Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 603
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 20(8): e1011836, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39207950

ABSTRACT

The host interferon pathway upregulates intrinsic restriction factors in response to viral infection. Many of them block a diverse range of viruses, suggesting that their antiviral functions might have been shaped by multiple viral families during evolution. Host-virus conflicts have led to the rapid adaptation of host and viral proteins at their interaction hotspots. Hence, we can use evolutionary genetic analyses to elucidate antiviral mechanisms and domain functions of restriction factors. Zinc finger antiviral protein (ZAP) is a restriction factor against RNA viruses such as alphaviruses, in addition to other RNA, retro-, and DNA viruses, yet its precise antiviral mechanism is not fully characterized. Previously, an analysis of 13 primate ZAP orthologs identified three positively selected residues in the poly(ADP-ribose) polymerase-like domain. However, selective pressure from ancient alphaviruses and others likely drove ZAP adaptation in a wider representation of mammals. We performed positive selection analyses in 261 mammalian ZAP using more robust methods with complementary strengths and identified seven positively selected sites in all domains of the protein. We generated ZAP inducible cell lines in which the positively selected residues of ZAP are mutated and tested their effects on alphavirus replication and known ZAP activities. Interestingly, the mutant in the second WWE domain of ZAP (N658A) is dramatically better than wild-type ZAP at blocking replication of Sindbis virus and other ZAP-sensitive alphaviruses due to enhanced viral translation inhibition. The N658A mutant is adjacent to the previously reported poly(ADP-ribose) (PAR) binding pocket, but surprisingly has reduced binding to PAR. In summary, the second WWE domain is critical for engineering a more potent ZAP and fluctuations in PAR binding modulate ZAP antiviral activity. Our study has the potential to unravel the role of ADP-ribosylation in the host innate immune defense and viral evolutionary strategies that antagonize this post-translational modification.


Subject(s)
Alphavirus Infections , Alphavirus , Humans , Animals , Alphavirus/genetics , Alphavirus Infections/virology , Alphavirus Infections/genetics , Protein Domains , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Selection, Genetic , Evolution, Molecular , Repressor Proteins
2.
Nucleic Acids Res ; 52(16): 9745-9759, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39106168

ABSTRACT

Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Neurons , Stress Granules , Animals , Stress Granules/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Humans , Neurons/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Mice , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Ataxia/genetics , Ataxia/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Alphavirus/genetics , Alphavirus/metabolism , Rats , Carrier Proteins/metabolism , Drosophila/metabolism , Cytoplasmic Granules/metabolism , Stress, Physiological , DNA-Binding Proteins
3.
Proc Natl Acad Sci U S A ; 120(12): e2213934120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913573

ABSTRACT

Alphaviruses are emerging positive-stranded RNA viruses which replicate and transcribe their genomes in membranous organelles formed in the cell cytoplasm. The nonstructural protein 1 (nsP1) is responsible for viral RNA capping and gates the replication organelles by assembling into monotopic membrane-associated dodecameric pores. The capping pathway is unique to Alphaviruses; beginning with the N7 methylation of a guanosine triphosphate (GTP) molecule, followed by the covalent linkage of an m7GMP group to a conserved histidine in nsP1 and the transfer of this cap structure to a diphosphate RNA. Here, we provide structural snapshots of different stages of the reaction pathway showing how nsP1 pores recognize the substrates of the methyl-transfer reaction, GTP and S-adenosyl methionine (SAM), how the enzyme reaches a metastable postmethylation state with SAH and m7GTP in the active site, and the subsequent covalent transfer of m7GMP to nsP1 triggered by the presence of RNA and postdecapping reaction conformational changes inducing the opening of the pore. In addition, we biochemically characterize the capping reaction, demonstrating specificity for the RNA substrate and the reversibility of the cap transfer resulting in decapping activity and the release of reaction intermediates. Our data identify the molecular determinants allowing each pathway transition, providing an explanation for the need for the SAM methyl donor all along the pathway and clues about the conformational rearrangements associated to the enzymatic activity of nsP1. Together, our results set ground for the structural and functional understanding of alphavirus RNA-capping and the design of antivirals.


Subject(s)
Alphavirus , Chikungunya Fever , Alphavirus/genetics , Antiviral Agents/pharmacology , Guanosine Triphosphate/metabolism , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , S-Adenosylmethionine/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
4.
PLoS Pathog ; 19(4): e1010491, 2023 04.
Article in English | MEDLINE | ID: mdl-37018377

ABSTRACT

Adaptation to mosquito vectors suited for transmission in urban settings is a major driver in the emergence of arboviruses. To better anticipate future emergence events, it is crucial to assess their potential to adapt to new vector hosts. In this work, we used two different experimental evolution approaches to study the adaptation process of an emerging alphavirus, Mayaro virus (MAYV), to Ae. aegypti, an urban mosquito vector of many other arboviruses. We identified E2-T179N as a key mutation increasing MAYV replication in insect cells and enhancing transmission after escaping the midgut of live Ae. aegypti. In contrast, this mutation decreased viral replication and binding in human fibroblasts, a primary cellular target of MAYV in humans. We also showed that MAYV E2-T179N generates reduced viremia and displays less severe tissue pathology in vivo in a mouse model. We found evidence in mouse fibroblasts that MAYV E2-T179N is less dependent on the Mxra8 receptor for replication than WT MAYV. Similarly, exogenous expression of human apolipoprotein receptor 2 and Mxra8 enhanced WT MAYV replication compared to MAYV E2-T179N. When this mutation was introduced in the closely related chikungunya virus, which has caused major outbreaks globally in the past two decades, we observed increased replication in both human and insect cells, suggesting E2 position 179 is an important determinant of alphavirus host-adaptation, although in a virus-specific manner. Collectively, these results indicate that adaptation at the T179 residue in MAYV E2 may result in increased vector competence-but coming at the cost of optimal replication in humans-and may represent a first step towards a future emergence event.


Subject(s)
Aedes , Alphavirus Infections , Alphavirus , Arboviruses , Chikungunya virus , Animals , Mice , Humans , Aedes/genetics , Alphavirus/genetics , Chikungunya virus/genetics , Mosquito Vectors/genetics , Glycoproteins , Immunoglobulins , Membrane Proteins
5.
Mol Ther ; 32(8): 2519-2534, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38894543

ABSTRACT

Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.


Subject(s)
Alphavirus , Recombination, Genetic , mRNA Vaccines , Animals , Mice , Alphavirus/genetics , Alphavirus/immunology , Mice, Inbred C57BL , Humans , Receptor, Interferon alpha-beta/genetics , Virus Replication , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/adverse effects , Mice, Knockout , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/adverse effects
7.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38995674

ABSTRACT

Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (Macaca facicularis, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.


Subject(s)
Alphavirus Infections , Alphavirus , Genotype , Macaca fascicularis , RNA, Viral , Viremia , Animals , Macaca fascicularis/virology , Alphavirus/genetics , Alphavirus/pathogenicity , Alphavirus/classification , Alphavirus/isolation & purification , Alphavirus Infections/virology , Alphavirus Infections/veterinary , Viremia/virology , RNA, Viral/genetics , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Disease Models, Animal , Phylogeny , Cytokines/genetics , Cytokines/blood
8.
J Virol ; 97(3): e0160122, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36883812

ABSTRACT

Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes often debilitating rheumatic disease in tropical Central and South America. There are currently no licensed vaccines or antiviral drugs available for MAYV disease. Here, we generated Mayaro virus-like particles (VLPs) using the scalable baculovirus-insect cell expression system. High-level secretion of MAYV VLPs in the culture fluid of Sf9 insect cells was achieved, and particles with a diameter of 64 to 70 nm were obtained after purification. We characterize a C57BL/6J adult wild-type mouse model of MAYV infection and disease and used this model to compare the immunogenicity of VLPs from insect cells with that of VLPs produced in mammalian cells. Mice received two intramuscular immunizations with 1 µg of nonadjuvanted MAYV VLPs. Potent neutralizing antibody responses were generated against the vaccine strain, BeH407, with comparable activity seen against a contemporary 2018 isolate from Brazil (BR-18), whereas neutralizing activity against chikungunya virus was marginal. Sequencing of BR-18 illustrated that this virus segregates with genotype D isolates, whereas MAYV BeH407 belongs to genotype L. The mammalian cell-derived VLPs induced higher mean neutralizing antibody titers than those produced in insect cells. Both VLP vaccines completely protected adult wild-type mice against viremia, myositis, tendonitis, and joint inflammation after MAYV challenge. IMPORTANCE Mayaro virus (MAYV) is associated with acute rheumatic disease that can be debilitating and can evolve into months of chronic arthralgia. MAYV is believed to have the potential to emerge as a tropical public health threat, especially if it develops the ability to be efficiently transmitted by urban mosquito vectors, such as Aedes aegypti and/or Aedes albopictus. Here, we describe a scalable virus-like particle vaccine against MAYV that induced neutralizing antibodies against a historical and a contemporary isolate of MAYV and protected mice against infection and disease, providing a potential new intervention for MAYV epidemic preparedness.


Subject(s)
Aedes , Alphavirus , Chikungunya virus , Rheumatic Diseases , Vaccines, Virus-Like Particle , Animals , Mice , Vaccines, Virus-Like Particle/genetics , Mice, Inbred C57BL , Alphavirus/genetics , Brazil , Antibodies, Neutralizing , Mammals
9.
J Virol ; 97(11): e0122523, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37877718

ABSTRACT

IMPORTANCE: Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.


Subject(s)
Alphavirus , Gene Expression Regulation, Viral , Host Microbial Interactions , Replicon , Viral Proteins , Alphavirus/genetics , Alphavirus/metabolism , mRNA Vaccines/genetics , Replicon/genetics , Virus Replication/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Host Microbial Interactions/genetics , Viral Proteins/biosynthesis , Viral Proteins/genetics
10.
PLoS Pathog ; 18(3): e1010393, 2022 03.
Article in English | MEDLINE | ID: mdl-35294495

ABSTRACT

Arthropod endosymbiont Wolbachia pipientis is part of a global biocontrol strategy to reduce the replication of mosquito-borne RNA viruses such as alphaviruses. We previously demonstrated the importance of a host cytosine methyltransferase, DNMT2, in Drosophila and viral RNA as a cellular target during pathogen-blocking. Here we report a role for DNMT2 in Wolbachia-induced alphavirus inhibition in Aedes species. Expression of DNMT2 in mosquito tissues, including the salivary glands, is elevated upon virus infection. Notably, this is suppressed in Wolbachia-colonized animals, coincident with reduced virus replication and decreased infectivity of progeny virus. Ectopic expression of DNMT2 in cultured Aedes cells is proviral, increasing progeny virus infectivity, and this effect of DNMT2 on virus replication and infectivity is dependent on its methyltransferase activity. Finally, examining the effects of Wolbachia on modifications of viral RNA by LC-MS show a decrease in the amount of 5-methylcytosine modification consistent with the down-regulation of DNMT2 in Wolbachia colonized mosquito cells and animals. Collectively, our findings support the conclusion that disruption of 5-methylcytosine modification of viral RNA is a vital mechanism operative in pathogen blocking. These data also emphasize the essential role of epitranscriptomic modifications in regulating fundamental alphavirus replication and transmission processes.


Subject(s)
Aedes , Alphavirus , Arthropods , Flavivirus , Wolbachia , 5-Methylcytosine/metabolism , Alphavirus/genetics , Animals , Arthropods/genetics , Flavivirus/genetics , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication , Wolbachia/physiology
11.
J Med Virol ; 96(7): e29788, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982767

ABSTRACT

Molecular surveillance is vital for monitoring arboviruses, often employing genus-specific quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Despite this, an overlooked chikungunya fever outbreak occurred in Yunnan province, China, in 2019 and false negatives are commonly encountered during alphaviruses screening practice, highlighting the need for improved detection methods. In this study, we developed an improved alphaviruses-specific RT-qPCR capable of detecting chikungunya virus, eastern equine encephalitis virus, western equine encephalitis virus, Venezuelan equine encephalitis virus, Sindbis virus, Mayaro virus, and Ross River virus with high sensitivity and specificity. The assay identified three chikungunya virus-positive cases out of 188 sera retrospectively. Later genetic characterization suggested that imported cases from neighboring countries may be responsible for the neglected chikungunya fever outbreak of 2019 in Yunnan. Our findings underscore the value of improved alphaviruses-specific RT-qPCR in bolstering alphaviruses surveillance and informing preventive strategies.


Subject(s)
Alphavirus Infections , Alphavirus , Chikungunya virus , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Humans , Alphavirus/genetics , Alphavirus/isolation & purification , Alphavirus Infections/diagnosis , Alphavirus Infections/virology , Alphavirus Infections/prevention & control , Alphavirus Infections/epidemiology , China/epidemiology , Real-Time Polymerase Chain Reaction/methods , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Retrospective Studies , Chikungunya Fever/diagnosis , Chikungunya Fever/prevention & control , Chikungunya Fever/virology , Chikungunya Fever/epidemiology , Encephalitis Virus, Eastern Equine/genetics , Disease Outbreaks/prevention & control , Sindbis Virus/genetics , Encephalitis Virus, Western Equine/genetics , Ross River virus/genetics , Ross River virus/isolation & purification , Encephalitis Virus, Venezuelan Equine/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , RNA, Viral/genetics
12.
Vet Res ; 55(1): 106, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227887

ABSTRACT

Frequent RNA virus mutations raise concerns about evolving virulent variants. The purpose of this study was to investigate genetic variation in salmonid alphavirus-3 (SAV3) over the course of an experimental infection in Atlantic salmon and brown trout. Atlantic salmon and brown trout parr were infected using a cohabitation challenge, and heart samples were collected for analysis of the SAV3 genome at 2-, 4- and 8-weeks post-challenge. PCR was used to amplify eight overlapping amplicons covering 98.8% of the SAV3 genome. The amplicons were subsequently sequenced using the Nanopore platform. Nanopore sequencing identified a multitude of single nucleotide variants (SNVs) and deletions. The variation was widespread across the SAV3 genome in samples from both species. Mostly, specific SNVs were observed in single fish at some sampling time points, but two relatively frequent (i.e., major) SNVs were observed in two out of four fish within the same experimental group. Two other, less frequent (i.e., minor) SNVs only showed an increase in frequency in brown trout. Nanopore reads were de novo clustered using a 99% sequence identity threshold. For each amplicon, a number of variant clusters were observed that were defined by relatively large deletions. Nonmetric multidimensional scaling analysis integrating the cluster data for eight amplicons indicated that late in infection, SAV3 genomes isolated from brown trout had greater variation than those from Atlantic salmon. The sequencing methods and bioinformatics pipeline presented in this study provide an approach to investigate the composition of genetic diversity during viral infections.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Genetic Variation , Nanopore Sequencing , Salmo salar , Trout , Animals , Salmo salar/virology , Fish Diseases/virology , Alphavirus/genetics , Alphavirus Infections/veterinary , Alphavirus Infections/virology , Nanopore Sequencing/veterinary , Nanopore Sequencing/methods , Trout/virology
13.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33547245

ABSTRACT

While biomolecular condensates have emerged as an important biological phenomenon, mechanisms regulating their composition and the ways that viruses hijack these mechanisms remain unclear. The mosquito-borne alphaviruses cause a range of diseases from rashes and arthritis to encephalitis, and no licensed drugs are available for treatment or vaccines for prevention. The alphavirus virulence factor nonstructural protein 3 (nsP3) suppresses the formation of stress granules (SGs)-a class of cytoplasmic condensates enriched with translation initiation factors and formed during the early stage of infection. nsP3 has a conserved N-terminal macrodomain that hydrolyzes ADP-ribose from ADP-ribosylated proteins and a C-terminal hypervariable domain that binds the essential SG component G3BP1. Here, we show that macrodomain hydrolase activity reduces the ADP-ribosylation of G3BP1, disassembles virus-induced SGs, and suppresses SG formation. Expression of nsP3 results in the formation of a distinct class of condensates that lack translation initiation factors but contain G3BP1 and other SG-associated RNA-binding proteins. Expression of ADP-ribosylhydrolase-deficient nsP3 results in condensates that retain translation initiation factors as well as RNA-binding proteins, similar to SGs. Therefore, our data reveal that ADP-ribosylation controls the composition of biomolecular condensates, specifically the localization of translation initiation factors, during alphavirus infection.


Subject(s)
Alphavirus/genetics , DNA Helicases/genetics , N-Glycosyl Hydrolases/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , Viral Nonstructural Proteins/genetics , Alphavirus/pathogenicity , Animals , Arthritis/virology , Culicidae/virology , Encephalitis/virology , Exanthema/virology , Gene Expression Regulation, Viral/genetics , HeLa Cells , Humans , RNA-Binding Proteins/genetics
15.
J Clin Microbiol ; 61(12): e0015223, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37982611

ABSTRACT

Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.


Subject(s)
Alphavirus , Culicidae , Dengue , Encephalitis Virus, Eastern Equine , Encephalomyelitis, Eastern Equine , Encephalomyelitis, Venezuelan Equine , Humans , Animals , Horses/genetics , Encephalitis Virus, Eastern Equine/genetics , Encephalomyelitis, Venezuelan Equine/diagnosis , Encephalomyelitis, Venezuelan Equine/epidemiology , Culicidae/genetics , Reverse Transcriptase Polymerase Chain Reaction , Phylogeny , Prospective Studies , Public Health Surveillance , Retrospective Studies , Alphavirus/genetics , RNA
16.
J Virol ; 96(6): e0175121, 2022 03 23.
Article in English | MEDLINE | ID: mdl-34986000

ABSTRACT

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo. Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the three-dimensional structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.


Subject(s)
Alphavirus Infections , Alphavirus , Amino Acid Substitution , Viral Envelope Proteins , Alphavirus/genetics , Alphavirus/pathogenicity , Alphavirus Infections/virology , Animals , Binding Sites/genetics , Cells, Cultured , Disease Models, Animal , Heparitin Sulfate/metabolism , Humans , Mice , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
17.
J Virol ; 96(5): e0214921, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35019719

ABSTRACT

Alphaviruses are enveloped viruses transmitted by arthropod vectors to vertebrate hosts. The surface of the virion contains 80 glycoprotein spikes embedded in the membrane, and these spikes mediate attachment to the host cell and initiate viral fusion. Each spike consists of a trimer of E2-E1 heterodimers. These heterodimers interact at the following two interfaces: (i) the intradimer interactions between E2 and E1 of the same heterodimer and (ii) the interdimer interactions between E2 of one heterodimer and E1 of the adjacent heterodimer (E1'). We hypothesized that the interdimer interactions are essential for trimerization of the E2-E1 heterodimers into a functional spike. In this work, we made a mutant virus (chikungunya piggyback [CPB]) where we replaced six interdimeric residues in the E2 protein of Sindbis virus (wild-type [WT] SINV) with those from the E2 protein from chikungunya virus and studied its effect in both mammalian and mosquito cell lines. CPB produced fewer infectious particles in mammalian cells than in mosquito cells, relative to WT SINV. When CPB virus was purified from mammalian cells, particles showed reduced amounts of glycoproteins relative to the capsid protein and contained defects in particle morphology compared with virus derived from mosquito cells. Using cryo-electron microscopy (cryo-EM), we determined that the spikes of CPB had a different conformation than WT SINV. Last, we identified two revertants, E2-H333N and E1-S247L, that restored particle growth and assembly to different degrees. We conclude the interdimer interface is critical for spike trimerization and is a novel target for potential antiviral drug design. IMPORTANCE Alphaviruses, which can cause disease when spread to humans by mosquitoes, have been classified as emerging pathogens, with infections occurring worldwide. The spikes on the surface of the alphavirus particle are absolutely required for the virus to enter a new host cell and initiate an infection. Using a structure-guided approach, we made a mutant virus that alters spike assembly in mammalian cells but not mosquito cells. This finding is important because it identifies a region in the spike that could be a target for antiviral drug design.


Subject(s)
Alphavirus Infections , Alphavirus , Host Microbial Interactions , Viral Envelope Proteins , Alphavirus/genetics , Alphavirus/metabolism , Alphavirus Infections/virology , Animals , Cell Line , Chikungunya virus/genetics , Cryoelectron Microscopy , Culicidae , Glycoproteins/chemistry , Mammals , Mutation , Phenotype , Protein Conformation , Sindbis Virus/genetics , Viral Envelope Proteins/genetics
18.
Nucleic Acids Res ; 49(22): 12943-12954, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34871407

ABSTRACT

Programmed ribosomal frameshifting (PRF) is a translational recoding mechanism that enables the synthesis of multiple polypeptides from a single transcript. During translation of the alphavirus structural polyprotein, the efficiency of -1PRF is coordinated by a 'slippery' sequence in the transcript, an adjacent RNA stem-loop, and a conformational transition in the nascent polypeptide chain. To characterize each of these effectors, we measured the effects of 4530 mutations on -1PRF by deep mutational scanning. While most mutations within the slip-site and stem-loop reduce the efficiency of -1PRF, the effects of mutations upstream of the slip-site are far more variable. We identify several regions where modifications of the amino acid sequence of the nascent polypeptide impact the efficiency of -1PRF. Molecular dynamics simulations of polyprotein biogenesis suggest the effects of these mutations primarily arise from their impacts on the mechanical forces that are generated by the translocon-mediated cotranslational folding of the nascent polypeptide chain. Finally, we provide evidence suggesting that the coupling between cotranslational folding and -1PRF depends on the translation kinetics upstream of the slip-site. These findings demonstrate how -1PRF is coordinated by features within both the transcript and nascent chain.


Subject(s)
Frameshifting, Ribosomal/genetics , Molecular Dynamics Simulation , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Alphavirus/genetics , Alphavirus/metabolism , HEK293 Cells , Humans , Kinetics , Mutation , Nucleic Acid Conformation , Polyproteins/genetics , Polyproteins/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Ribosomes/metabolism
19.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834397

ABSTRACT

Sindbis alphavirus vectors offer a promising platform for cancer therapy, serving as valuable models for alphavirus-based treatment. This review emphasizes key studies that support the targeted delivery of Sindbis vectors to tumor cells, highlighting their effectiveness in expressing tumor-associated antigens and immunomodulating proteins. Among the various alphavirus vectors developed for cancer therapy, Sindbis-vector-based imaging studies have been particularly extensive. Imaging modalities that enable the in vivo localization of Sindbis vectors within lymph nodes and tumors are discussed. The correlation between laminin receptor expression, tumorigenesis, and Sindbis virus infection is examined. Additionally, we present alternative entry receptors for Sindbis and related alphaviruses, such as Semliki Forest virus and Venezuelan equine encephalitis virus. The review also discusses cancer treatments that are based on the alphavirus vector expression of anti-tumor agents, including tumor-associated antigens, cytokines, checkpoint inhibitors, and costimulatory immune molecules.


Subject(s)
Alphavirus , Encephalitis Virus, Venezuelan Equine , Neoplasms , Humans , Alphavirus/genetics , Genetic Vectors/genetics , Neoplasms/therapy , Genetic Therapy/methods
20.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958918

ABSTRACT

Infection by arthritogenic alphaviruses (aavs) can lead to reactive arthritis, which is characterized by inflammation and persistence of the virus; however, its mechanisms remain ill-characterized. Intriguingly, it has been shown that viral persistence still takes place in spite of robust innate and adaptive immune responses, characterized notably by the infiltration of macrophages (sources of TNF-alpha) as well as T/NK cells (sources of IFN-gamma) in the infected joint. Aavs are known to target mesenchymal stem cells (MSCs) in the synovium, and we herein tested the hypothesis that the infection of MSCs may promote the expression of immunoregulators to skew the anti-viral cellular immune responses. We compared the regulated expression via human synovial MSCs of pro-inflammatory mediators (e.g., IL-1ß, IL6, CCL2, miR-221-3p) to that of immunoregulators (e.g., IDO, TSG6, GAS6, miR146a-5p). We used human synovial tissue-derived MSCs which were infected with O'Nyong-Nyong alphavirus (ONNV, class II aav) alone, or combined with recombinant human TNF-α or IFN-γ, to mimic the clinical settings. We confirmed via qPCR and immunofluorescence that ONNV infected human synovial tissue-derived MSCs. Interestingly, ONNV alone did not regulate the expression of pro-inflammatory mediators. In contrast, IDO, TSG6, and GAS6 mRNA expression were increased in response to ONNV infection alone, but particularly when combined with both recombinant cytokines. ONNV infection equally decreased miR-146a-5p and miR-221-3p in the untreated cells and abrogated the stimulatory activity of the recombinant TNF-α but not the IFN-gamma. Our study argues for a major immunoregulatory phenotype of MSCs infected with ONNV which may favor virus persistence in the inflamed joint.


Subject(s)
Alphavirus , Arthritis, Infectious , Mesenchymal Stem Cells , MicroRNAs , Humans , Alphavirus/genetics , Alphavirus/metabolism , Immunity , Inflammation Mediators , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL