free assay straightforwardly and cost-effectively. The proposed FLDW system could realize sensitive detection of the target miRNA-221 in the range of 1 pM to 10 nM with a detection limit of 0.19 pM by employing catalytic hairpin assembly (CHA) to improve the conversion of the target. Furthermore, by harnessing the abundant ATP present in the tumor microenvironment, FLDW achieved rapid and accurate imaging of miRNA-221 in cancer cells. This strategy provides an innovative and high-speed label-free approach for the detection and imaging of biomarkers in cancer cells and is expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Subject(s)
Adenosine Triphosphate , Biosensing Techniques , DNA , MicroRNAs , MicroRNAs/analysis , MicroRNAs/metabolism , Humans , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , DNA/chemistry , Biosensing Techniques/methods , Optical Imaging , G-Quadruplexes , Fluorescence , Fluorescent Dyes/chemistry , Limit of Detection , Gold/chemistry
6.
Anal Chem ; 96(24): 10092-10101, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833634

ABSTRACT

Tumor patients-derived organoids, as a promising preclinical prediction model, have been utilized to evaluate ex vivo drug responses for formulating optimal therapeutic strategies. Detecting adenosine triphosphate (ATP) has been widely used in existing organoid-based drug response tests. However, all commercial ATP detection kits containing the cell lysis procedure can only be applied for single time point ATP detection, resulting in the neglect of dynamic ATP variations in living cells. Meanwhile, due to the limited number of viable organoids from a single patient, it is impractical to exhaustively test all potential time points in search of optimal ones. In this work, a multifunctional microfluidic chip was developed to perform all procedures of organoid-based drug response tests, including establishment, culturing, drug treatment, and ATP monitoring of organoids. An ATP sensor was developed to facilitate the first successful attempt on whole-course monitoring the growth status of fragile organoids. To realize a clinically applicable automatic system for the drug testing of lung cancer, a microfluidic chip based automated system was developed to perform entire organoid-based drug response test, bridging the gap between laboratorial manipulation and clinical practices, as it outperformed previous methods by improving data repeatability, eliminating human error/sample loss, and more importantly, providing a more accurate and comprehensive evaluation of drug effects.


Subject(s)
Adenosine Triphosphate , Lab-On-A-Chip Devices , Organoids , Humans , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Microfluidic Analytical Techniques/instrumentation , Automation
7.
Anal Chem ; 96(29): 12139-12146, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38990049

ABSTRACT

Precise modulation of host-guest interactions between programmable Ln-MOFs (lanthanide metal-organic frameworks) and phosphate analytes holds immense promise for enabling novel functionalities in biosensing. However, the intricate relationship between these functionalities and structures remains largely elusive. Understanding this correlation is crucial for advancing the rational design of fluorescent biosensor technology. Presently, there exists a large research gap concerning the utilization of Ln-MOFsto monitor the conversion of ATP to ADP, which poses a limitation for kinase detection. In this work, we delve into the potential of Ln-MOFs to amplify the fluorescence response during the kinase-mediated ATP-to-ADP conversion. Six Eu-MOFs were synthesized and Eu-TPTC ([1,1':4',1″]-terphenyl-3,3'',5,5''-tetracarboxylic acid) was selected as a ratiometric fluorescent probe, which is most suitable for high-precision detection of creatine kinase activity through the differential response from ATP to ADP. The molecular -level mechanism was confirmed by density functional theory. Furthermore, a simple paper chip-based platform was constructed to realize the fast (20 min) and sensitive (limit of detection is 0.34 U/L) creatine kinase activity detection in biological samples. Ln-MOF-phosphate interactions offer promising avenues for kinase activity assays and hold the potential for precise customization of analytical chemistry.


Subject(s)
Adenosine Diphosphate , Adenosine Triphosphate , Metal-Organic Frameworks , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Metal-Organic Frameworks/chemistry , Adenosine Diphosphate/analysis , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/chemistry , Creatine Kinase/metabolism , Creatine Kinase/analysis , Creatine Kinase/chemistry , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Lanthanoid Series Elements/chemistry , Animals
8.
NMR Biomed ; 37(8): e5120, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38404058

ABSTRACT

Concentrations of the key metabolites of hepatic energy metabolism, adenosine triphosphate (ATP) and inorganic phosphate (Pi), can be altered in metabolic disorders such as diabetes mellitus. 31Phosphorus (31P)-magnetic resonance spectroscopy (MRS) is used to noninvasively measure hepatic metabolites, but measuring their absolute molar concentrations remains challenging. This study employed a 31P-MRS method based on the phantom replacement technique for quantifying hepatic 31P-metabolites on a 3-T clinical scanner. Two surface coils with different size and geometry were used to check for consistency in terms of repeatability and reproducibility and absolute concentrations of metabolites. Day-to-day (n = 8) and intra-day (n = 6) reproducibility was tested in healthy volunteers. In the day-to-day study, mean absolute concentrations of γ-ATP and Pi were 2.32 ± 0.24 and 1.73 ± 0.26 mM (coefficient of variation [CV]: 7.3% and 8.8%) for the single loop, and 2.32 ± 0.42 and 1.73 ± 0.27 mM (CVs 6.7% and 10.6%) for the quadrature coil, respectively. The intra-day study reproducibility using the quadrature coil yielded CVs of 4.7% and 6.8% for γ-ATP and Pi without repositioning, and 6.3% and 7.1% with full repositioning of the volunteer. The results of the day-to-day data did not differ between coils and visits. Both coils robustly yielded similar results for absolute concentrations of hepatic 31P-metabolites. The current method, applied with two different surface coils, can be readily utilized in long-term and interventional studies. In comparison with the single loop coil, the quadrature coil also allows measurements at a greater distance between the coil and liver, which is relevant for studying people with obesity.


Subject(s)
Adenosine Triphosphate , Liver , Magnetic Resonance Spectroscopy , Phosphates , Humans , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/analysis , Liver/metabolism , Liver/diagnostic imaging , Reproducibility of Results , Phosphates/metabolism , Magnetic Resonance Spectroscopy/instrumentation , Male , Adult , Female , Phosphorus Isotopes , Phantoms, Imaging
9.
Analyst ; 149(10): 2796-2800, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38669149

ABSTRACT

A near-infrared fluorescent nanoprobe consisting of Nile blue-capped ZIF-90 is first proposed for real-time imaging of mitochondrial ATP. Owing to the strong binding of ATP with Zn2+, the structure of the probe is disrupted, leading to the release of fluorescent NB.


Subject(s)
Adenosine Triphosphate , Fluorescent Dyes , Mitochondria , Oxazines , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Oxazines/chemistry , Humans , Mitochondria/chemistry , Mitochondria/metabolism , Adenosine Triphosphate/analysis , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , HeLa Cells , Infrared Rays , Optical Imaging/methods , Nanoparticles/chemistry
10.
Analyst ; 149(13): 3530-3536, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38757525

ABSTRACT

ATP plays a crucial role in cell energy supply, so the quantification of intracellular ATP levels is particularly important for understanding many physio-pathological processes. The intracellular quantification of this non-electroactive molecule can be realized using aptamer-modified nanoelectrodes, but is hindered by the limited quantity of modification and electroactive tags on the nanosized electrodes. Herein, we developed a simple but effective electrochemical signal amplification strategy for intracellular ATP detection, which replaces the regular ATP aptamer-linked ferrocene monomer with a polymer, thus greatly magnifying the amounts of electrochemical reporters linked to one chain of the aptamer and enhancing the signals. This ferrocene polymer-ATP aptamer was further immobilized onto Au nanowire electrodes (SiC@C@Au NWEs) to achieve accurate quantification of intracellular ATP in single cells, presenting high electrochemical signal output and high specificity. This work not only provides a powerful tool for quantifying intracellular ATP but also offers a simple and versatile strategy for electrochemical signal amplification in the detection of broader non-electroactive molecules involved in different kinds of intracellular physiological processes.


Subject(s)
Adenosine Triphosphate , Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Ferrous Compounds , Gold , Metallocenes , Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , Humans , Gold/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Metallocenes/chemistry , Ferrous Compounds/chemistry , Biosensing Techniques/methods , Electrodes , Polymers/chemistry , Nanowires/chemistry , Limit of Detection , HeLa Cells
11.
Reprod Domest Anim ; 59(5): e14569, 2024 May.
Article in English | MEDLINE | ID: mdl-38715435

ABSTRACT

The effects of an aqueous extract of Scabiosa atropurpurea L. (AES) on the reproduction potential of Queue Fine de l'Ouest rams were evaluated over 9 weeks. Eighteen mature (4-6 years old) rams (52.8 ± 2.6 kg) were divided into three groups. The control (C) group was fed oat hay ad libitum with 700 g of concentrate and the other two groups were fed the same diet supplemented with AES at 1 and 2 mg/kg body weight (AES1 and AES2, respectively). Ram sperm was collected with an artificial vagina (2 × 2 days/week) to evaluate sperm production and quality, antioxidant activity, the adenosine triphosphate (ATP) and calcium concentrations. Sexual behaviour and plasma testosterone concentrations were also investigated. The administration of AES improved sexual behaviour (the duration of contact and the number of lateral approaches). The addition of AES also improved individual spermatozoa motility (C: 71.7% ± 6.3%; AES1: 78.3% ± 4.9%; AES2: 83.8% ± 4.4%), the sperm concentration (C: 5.6 ± 0.36; AES1: 6.4 ± 0.81; AES2: 6.7 ± 0.52 × 109 spermatozoa/mL), the ATP ratio (C: 1 ± 0.08; AES1: 2.1 ± 0.08; AES2: 3.3 ± 0.08) and the calcium concentration (C: 5.6 ± 0.24; AES1: 7.7 ± 0.21; AES2: 8.1 ± 0.24 mmol/L). AES treatment decreased the percentage of abnormal sperm (C: 18.5% ± 1.2%; AES1: 16.2% ± 1.1%; AES2: 14.8% ± 0.94%) and DNA damage (C: 62%; AES1: 27%; AES2: 33%) and was associated with elevated seminal fluid antioxidant activity (C: 22 ± 0.27; AES1: 27.1 ± 1.08 and AES2: 27.5 ± 0.36 mmol Trolox equivalents/L) and plasma testosterone (C: 8.3 ± 0.7; AES1: 11.7 ± 0.4; AES2: 15 ± 0.7 ng/L). In conclusion, our study suggests that S. atropurpurea may be potentially useful to enhance libido and sperm production and quality in ram.


Subject(s)
Plant Extracts , Sexual Behavior, Animal , Spermatozoa , Male , Animals , Spermatozoa/drug effects , Sexual Behavior, Animal/drug effects , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Testosterone/blood , Semen Analysis/veterinary , Sperm Motility/drug effects , Dietary Supplements , Antioxidants/pharmacology , Diet/veterinary , Sperm Count , Calcium/analysis , Calcium/blood , Sheep, Domestic , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/analysis
12.
Mikrochim Acta ; 191(7): 386, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38867016

ABSTRACT

The combination of CRISPR/Cas12a and functional DNA provides the possibility of constructing biosensors for detecting non-nucleic-acid targets. In the current study, the duplex protospacer adjacent motif (PAM) in the activator of CRISPR/Cas12a was used as a molecular switch, and a sensitive adenosine triphosphate (ATP) detection biosensor was constructed using an allosteric probe-conjugated PAM site formation in hybridization chain reaction (HCR) integrated with the CRISPR/Cas12a system (APF-CRISPR). In the absence of ATP, an aptamer-containing probe (AP) is in a stem-loop structure, which blocks the initiation of HCR. In the presence of ATP, the structure of AP is changed upon ATP binding, resulting in the release of the HCR trigger strand and the production of long duplex DNA with many PAM sites. Since the presence of a duplex PAM site is crucial for triggering the cleavage activity of CRISPR/Cas12a, the ATP-dependent formation of the PAM site in HCR products can initiate the FQ-reporter cleavage, allowing ATP quantification by measuring the fluorescent signals. By optimizing the sequence elements and detection conditions, the aptasensor demonstrated superior detection performance. The limit of detection (LOD) of the assay was estimated to be 1.16 nM, where the standard deviation of the blank was calculated based on six repeated measurements. The dynamic range of the detection was 25-750 nM, and the whole workflow of the assay was approximately 60 min. In addition, the reliability and practicability of the aptasensor were validated by comparing it with a commercially available chemiluminescence kit for ATP detection in serum. Due to its high sensitivity, specificity, and reliable performance, the APF-CRISPR holds great potential in bioanalytical studies for ATP detection. In addition, we have provided a proof-of-principle for constructing a CRISPR/Cas12a-based aptasensor, in which the PAM is utilized to regulate Cas12a cleavage activity.


Subject(s)
Adenosine Triphosphate , Aptamers, Nucleotide , Biosensing Techniques , CRISPR-Cas Systems , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/analysis , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , CRISPR-Associated Proteins/chemistry , Limit of Detection , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Nucleic Acid Hybridization , Endodeoxyribonucleases
13.
Mikrochim Acta ; 191(6): 341, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38795199

ABSTRACT

The construction of gating system in artificial channels is a cutting-edge research direction in understanding biological process and application sensing. Here, by mimicking the gating system, we report a device that easily synthesized single-glass micropipettes functionalized by three-dimensional (3D) DNA network, which triggers the gating mechanism for the detection of biomolecules. Based on this strategy, the gating mechanism shows that single-glass micropipette assembled 3D DNA network is in the "OFF" state, and after collapsing in the presence of ATP, they are in the "ON" state, at which point they exhibit asymmetric response times. In the "ON" process of the gating mechanism, the ascorbic acid phosphate (AAP) can be encapsulated by a 3D DNA network and released in the presence of adenosine triphosphate (ATP), which initiates a catalyzed cascade reaction under the influence of alkaline phosphatase (ALP). Ultimately, the detection of ALP can be responded to form the fluorescence signal generated by terephthalic acid that has captured hydroxyl radicals, which has a detection range of 0-250 mU/mL and a limit of detection of 50 mU/mL. This work provides a brand-new way and application direction for research of gating mechanism.


Subject(s)
Adenosine Triphosphate , Alkaline Phosphatase , DNA , Adenosine Triphosphate/analysis , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , DNA/chemistry , Glass/chemistry , Biosensing Techniques/methods , Limit of Detection , Ascorbic Acid/chemistry , Ascorbic Acid/analogs & derivatives
14.
Mikrochim Acta ; 191(7): 403, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38888689

ABSTRACT

An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.


Subject(s)
Adenosine Triphosphate , Biosensing Techniques , CRISPR-Cas Systems , Cadmium Compounds , Electrochemical Techniques , Gold , Metal Nanoparticles , Quantum Dots , Biosensing Techniques/methods , Adenosine Triphosphate/analysis , Adenosine Triphosphate/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Cadmium Compounds/chemistry , Quantum Dots/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Tellurium/chemistry , Imidazoles/chemistry , CRISPR-Associated Proteins/chemistry , Limit of Detection , Zeolites/chemistry , Endodeoxyribonucleases/chemistry , Metal-Organic Frameworks/chemistry , Photochemical Processes , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
15.
Sensors (Basel) ; 24(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931704

ABSTRACT

We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP-luciferin chemiluminescent solution was faced to a silicon photomultiplier (SiPM) for highly sensitive real-time detection. This system can detect ATP concentrations as low as 0.2 nM, with a sensitivity of 79.5 A/M. Additionally, it offers rapid response times and can measure the characteristic time required for reactant diffusion and mixing within the reaction volume, determined to be 0.3 ± 0.1 s. This corresponds to a diffusion velocity of approximately 44 ± 14 mm2/s.


Subject(s)
Adenosine Triphosphate , Luminescent Measurements , Water , Adenosine Triphosphate/analysis , Water/chemistry , Luminescent Measurements/methods , Luminescence , Biosensing Techniques/methods
16.
J Sci Food Agric ; 104(3): 1458-1469, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37814322

ABSTRACT

BACKGROUND: Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS: In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION: Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.


Subject(s)
Metabolic Networks and Pathways , Streptococcus thermophilus , Animals , Streptococcus thermophilus/genetics , Streptococcus thermophilus/metabolism , Fermentation , Milk/chemistry , Urea/metabolism , Adenosine Triphosphate/analysis
17.
Anal Biochem ; 663: 115021, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36539047

ABSTRACT

ATP is a high-energy compound that plays a vital role in biological metabolism. Abnormal changes in ATP concentration are related to various diseases and reflect microbial metabolism in biofilms. In this work, we prepared carbon quantum dots (CDs) with aggregation-induced fluorescence inhibition effect using the bacterial culture medium as raw material with a hydrothermal method. Then, an abiotic fluorescent nanoprobe named CDs@zeolitic imidazolate frameworks-90 (ZIF-90) was facilely synthesized by encapsulating CDs into ZIF-90. Owing to the encapsulation of CDs in the hollow structure of ZIF-90, the blue fluorescence emission of CDs@ZIF-90 decreased significantly. In the presence of ATP, the ZIF-90 framework was destroyed due to the strong coordination between ATP and Zn2+. The released CDs exhibited stronger fluorescence intensity, which was closely related to the ATP concentration. The convenient synthesis process and rapid ATP-responsive ability make CDs@ZIF-90 highly promising for clinical and environmental analysis.


Subject(s)
Quantum Dots , Zeolites , Adenosine Triphosphate/analysis , Fluorescent Dyes/chemistry , Carbon/chemistry , Quantum Dots/chemistry
18.
J Biol Chem ; 296: 100156, 2021.
Article in English | MEDLINE | ID: mdl-33273011

ABSTRACT

Determination of cellular ATP levels, a key indicator of metabolic status, is essential for the quantitative analysis of metabolism. The biciliate green alga Chlamydomonas reinhardtii is an excellent experimental organism to study ATP production pathways, including photosynthesis and respiration, particularly because it can be cultured either photoautotrophically or heterotrophically. Additionally, its cellular ATP concentration, [ATP], is reflected in the beating of its cilia. However, the methods currently used for quantifying the cellular ATP levels are time consuming or invasive. In this study, we established a rapid method for estimating cytosolic [ATP] from the ciliary beating frequency in C. reinhardtii. Using an improved method of motility reactivation in demembranated cell models, we obtained calibration curves for [ATP]-ciliary beating frequency over a physiological range of ATP concentrations. These curves allowed rapid estimation of the cytosolic [ATP] in live wild-type cells to be ∼2.0 mM in the light and ∼1.5 mM in the dark: values comparable to those obtained by other methods. Furthermore, we used this method to assess the effects of genetic mutations or inhibitors of photosynthesis or respiration quantitatively and noninvasively. This sensor-free method is a convenient tool for quickly estimating cytosolic [ATP] and studying the mechanism of ATP production in C. reinhardtii or other ciliated organisms.


Subject(s)
Adenosine Triphosphate/biosynthesis , Axoneme/metabolism , Biological Assay , Chlamydomonas reinhardtii/metabolism , Cilia/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/analysis , Axoneme/drug effects , Axoneme/ultrastructure , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/ultrastructure , Cilia/drug effects , Cilia/ultrastructure , Light , Luminescent Measurements , Magnesium/pharmacology , Mitochondria/drug effects , Mitochondria/ultrastructure , Oxidative Phosphorylation/drug effects , Photosynthesis/drug effects , Rotenone/pharmacology
19.
J Am Chem Soc ; 144(36): 16310-16315, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36040193

ABSTRACT

We introduce a new method to generate an amplified signal in CRISPR-Cas-based detection. Target recognition activates a CRISPR-Cas complex, leading to catalytic cleavage of horseradish peroxidase (HRP)-labeled oligonucleotides from the surface of microbeads. We show that the HRP released into solution can be monitored through colorimetric, fluorometric, or luminescent approaches, yielding up to ∼75-fold turn-on signal and limits of detection (LODs) as low as ∼10 fM. Compared to Cas-based detection with a conventional fluorophore/quencher reporter, this strategy improves the LOD by ∼30-fold. As a proof-of-concept, we show the rapid (<1 h), PCR-free, and room temperature (25 °C) detection of a nucleic acid marker for the SARS-CoV-2 virus with the naked eye at clinically relevant concentrations. We further show that the probe set can be programmed to be recognized and activated in the presence of non-nucleic acid targets. Specifically, we show adenosine triphosphate (ATP) binding to an aptamer can activate CRISPR-Cas and trigger a colorimetric readout, enabling the analysis of ATP in human serum samples with sensitivity on par with that of several commercially available kits. Taken together, the strategy reported herein offers a simple and sensitive platform to detect analytes where target amplification is either inconvenient (e.g., PCR under point-of-care settings) or impossible.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , Adenosine Triphosphate/analysis , COVID-19/diagnosis , CRISPR-Cas Systems , Horseradish Peroxidase , Humans , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics
20.
Anal Chem ; 94(42): 14699-14706, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36245090

ABSTRACT

In situ and quantitative measurements of adenosine 5'-triphosphate (ATP) in single living cells are highly desired for understanding several sorts of necessary physiological and pathological processes. Due to its small size and high sensitivity, an ultra-microelectrode can be used for single-cell analysis. However, ATP is difficult to detect in single cells because it is nonelectroactive and low in content. Herein, we introduced an electrochemical nano-biosensor based on an amphiphilic aptamer-assisted carbon fiber nanoelectrode (aptCFNE) with high signal-to-noise ratio. The low current (e.g., 60 pA) and the tiny diameter of the tip (ca. 400 nm) of the nanosensor made it noninvasive to living cells. The amphiphilic aptamer has good biocompatibility and can be stably modified to the surface of functionalized electrodes. CFNE, which was modified with ferrocene-labeled aptamer, could quickly and selectively detect ATP content in the nucleus, cytoplasm, and extracellular space of single HeLa cells. The results showed that the ATP contents in the nucleus, cytoplasm, and extracellular space were 568 ± 9, 461 ± 20, and 312 ± 4 µM, respectively. The anticancer drug treatment effects on the cellular level were further recorded, which was of great significance for understanding ATP-related biological processes and drug screenings. This strategy is universally applicable to detect other targets by changing the aptamer sequence, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Humans , Aptamers, Nucleotide/chemistry , Metallocenes , Carbon Fiber , HeLa Cells , Biosensing Techniques/methods , Adenosine Triphosphate/analysis , Adenosine
SELECTION OF CITATIONS
SEARCH DETAIL