Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.755
Filter
Add more filters

Publication year range
1.
Methods ; 230: 21-31, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39074539

ABSTRACT

Envisaging to improve the evaluation of ophthalmic drug products while minimizing the need for animal testing, our group developed the OphthalMimic device, a 3D-printed device that incorporates an artificial lacrimal flow, a cul-de-sac area, a moving eyelid, and a surface that interacts effectively with ophthalmic formulations, thereby providing a close representation of human ocular conditions. An important application of such a device would be its use as a platform for dissolution/release tests that closely mimic in vivo conditions. However, the surface that artificially simulates the cornea should have a higher resistance (10 min) than the previously described polymeric films (5 min). For this key assay upgrade, we describe the process of obtaining and thoroughly characterizing a hydrogel-based hybrid membrane to be used as a platform base to simulate the cornea artificially. Also, the OphthalMimic device suffered design improvements to fit the new membrane and incorporate the moving eyelid. The results confirmed the successful synthesis of the hydrogel components. The membrane's water content (86.25 ± 0.35 %) closely mirrored the human cornea (72 to 85 %). Furthermore, morphological analysis supported the membrane's comparability to the natural cornea. Finally, the performance of different formulations was analysed, demonstrating that the device could differentiate their drainage profile through the viscosity of PLX 14 (79 ± 5 %), PLX 16 (72 ± 4 %), and PLX 20 (57 ± 14 %), and mucoadhesion of PLXCS0.5 (69 ± 1 %), PLX16CS1.0 (65 ± 3 %), PLX16CS1.25 (67 ± 3 %), and the solution (97 ± 8 %). In conclusion, using the hydrogel-based hybrid membrane in the OphthalMimic device represents a significant advancement in the field of ophthalmic drug evaluation, providing a valuable platform for dissolution/release tests. Such a platform aligns with the ethical mandate to reduce animal testing and promises to accelerate the development of safer and more effective ophthalmic drugs.


Subject(s)
Hydrogels , Humans , Hydrogels/chemistry , Ophthalmic Solutions/chemistry , Printing, Three-Dimensional , Cornea/drug effects , Cornea/metabolism , Administration, Ophthalmic , Membranes, Artificial
2.
Methods ; 228: 1-11, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759909

ABSTRACT

The necessity of animal-free performance tests for novel ophthalmic formulation screening is challenging. For this, we developed and validated a new device to simulate the dynamics and physical-chemical barriers of the eye for in vitro performance tests of topic ophthalmic formulations. The OphthalMimic is a 3D-printed device with an artificial lacrimal flow, a cul-de-sac area, a support base, and a simulated cornea comprised of a polymeric membrane containing poly-vinyl alcohol 10 % (w/v), gelatin 2.5 % (w/v), and different proportions of mucin and poloxamer, i.e., 1:1 (M1), 1:2 (M2), and 2:1 (M3) w/v, respectively. The support base is designed to move between 0° and 50° to replicate the movement of an eyelid. We challenged the model by testing the residence performance of poloxamer®407 16 % and poloxamer®407 16 % + chitosan 1 % (PLX16CS10) gels containing fluconazole. The test was conducted with a simulated tear flow of 1.0 mL.min-1 for 5 min. The OphthalMimic successfully distinguished PLX16 and PLX16C10 formulations based on their fluconazole drainage (M1: 65 ± 14 % and 27 ± 10 %; M2: 58 ± 6 % and 38 ± 9 %; M3: 56 ± 5 % and 38 ± 18 %). In conclusion, the OphthalMimic is a promising tool for comparing the animal-free performance of ophthalmic formulations.


Subject(s)
Ophthalmic Solutions , Poloxamer , Poloxamer/chemistry , Ophthalmic Solutions/chemistry , Administration, Ophthalmic , Fluconazole/administration & dosage , Printing, Three-Dimensional , Cornea/drug effects , Cornea/metabolism , Animals , Chitosan/chemistry , Animal Testing Alternatives/methods , Tears/chemistry , Humans , Gelatin/chemistry
3.
Biochem Biophys Res Commun ; 723: 150212, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38850812

ABSTRACT

Due to the presence of protective mechanisms and blood-ocular barriers in the eye, drugs aimed at treating posterior segment ophthalmic disorder have to be administrated mostly through periocular or intravitreal injection. In the current study, we sought to investigate whether topical ophthalmic instillation of human mesenchymal stem cells (hMSCs)-derived exosomes can prevent and treat experimental autoimmune uveitis (EAU), a posterior segment ophthalmic disease induced in animals and considered a model of human autoimmune diseases of the eye. Our studies reveal that topical ophthalmic instillation of hMSCs-derived exosomes can effectively ameliorate EAU. More importantly, we demonstrate that exosomes modified by trans-activator of transcription peptide (TAT) were more effective than naive exosomes in penetrating ocular barrier and preventing/treating EAU. Taken together, these results indicate that topical ophthalmic instillation of TAT-peptide modified exosomes represents a novel non-invasive therapeutic strategy for posterior-segment ophthalmic disorders.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Uveitis , Exosomes/metabolism , Exosomes/transplantation , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Animals , Uveitis/therapy , Uveitis/metabolism , Uveitis/pathology , Administration, Ophthalmic , Mice , Autoimmune Diseases/therapy , Autoimmune Diseases/metabolism , Autoimmune Diseases/immunology , Mice, Inbred C57BL , Administration, Topical , Posterior Eye Segment/metabolism , Female
4.
Biopolymers ; 115(4): e23578, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38577865

ABSTRACT

Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.


Subject(s)
Drug Delivery Systems , Eye Diseases , Polymers , Humans , Drug Delivery Systems/methods , Eye Diseases/drug therapy , Polymers/chemistry , Hyaluronic Acid/chemistry , Animals , Administration, Ophthalmic , Eye/metabolism , Eye/drug effects , Drug Carriers/chemistry
5.
Mol Pharm ; 21(7): 3204-3217, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38809137

ABSTRACT

The transcorneal route is the main entry route for drugs to the intraocular parts, after topical administration. The outer surface, the corneal epithelium (CE), forms the rate-limiting barrier for drug permeability. Information about the role and protein expression of drug and amino acid transporter proteins in the CE is sparse and lacking. The aim of our study was to characterize transporter protein expression in rabbit and porcine CE to better understand potential drug and nutrient absorption after topical administration. Proteins, mainly Abc and Slc transporters, were characterized with quantitative targeted absolute proteomics and global untargeted proteomics methods. In the rabbit CE, 24 of 48 proteins were detected in the targeted approach, and 21 of these were quantified. In the porcine CE, 26 of 58 proteins were detected in the targeted approach, and 20 of these were quantified. Among these, 15 proteins were quantified in both animals: 4f2hc (Slc3a2), Aqp0, Asct1 (Slc1a4), Asct2 (Slc1a5), Glut1 (Slc2a1), Hmit (Slc2a13), Insr, Lat1 (Slc7a5), Mct1 (Slc16a1), Mct2 (Slc16a7), Mct4 (Slc16a3), Mrp 4 (Abcc4), Na+/K+-ATPase, Oatp3a1 (Slco3a1), and Snat2 (Slc38a2). Overall, the global proteomics results supported the targeted proteomics results. Organic anion transporting polypeptide Oatp3a1 was detected and quantified for the first time in both rabbit (1.4 ± 0.4 fmol/cm2) and porcine (11.1 ± 5.3 fmol/cm2) CE. High expression levels were observed for L-type amino acid transporter, Lat1, which was quantified with newly selected extracellular domain peptides in rabbit (48.9 ± 11.8 fmol/cm2) and porcine (37.6 ± 11.5 fmol/cm2) CE. The knowledge of transporter protein expression in ocular barriers is a key factor in the successful design of new ocular drugs, pharmacokinetic modeling, understanding ocular diseases, and the translation to human.


Subject(s)
Epithelium, Corneal , Proteomics , Animals , Rabbits , Swine , Epithelium, Corneal/metabolism , Proteomics/methods , Biological Transport , Membrane Transport Proteins/metabolism , Administration, Ophthalmic
6.
Biol Pharm Bull ; 47(5): 1033-1042, 2024.
Article in English | MEDLINE | ID: mdl-38797668

ABSTRACT

Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.


Subject(s)
Cell-Penetrating Peptides , Cornea , Ophthalmic Solutions , Suspensions , Animals , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Ophthalmic Solutions/administration & dosage , Humans , Cornea/metabolism , Cornea/drug effects , Swine , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Quinolones/chemistry , Administration, Ophthalmic , Biological Availability , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Particle Size , Alanine/analogs & derivatives
7.
J Nanobiotechnology ; 22(1): 417, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014353

ABSTRACT

Sirolimus (SR) is a macrolide with antifungal and antitumor immunosuppressant properties, classified as a selective inhibitor of mammalian target of rapamycin (mTOR). In this study, an ionic in situ gel of SR (SR-SUS-ISG) was formulated using gellan gum, exhibiting stability regardless of temperature and pH variations, causing minimal irritation. Harnessing the physiological conditions of the eye, SR-SUS-ISG underwent gelation upon contact with ions, increasing drug viscosity and prolonging retention on the ocular surface. Concurrently, SR-SUS-ISG displayed favorable shear dilution properties, reducing viscosity at ambient temperature, enhancing fluidity, and facilitating convenient packaging and transport. Biocompatibility assessments on both human corneal epithelial cells and rabbit eyes demonstrated that SR-SUS-ISG could well be tolerated. Pharmacokinetic investigations in rabbit ocular aqueous humor revealed sustained release, improved corneal penetration, and enhanced bioavailability. Additionally, in a rat corneal alkali burn model, SR-SUS-ISG exhibited inhibitory effects on corneal neovascularization, associated with decreased levels of the inflammatory factors VEGF and MMPs. These findings suggested that SR-SUS-ISG held promise as an effective ocular drug delivery system.


Subject(s)
Gels , Sirolimus , Animals , Rabbits , Sirolimus/pharmacology , Sirolimus/pharmacokinetics , Sirolimus/chemistry , Humans , Gels/chemistry , Cornea/drug effects , Cornea/metabolism , Rats , Male , Polysaccharides, Bacterial/chemistry , Nanoparticles/chemistry , Administration, Ophthalmic , Corneal Neovascularization/drug therapy , Rats, Sprague-Dawley , Viscosity , Drug Delivery Systems , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacology , Cell Line , Biological Availability
8.
Int J Mol Sci ; 25(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39273175

ABSTRACT

A novel ophthalmic delivery system utilizing levofloxacin-loaded, preservative-free, nanofiber-based inserts was investigated. Polyvinyl alcohol (PVA) and Poloxamer 407 (Polox)were employed as matrix materials, while hydroxypropyl-beta-cyclodextrin (HP-ß-CD) was a solubilizer. The formulations were prepared via electrospinning and characterized for fiber morphology, drug dissolution, cytotoxicity, and antimicrobial activity. Scanning electron microscopy confirmed uniform fibrous structures. Fourier Transform Infrared spectroscopy and X-ray diffraction analyses demonstrated the amorphous state of levofloxacin within the fibers. In vitro dissolution studies revealed a rapid (within 2 min) and complete drug release, with higher HP-ß-CD levels slightly delaying the release. Cytotoxicity tests showed increased HP-ß-CD concentrations induced irritation, that was mitigated by sodium hyaluronate. The antimicrobial efficacy of the nanofibers was comparable to conventional eye drops, with lower minimum inhibitory concentrations for most tested strains. The nanofibrous formulation prepared from a PVA-Polox-based viscous solution of the drug:CD 1:1 mol ratio, containing 0.4% (w/w) sodium hyaluronate) was identified as a particularly promising alternative formulation due to its rapid and complete dissolution, good biocompatibility, and effective antimicrobial properties. Its gelling properties indicate that the residence time on the eye surface can be increased, potentially reducing discomfort and enhancing therapeutic outcomes. The nanofibrous formulations enhanced antimicrobial efficacy, providing a preservative-free alternative that minimizes the potential eye irritation that might occur because of the preservative agent and reduces the administrated dose frequency by extending the drug's retention time on the eye's surface. Subsequently, it improves patients' adherence, which would reflect positively on the bioavailability. The levofloxacin-HP-ß-CD nanofibers demonstrate promise as an alternative to traditional eye drops, offering advantages in solubility, stability, and patient compliance for ocular infection treatment.


Subject(s)
Anti-Bacterial Agents , Conjunctivitis, Bacterial , Levofloxacin , Nanofibers , Nanofibers/chemistry , Levofloxacin/chemistry , Levofloxacin/pharmacology , Levofloxacin/administration & dosage , Conjunctivitis, Bacterial/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Polyvinyl Alcohol/chemistry , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Humans , Animals , Microbial Sensitivity Tests , Administration, Ophthalmic , Spectroscopy, Fourier Transform Infrared , Drug Liberation , Drug Compounding/methods , Drug Delivery Systems/methods , Poloxamer/chemistry
9.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792122

ABSTRACT

The eye's complex anatomical structures present formidable barriers to effective drug delivery across a range of ocular diseases, from anterior to posterior segment pathologies. Emerging as a promising solution to these challenges, nanotechnology-based platforms-including but not limited to liposomes, dendrimers, and micelles-have shown the potential to revolutionize ophthalmic therapeutics. These nanocarriers enhance drug bioavailability, increase residence time in targeted ocular tissues, and offer precise, localized delivery, minimizing systemic side effects. Focusing on pediatric ophthalmology, particularly on retinoblastoma, this review delves into the recent advancements in functionalized nanosystems for drug delivery. Covering the literature from 2017 to 2023, it comprehensively examines these nanocarriers' potential impact on transforming the treatment landscape for retinoblastoma. The review highlights the critical role of these platforms in overcoming the unique pediatric eye barriers, thus enhancing treatment efficacy. It underscores the necessity for ongoing research to realize the full clinical potential of these innovative drug delivery systems in pediatric ophthalmology.


Subject(s)
Drug Delivery Systems , Retinoblastoma , Retinoblastoma/drug therapy , Humans , Drug Carriers/chemistry , Child , Nanoparticles/chemistry , Micelles , Liposomes/chemistry , Dendrimers/chemistry , Retinal Neoplasms/drug therapy , Administration, Ophthalmic , Nanotechnology/methods
10.
Cutan Ocul Toxicol ; 43(3): 227-231, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39086095

ABSTRACT

PURPOSE: To evaluate the safety and tolerability of pooled human immune globulins, Flebogamma® 5% DIF and Flebogamma® 10% DIF, administered by topical ophthalmic instillation to New Zealand White (NZW) rabbits. METHODS: Male NZW rabbits were used in this study. In the acute single dose tolerability study, rabbits (n = 12) received a single topical dose of Flebogamma® 5% DIF. In the two-week repeated-dose tolerability study, rabbits (n = 5 for each group) were administered either Flebogamma® 5% DIF or Flebogamma® 10% DIF by topical bilateral administration four times daily (q.i.d.) between 8 am and 6 pm for a period of two weeks. Full ophthalmic examinations were conducted to evaluate ocular tolerability at baseline, Day 7, and Day 14. RESULTS: In the acute single dose study, mild hyperaemia was observed in 1 out of 4 eyes at each 4 h and 24 h post-instillation of Flebogamma® 5% DIF. In the repeated dose study, no ocular signs were detected after q.i.d. topical instillation of Flebogamma® 5% DIF, while Flebogamma® 10% DIF resulted in mild hyperaemia in 8 out of 10 eyes on Day 7, and 5 out of 10 eyes on Day 14. No positive corneal fluorescein staining was detected. Schirmer tear test results were unremarkable. No other ocular signs were observed. Administration of immune globulins had no effect on intraocular pressure. CONCLUSIONS: Flebogamma® 5% DIF and Flebogamma® 10% DIF were well-tolerated by NZW rabbits following single and repeat dose topical ophthalmic administration, supporting the future development of topical pooled human immune globulins for the treatment of ocular surface disease.


Subject(s)
Administration, Ophthalmic , Ophthalmic Solutions , Rabbits , Animals , Male , Ophthalmic Solutions/administration & dosage , Humans , Eye/drug effects , Administration, Topical
11.
AAPS PharmSciTech ; 25(7): 191, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164556

ABSTRACT

The compound Salvia Recipe has been shown to have a relatively significant curative effect in management of cardiovascular and cerebrovascular diseases. This work aimed to prepare a thermosensitive in situ gel (ISG) delivery system that utilizes Poloxamer 407, Poloxamer 188, and hydroxypropyl methylcellulose for ocular administration of the compound Salvia recipe to treat cardiovascular and cerebrovascular diseases. The central composite design-response surface method was utilized to improve the prescription of the gel. The formulated gel was characterized and assessed in terms of stability, retention time, in vitro release, rheology, ocular irritation, pharmacokinetics studies, and tissue distribution. The gel was a liquid solution at room temperature and became semisolid at physiological temperature, prolonging its stay time in the eye. Pharmacokinetics and tissue distribution experiments indicated that thermosensitive ISG had enhanced targeting of heart and brain tissues. Additionally, it could lower drug toxicity and side effects in the lungs and kidneys. The compound Salvia ophthalmic thermosensitive ISG is a promising drug delivery system for the management of cardiovascular and cerebrovascular illnesses.


Subject(s)
Administration, Ophthalmic , Drug Delivery Systems , Gels , Salvia , Animals , Salvia/chemistry , Drug Delivery Systems/methods , Tissue Distribution , Temperature , Poloxamer/chemistry , Rabbits , Eye/drug effects , Eye/metabolism , Chemistry, Pharmaceutical/methods , Hypromellose Derivatives/chemistry , Male , Rheology , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics
12.
AAPS PharmSciTech ; 25(5): 92, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684590

ABSTRACT

PURPOSE: Dry eye syndrome (DES), arising from various etiologic factors, leads to tear film instability and ocular surface damage. Given its anti-inflammatory effects, cyclosporine A (CsA) has been widely used as a short-term treatment option for DES. However, poor bioavailability and solubility of CsA in aqueous phase make the development of a cyclosporine A-based eye drop for ocular topical application a huge challenge. METHODS: In this study, a novel strategy for preparing cyclosporine A-loaded silk fibroin nanoemulsion gel (CsA NBGs) was proposed to address these barriers. Additionally, the rheological properties, ocular irritation potential, tear elimination kinetics, and pharmacodynamics based on a rabbit dry eye model were investigated for the prepared CsA NBGs. Furthermore, the transcorneal mechanism across the ocular barrier was also investigated. RESULTS: The pharmacodynamics and pharmacokinetics of CsA NBGs exhibited superior performance compared to cyclosporine eye drops, leading to a significant enhancement in the bioavailability of CsA NBGs. Furthermore, our investigation into the transcorneal mechanism of CsA NBGs revealed their ability to be absorbed by corneal epithelial cells via the paracellular pathway. CONCLUSION: The CsA NBG formulation exhibits promising potential for intraocular drug delivery, enabling safe, effective, and controlled administration of hydrophobic drugs into the eye. Moreover, it enhances drug retention within the ocular tissues and improves systemic bioavailability, thereby demonstrating significant clinical translational prospects.


Subject(s)
Biological Availability , Cyclosporine , Dry Eye Syndromes , Fibroins , Gels , Ophthalmic Solutions , Rabbits , Animals , Fibroins/chemistry , Cyclosporine/administration & dosage , Cyclosporine/pharmacokinetics , Cyclosporine/chemistry , Dry Eye Syndromes/drug therapy , Ophthalmic Solutions/administration & dosage , Drug Delivery Systems/methods , Administration, Ophthalmic , Solubility , Male , Emulsions/chemistry , Cornea/metabolism , Cornea/drug effects , Disease Models, Animal
13.
AAPS PharmSciTech ; 25(5): 119, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816667

ABSTRACT

Loteprednol etabonate (LE) is a topical corticosteroid for the symptomatic management of ocular conditions, encompassing both allergic and infectious etiologies. Owing to the dynamic and static barriers of the eye, LE exhibits significantly low bioavailability, necessitating an increase in the frequency of drug administration. The objective of this study is to overcome the limitations by developing niosomal systems loaded with LE. Design of Experiments (DoE) approach was used for the development of optimal niosome formulation. The optimal formulation was characterized using DLS, FT-IR, and DSC analysis. In vitro and ex vivo release studies were performed to demonstrate drug release patterns. After that HET-CAM evaluation was conducted to determine safety profile. Then, in vivo studies were carried out to determine therapeutic activity of niosomes. Zeta potential (ZP), particle size, polydispersity index (PI), and encapsulation efficacy (EE) were -33.8 mV, 89.22 nm, 0.192, and 89.6%, respectively. Medicated niosomes had a broad distribution within rabbit eye tissues and was absorbed by the aqueous humor of the bovine eye for up to 6 h after treatment. Cumulative permeated drug in the bovine eye and rabbit eye were recorded 52.45% and 54.8%, respectively. No irritation or hemorrhagic situation was observed according to the results of HET-CAM study. Thus, novel LE-loaded niosomal formulations could be considered as a promising treatment option for the dry-eye-disease (DED) due to enhanced bioavailability and decreased side effects.


Subject(s)
Delayed-Action Preparations , Dry Eye Syndromes , Liposomes , Loteprednol Etabonate , Animals , Rabbits , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Loteprednol Etabonate/administration & dosage , Loteprednol Etabonate/pharmacokinetics , Dry Eye Syndromes/drug therapy , Cattle , Drug Liberation , Particle Size , Disease Models, Animal , Administration, Ophthalmic , Biological Availability , Drug Delivery Systems/methods , Eye/metabolism , Eye/drug effects , Aqueous Humor/metabolism , Chemistry, Pharmaceutical/methods , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/pharmacokinetics
14.
Polim Med ; 54(1): 71-84, 2024.
Article in English | MEDLINE | ID: mdl-38533624

ABSTRACT

The eye is the most accessible site for topical drug delivery. Drug's ocular bioavailability is quite low when administered topically as eye drops. Viscosity enhancers are used to increase ocular bioavailability by extending the precorneal residence time of the drug at the ocular site. Cellulose, polyalcohol and polyacrylic acid are examples of hydrophilic viscosity enhancers. The addition of viscosity modifiers increases the amount of time the drug is in contact with the ocular surface. Several polysaccharides have been studied as excipients and viscosity boosters for ocular formulations, including cellulose derivatives such as chitosan (CS), xyloglucan and arabinogalactan (methylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose (HPMC), and sodium carboxymethylcellulose). Viscosity-increasing substances reduce the surface tension, extend the corneal contact time, slow the drainage, and improve the bioavailability. Chitosan is a viscosity enhancer that was originally thought to open tight junction barrier cells in the epithelium. Chitosan thickens the medication solution and allows it to penetrate deeper. Alginate is an anionic polymer with carboxyl end groups that has the highest mucoadhesive strength and is used to improve penetration. Carboxymethylcellulose (CMC), a polysaccharide with a high molecular weight, is one of the most common viscous polymers used in artificial tears to achieve their longer ocular surface residence period. Hyaluronic acid (HA) is biocompatible and biodegradable in nature, and it is available in ocular sustained-release dose forms. A polymer known as xanthan gum is used to increase viscosity. At 0.2% concentration, carbomer forms a highly viscous gel.


Subject(s)
Administration, Ophthalmic , Drug Delivery Systems , Excipients , Ophthalmic Solutions , Viscosity , Humans , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/chemistry , Excipients/chemistry , Chitosan/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Biological Availability
15.
Vestn Oftalmol ; 140(2): 102-111, 2024.
Article in Russian | MEDLINE | ID: mdl-38742506

ABSTRACT

Dry eye disease (DED) is pathogenetically based on inflammation of the ocular surface. A step-by-step approach to DED treatment involves early initiation of anti-inflammatory therapy, including instillation of cyclosporine A (CsA). However, recommendations for the use of topical CsA in clinical practice are limited. This article presents an expert consensus on practical recommendations for the management of patients with DED, including indications, time of initiation and duration of CsA therapy, comparison of CsA forms currently registered in the Russian Federation, as well as issues of patient education.


Subject(s)
Cyclosporine , Emulsions , Humans , Administration, Ophthalmic , Cyclosporine/administration & dosage , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/etiology , Immunosuppressive Agents/administration & dosage , Ophthalmic Solutions/administration & dosage , Treatment Outcome , Xerophthalmia/etiology , Xerophthalmia/drug therapy , Xerophthalmia/diagnosis
16.
J Pharmacol Exp Ther ; 384(3): 439-444, 2023 03.
Article in English | MEDLINE | ID: mdl-36635086

ABSTRACT

Cancer treatments are frequently associated with nausea and vomiting despite greatly improved preventive medication. Administration of antinausea agents as eye drops might provide easy and rapid access to the systemic circulation for prevention of nausea and vomiting and for the treatment of breakthrough nausea, but the ocular administration route has rarely been evaluated. Palonosetron is a second-generation 5-hydroxytryptamine 3 receptor antagonist approved for prevention and treatment of chemotherapy-induced nausea and vomiting. We compared ocular administration of palonosetron to non-active vehicle eye drops and to intravenous palonosetron in the prevention of cisplatin-induced nausea and vomiting in beagle dogs. Palonosetron ocular drops at the dose of 30 µg/kg reduced cumulative nausea over time as measured with the area under the visual analog scale curve by 98% compared with the vehicle and reduced nausea-associated dog behavior by 95%. Vomiting was completely prevented with repeated palonosetron ocular dosing. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) palonosetron formulation was well tolerated locally at the palonosetron concentration of 3 mg/ml. Absorption of palonosetron from eye drops was fast. Ten minutes after ocular administration, palonosetron plasma concentrations were similar compared with intravenous administration, and remained similar for six hours. We conclude that palonosetron is rapidly absorbed into the systemic circulation from eye drops. Ocularly administered palonosetron was well tolerated in the HP-ß-CD formulation and was highly effective in the prevention of cisplatin-induced nausea and vomiting. Evaluation of the safety and efficacy of ocular administration of palonosetron is warranted in the prevention and treatment of chemotherapy-induced nausea and vomiting in clinical trials. SIGNIFICANCE STATEMENT: Palonosetron, an effective and well-tolerated antiemetic drug was rapidly absorbed into the systemic blood circulation when administered as eye drops. The achieved palonosetron blood concentrations prevented cisplatin-induced nausea and vomiting in beagle dogs. Palonosetron eye drops might provide an easy and quick method for administering palonosetron when parenteral administration is desired and intravenous administration is not feasible.


Subject(s)
Antineoplastic Agents , Cisplatin , Animals , Dogs , Palonosetron/adverse effects , 2-Hydroxypropyl-beta-cyclodextrin , Administration, Ophthalmic , Isoquinolines/pharmacology , Quinuclidines/pharmacology , Vomiting/chemically induced , Nausea/chemically induced , Antineoplastic Agents/therapeutic use , Dexamethasone
17.
Mol Pharm ; 20(7): 3298-3319, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37314950

ABSTRACT

Drug permeation across the cornea remains a major challenge due to its unique and complex anatomy and physiology. Static barriers such as the different layers of the cornea, as well as dynamic aspects such as the constant renewal of the tear film and the presence of the mucin layer together with efflux pumps, all present unique challenges for effective ophthalmic drug delivery. To overcome some of the current ophthalmic drug limitations, the identification and testing of novel drug formulations such as liposomes, nanoemulsions, and nanoparticles began to be considered and widely explored. In the early stages of corneal drug development reliable in vitro and ex vivo alternatives, are required, to be in line with the principles of the 3Rs (Replacement, Reduction, and Refinement), with such methods being in addition faster and more ethical alternatives to in vivo studies. The ocular field remains limited to a handful of predictive models for ophthalmic drug permeation. In vitro cell culture models are increasingly used when it comes to transcorneal permeation studies. Ex vivo models using excised animal tissue such as porcine eyes are the model of choice to study corneal permeation and promising advancements have been reported over the years. Interspecies characteristics must be considered in detail when using such models. This review updates the current knowledge about in vitro and ex vivo corneal permeability models and evaluates their advantages and limitations.


Subject(s)
Cell Culture Techniques , Cornea , Swine , Animals , Pharmaceutical Preparations , Permeability , Administration, Ophthalmic
18.
Pharm Res ; 40(9): 2239-2251, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37679656

ABSTRACT

PURPOSE: In vitro release testing (IVRT) is a widely used tool for evaluating the quality and performance of drug products. However, standardized sample adaptors or drug release apparatus setups for IVRT studies are still lacking for ophthalmic ointments. The aim of this study was to provide a better understanding of the impact of apparatus and sample adaptor setups on IVRT of ophthalmic ointments. METHODS: Dexamethasone (DEX), a steroidal ingredient commonly used in ophthalmic drug products, was selected as a model drug. Ointments were prepared by mixing DEX in white petrolatum using a high shear mixer. A novel two-sided adapter was developed to increase the drug release surface area. DEX ointment was placed in one-sided or two-sided release adaptors coupled with 1.2 µm polyethersulfone membrane, and the drug release was studied in different USP apparatuses (I, II, and IV). RESULTS: The sample adaptor setups had a minimal impact on cumulative drug release amount per area or release rate while USP IV apparatus with agitated flow enhanced drug release rates. The USP apparatus I with a two-sided semisolid adapter, which uses membranes on both sides, showed dramatically higher cumulative drug release and discriminative release profiles when evaluating ophthalmic formulations. CONCLUSIONS: USP apparatuses and sample adaptors are critical considerations for IVRT. Two-sided semisolid adapter provides higher cumulative release, facilitating the discrimination between low drug content ophthalmic ointment formulations with good sensitivity and repeatability without affecting the drug release rate.


Subject(s)
Drug Liberation , Ointments , Drug Compounding , Administration, Ophthalmic
19.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958583

ABSTRACT

The landscape of ophthalmology is undergoing significant transformations, driven by technological advancements and innovations in materials science. One of the advancements in this evolution is the application of nanoporous materials, endowed with unique physicochemical properties ideal for a variety of ophthalmological applications. Characterized by their high surface area, tunable porosity, and functional versatility, these materials have the potential to improve drug delivery systems and ocular devices. This review, anchored by a comprehensive literature focusing on studies published within the last five years, examines the applications of nanoporous materials in ocular drug delivery systems (DDS), contact lenses, and intraocular lenses. By consolidating the most current research, this review aims to serve as a resource for clinicians, researchers, and material scientists engaged in the rapidly evolving field of ophthalmology.


Subject(s)
Contact Lenses , Nanopores , Drug Delivery Systems , Eye , Administration, Ophthalmic
20.
AAPS PharmSciTech ; 24(2): 66, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788150

ABSTRACT

The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.


Subject(s)
Cornea , Drug Delivery Systems , Humans , Administration, Ophthalmic , Administration, Topical , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL