Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.648
Filter
Add more filters

Publication year range
1.
J Am Soc Nephrol ; 35(4): 410-425, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38254266

ABSTRACT

SIGNIFICANCE STATEMENT: Proteinuria predicts accelerated decline in kidney function in CKD. The pathologic mechanisms are not well known, but aberrantly filtered proteins with enzymatic activity might be involved. The urokinase-type plasminogen activator (uPA)-plasminogen cascade activates complement and generates C3a and C5a in vitro / ex vivo in urine from healthy persons when exogenous, inactive, plasminogen, and complement factors are added. Amiloride inhibits uPA and attenuates complement activation in vitro and in vivo . In conditional podocin knockout (KO) mice with severe proteinuria, blocking of uPA with monoclonal antibodies significantly reduces the urine excretion of C3a and C5a and lowers tissue NLRP3-inflammasome protein without major changes in early fibrosis markers. This mechanism provides a link to proinflammatory signaling in proteinuria with possible long-term consequences for kidney function. BACKGROUND: Persistent proteinuria is associated with tubular interstitial inflammation and predicts progressive kidney injury. In proteinuria, plasminogen is aberrantly filtered and activated by urokinase-type plasminogen activator (uPA), which promotes kidney fibrosis. We hypothesized that plasmin activates filtered complement factors C3 and C5 directly in tubular fluid, generating anaphylatoxins, and that this is attenuated by amiloride, an off-target uPA inhibitor. METHODS: Purified C3, C5, plasminogen, urokinase, and urine from healthy humans were used for in vitro / ex vivo studies. Complement activation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and ELISA. Urine and plasma from patients with diabetic nephropathy treated with high-dose amiloride and from mice with proteinuria (podocin knockout [KO]) treated with amiloride or inhibitory anti-uPA antibodies were analyzed. RESULTS: The combination of uPA and plasminogen generated anaphylatoxins C3a and C5a from intact C3 and C5 and was inhibited by amiloride. Addition of exogenous plasminogen was sufficient for urine from healthy humans to activate complement. Conditional podocin KO in mice led to severe proteinuria and C3a and C5a urine excretion, which was attenuated reversibly by amiloride treatment for 4 days and reduced by >50% by inhibitory anti-uPA antibodies without altering proteinuria. NOD-, LRR- and pyrin domain-containing protein 3-inflammasome protein was reduced with no concomitant effect on fibrosis. In patients with diabetic nephropathy, amiloride reduced urinary excretion of C3dg and sC5b-9 significantly. CONCLUSIONS: In conditions with proteinuria, uPA-plasmin generates anaphylatoxins in tubular fluid and promotes downstream complement activation sensitive to amiloride. This mechanism links proteinuria to intratubular proinflammatory signaling. In perspective, amiloride could exert reno-protective effects beyond natriuresis and BP reduction. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Increased Activity of a Renal Salt Transporter (ENaC) in Diabetic Kidney Disease, NCT01918488 and Increased Activity of ENaC in Proteinuric Kidney Transplant Recipients, NCT03036748 .


Subject(s)
Diabetic Nephropathies , Urokinase-Type Plasminogen Activator , Humans , Mice , Animals , Urokinase-Type Plasminogen Activator/metabolism , Plasminogen/metabolism , Amiloride/pharmacology , Fibrinolysin/metabolism , Inflammasomes , Mice, Inbred NOD , Proteinuria/metabolism , Complement Activation , Anaphylatoxins , Fibrosis
2.
J Neurosci ; 43(6): 965-978, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36623875

ABSTRACT

Recent findings from our laboratory demonstrated that the rostral nucleus of the solitary tract (rNST) retains some responsiveness to sugars in double-knock-out mice lacking either the T1R1+T1R3 (KO1+3) or T1R2+T1R3 (KO2+3) taste receptor heterodimers. Here, we extended these findings in the parabrachial nucleus (PBN) of male and female KO1+3 mice using warm stimuli to optimize sugar responses and employing additional concentrations and pharmacological agents to probe mechanisms. PBN T1R-independent sugar responses, including those to concentrated glucose, were more evident than in rNST. Similar to the NST, there were no "sugar-best" neurons in KO1+3 mice. Nevertheless, 1000 mm glucose activated nearly 55% of PBN neurons, with responses usually occurring in neurons that also displayed acid and amiloride-insensitive NaCl responses. In wild-type (WT) mice, concentrated sugars activated the same electrolyte-sensitive neurons but also "sugar-best" cells. Regardless of genotype, phlorizin, an inhibitor of the sodium-glucose co-transporter (SGLT), a component of a hypothesized alternate glucose-sensing mechanism, did not diminish responses to 1000 mm glucose. The efficacy of concentrated sugars for driving neurons broadly responsive to electrolytes implied an origin from Type III taste bud cells. To test this, we used the carbonic anhydrase (CA) inhibitor dorzolamide (DRZ), previously shown to inhibit amiloride-insensitive sodium responses arising from Type III taste bud cells. Dorzolamide had no effect on sugar-elicited responses in WT sugar-best PBN neurons but strongly suppressed them in WT and KO1+3 electrolyte-generalist neurons. These findings suggest a novel T1R-independent mechanism for hyperosmotic sugars, involving a CA-dependent mechanism in Type III taste bud cells.SIGNIFICANCE STATEMENT Since the discovery of Tas1r receptors for sugars and artificial sweeteners, evidence has accrued that mice lacking these receptors maintain some behavioral, physiological, and neural responsiveness to sugars. But the substrate(s) has remained elusive. Here, we recorded from parabrachial nucleus (PBN) taste neurons and identified T1R-independent responses to hyperosmotic sugars dependent on carbonic anhydrase (CA) and occurring primarily in neurons broadly responsive to NaCl and acid, implying an origin from Type III taste bud cells. The effectiveness of different sugars in driving these T1R-independent responses did not correlate with their efficacy in driving licking, suggesting they evoke a nonsweet sensation. Nevertheless, these salient responses are likely to comprise an adequate cue for learned preferences that occur in the absence of T1R receptors.


Subject(s)
Taste Buds , Taste , Animals , Female , Male , Mice , Amiloride/pharmacology , Glucose , Mice, Knockout , Sodium Chloride/pharmacology , Sugars/pharmacology , Taste/physiology , Taste Buds/physiology
3.
Am J Physiol Cell Physiol ; 326(2): C540-C550, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38145296

ABSTRACT

Vitamin D deficiency is a risk factor for exacerbation of obstructive airway disease, a hallmark of which is mucus dehydration and plugging. Calcitriol (the active form of vitamin D) deficiency in cultured human airway epithelia resulted in increased SCNN1G and ATP1B1 mRNAs encoding subunits of ENaC and the Na-K pump compared with supplemented epithelia. These drive the absorption of airway surface liquid. Consistently, calcitriol-deficient epithelia absorbed liquid faster than supplemented epithelia. Calcitriol deficiency also increased amiloride-sensitive Isc and Gt without altering Na-K pump activity, indicating the changes in amiloride-sensitivity arose from ENaC. ENaC activity can be regulated by trafficking, proteases, and channel abundance. We found the effect was likely not induced by changes to endocytosis of ENaC given that calcitriol did not affect the half-lives of amiloride-sensitive Isc and Gt. Furthermore, trypsin nominally increased Isc produced by epithelia ± calcitriol, suggesting calcitriol did not affect proteolytic activation of ENaC. Consistent with mRNA and functional data, calcitriol deficiency resulted in increased γENaC protein. These data indicate that the vitamin D receptor response controls ENaC function and subsequent liquid absorption, providing insight into the relationship between vitamin D deficiency and respiratory disease.NEW & NOTEWORTHY It is unknown why calcitriol (active vitamin D) deficiency worsens pulmonary disease outcomes. Results from mRNA, immunoblot, Ussing chamber, and absorption experiments indicate that calcitriol deficiency increases ENaC activity in human airway epithelia, decreasing apical hydration. Given that epithelial hydration is required for mucociliary transport and airway innate immune function, the increased ENaC activity observed in calcitriol-deficient epithelia may contribute to respiratory pathology observed in vitamin D deficiency.


Subject(s)
Amiloride , Vitamin D Deficiency , Humans , Vitamin D , Calcitriol/pharmacology , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Lung/metabolism , Vitamins , RNA, Messenger/genetics
4.
J Physiol ; 602(4): 737-757, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345534

ABSTRACT

Paraoxonase 3 (PON3) is expressed in the aldosterone-sensitive distal nephron, where filtered Na+ is reabsorbed mainly via the epithelial Na+ channel (ENaC) and Na+ -coupled co-transporters. We previously showed that PON3 negatively regulates ENaC through a chaperone mechanism. The present study aimed to determine the physiological role of PON3 in renal Na+ and K+ homeostasis. Pon3 knockout (KO) mice had higher amiloride-induced natriuresis and lower plasma [K+ ] at baseline. Single channel recordings in split-open tubules showed that the number of active channels per patch was significantly higher in KO mice, resulting in a higher channel activity in the absence of PON3. Although whole kidney abundance of ENaC subunits was not altered in Pon3 KOs, ENaC gamma subunit was more apically distributed within the connecting tubules and cortical collecting ducts of Pon3 KO kidneys. Additionally, small interfering RNA-mediated knockdown of PON3 in cultured mouse cortical collecting duct cells led to an increased surface abundance of ENaC gamma subunit. As a result of lower plasma [K+ ], sodium chloride co-transporter phosphorylation was enhanced in the KO kidneys, a phenotype that was corrected by a high K+ diet. Finally, PON3 expression was upregulated in mouse kidneys under dietary K+ restriction, potentially providing a mechanism to dampen ENaC activity and associated K+ secretion. Taken together, our results show that PON3 has a role in renal Na+ and K+ homeostasis through regulating ENaC functional expression in the distal nephron. KEY POINTS: Paraoxonase 3 (PON3) is expressed in the distal nephron of mouse kidneys and functions as a molecular chaperone to reduce epithelial Na+ channel (ENaC) expression and activity in heterologous expression systems. We examined the physiological role of PON3 in renal Na+ and K+ handling using a Pon3 knockout (KO) mouse model. At baseline, Pon3 KO mice had lower blood [K+ ], more functional ENaC in connecting tubules/cortical collecting ducts, higher amiloride-induced natriuresis, and enhanced sodium chloride co-transporter (NCC) phosphorylation. Upon challenge with a high K+ diet, Pon3 KO mice had normalized blood [K+ ] and -NCC phosphorylation but lower circulating aldosterone levels compared to their littermate controls. Kidney PON3 abundance was altered in mice under dietary K+ loading or K+ restriction, providing a potential mechanism for regulating ENaC functional expression and renal Na+ and K+ homeostasis in the distal nephron.


Subject(s)
Amiloride , Symporters , Mice , Animals , Amiloride/pharmacology , Aryldialkylphosphatase/metabolism , Epithelial Sodium Channels/metabolism , Aldosterone/metabolism , Sodium Chloride/metabolism , Sodium/metabolism , Nephrons/metabolism
5.
Pflugers Arch ; 476(1): 101-110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37770586

ABSTRACT

Acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons play an important role in inflammatory pain. The objective of this study is to observe the regulatory role of ASICs in monosodium urate (MSU) crystal-induced gout pain and explore the basis for ASICs in DRG neurons as a target for gout pain treatment. The gout arthritis model was induced by injecting MSU crystals into the ankle joint of mice. The circumference of the ankle joint was used to evaluate the degree of swelling; the von Frey filaments were used to determine the withdrawal threshold of the paw. ASIC currents and action potentials (APs) were recorded by patch clamp technique in DRG neurons. The results displayed that injecting MSU crystals caused ankle edema and mechanical hyperalgesia of the paw, which was relieved after amiloride treatment. The ASIC currents in DRG neurons were increased to a peak on the second day after injecting MSU crystals, which were decreased after amiloride treatment. MSU treatment increased the current density of ASICs in different diameter DRG cells. MSU treatment does not change the characteristics of AP. The results suggest that ASICs in DRG neurons participate in MSU crystal-induced gout pain.


Subject(s)
Gout , Uric Acid , Mice , Animals , Uric Acid/pharmacology , Acid Sensing Ion Channels , Amiloride , Gout/chemically induced , Pain
6.
Am J Physiol Renal Physiol ; 327(3): F435-F449, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38779754

ABSTRACT

We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.


Subject(s)
Epithelial Sodium Channels , Mechanistic Target of Rapamycin Complex 2 , Natriuresis , Rats, Inbred Dahl , Sodium Chloride, Dietary , Solute Carrier Family 12, Member 3 , Animals , Epithelial Sodium Channels/metabolism , Natriuresis/drug effects , Mechanistic Target of Rapamycin Complex 2/metabolism , Male , Solute Carrier Family 12, Member 3/metabolism , Hypertension/metabolism , Hypertension/drug therapy , Hypertension/physiopathology , Kidney/drug effects , Kidney/metabolism , Disease Models, Animal , Rats , Amiloride/pharmacology , Amiloride/analogs & derivatives , Blood Pressure/drug effects , Phosphorylation , Signal Transduction/drug effects , Indoles , Purines
7.
Am J Physiol Renal Physiol ; 326(6): F1066-F1077, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634134

ABSTRACT

The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.


Subject(s)
Epithelial Sodium Channels , Proteolysis , Sodium , Animals , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/genetics , Male , Female , Sodium/metabolism , Kidney Tubules, Collecting/metabolism , Homeostasis , Furin/metabolism , Furin/genetics , Mice , Colon/metabolism , Potassium/metabolism , Diet, Sodium-Restricted , Mice, 129 Strain , Mutation , Amiloride/pharmacology
8.
Am J Physiol Renal Physiol ; 327(1): F37-F48, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38779752

ABSTRACT

Interleukin (IL)-17A contributes to hypertension in preclinical models. T helper 17 and dendritic cells are activated by NaCl, which could involve the epithelial Na+ channel (ENaC). We hypothesized that the ENaC blocker amiloride reduces plasma IL-17A and related cytokines in patients with hypertension. Concentrations of IL-17A, IFN-γ, TNF, IL-6, IL-1ß, and IL-10 were determined by immunoassays in plasma from two patient cohorts before and after amiloride treatment: 1) patients with type 2 diabetes mellitus (T2DM) and treatment-resistant hypertension (n = 69, amiloride 5-10 mg/day for 8 wk) and 2) patients with hypertension and type 1 diabetes mellitus (T1DM) (n = 29) on standardized salt intake (amiloride 20-40 mg/day, 2 days). Plasma and tissue from ANG II-hypertensive mice with T1DM treated with amiloride (2 mg/kg/day, 4 days) were analyzed. The effect of amiloride and benzamil on macrophage cytokines was determined in vitro. Plasma cytokines showed higher concentrations (IL-17A ∼40-fold) in patients with T2DM compared with T1DM. In patients with T2DM, amiloride had no effect on IL-17A but lowered TNF and IL-6. In patients with T1DM, amiloride had no effect on IL-17A but increased TNF. In both cohorts, blood pressure decline and plasma K+ increase did not relate to plasma cytokine changes. In mice, amiloride exerted no effect on IL-17A in the plasma, kidney, aorta, or left cardiac ventricle but increased TNF in cardiac and kidney tissues. In lipopolysaccharide-stimulated human THP-1 macrophages, amiloride and benzamil (from 1 nmol/L) decreased TNF, IL-6, IL-10, and IL-1ß. In conclusion, inhibition of ENaC by amiloride reduces proinflammatory cytokines TNF and IL-6 but not IL-17A in patients with T2DM, potentially by a direct action on macrophages.NEW & NOTEWORTHY ENaC activity may contribute to macrophage-derived cytokine release, since amiloride exerts anti-inflammatory effects by suppression of TNF and IL-6 cytokines in patients with resistant hypertension and type 2 diabetes and in THP-1-derived macrophages in vitro.


Subject(s)
Amiloride , Diabetes Mellitus, Type 2 , Epithelial Sodium Channel Blockers , Hypertension , Interleukin-17 , Interleukin-6 , Tumor Necrosis Factor-alpha , Amiloride/pharmacology , Amiloride/therapeutic use , Humans , Interleukin-17/blood , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/immunology , Interleukin-6/blood , Male , Middle Aged , Hypertension/drug therapy , Hypertension/blood , Female , Epithelial Sodium Channel Blockers/pharmacology , Tumor Necrosis Factor-alpha/blood , Aged , Mice , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/drug effects , Mice, Inbred C57BL , Antihypertensive Agents/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Blood Pressure/drug effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/blood
9.
Am J Physiol Renal Physiol ; 327(1): F158-F170, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38779755

ABSTRACT

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared with control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelial Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ levels in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.NEW & NOTEWORTHY Neither low dietary K+ intake nor high dietary K+ intake effectively modulates renal K+ excretion and K+ homeostasis in STZ mice, which is closely related to the abnormality of ENaC expression and activity. SGLT2 inhibitor increases urinary K+ excretion and reduces plasma K+ level in STZ mice under high dietary K+ intake, an effect that may be partly due to the upregulation of ENaC activity.


Subject(s)
Diabetes Mellitus, Experimental , Epithelial Sodium Channels , Potassium, Dietary , Potassium , Animals , Diabetes Mellitus, Experimental/metabolism , Potassium/metabolism , Potassium/urine , Male , Potassium, Dietary/metabolism , Epithelial Sodium Channels/metabolism , Mice, Inbred C57BL , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Mice , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/physiopathology , Kidney/metabolism , Kidney/drug effects , Kidney/physiopathology , Hypokalemia/metabolism , Amiloride/pharmacology , Renal Elimination/drug effects , Homeostasis , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , Glucosides/pharmacology , Streptozocin , Benzhydryl Compounds , Sodium-Glucose Transporter 2
10.
J Neurophysiol ; 131(1): 124-136, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38116604

ABSTRACT

Previous work has shown that activation of tiger salamander retinal radial glial cells by extracellular ATP induces a pronounced extracellular acidification, which has been proposed to be a potent modulator of neurotransmitter release. This study demonstrates that low micromolar concentrations of extracellular ATP similarly induce significant H+ effluxes from Müller cells isolated from the axolotl retina. Müller cells were enzymatically isolated from axolotl retina and H+ fluxes were measured from individual cells using self-referencing H+-selective microelectrodes. The increased H+ efflux from axolotl Müller cells induced by extracellular ATP required activation of metabotropic purinergic receptors and was dependent upon calcium released from internal stores. We further found that the ATP-evoked increase in H+ efflux from Müller cells of both tiger salamander and axolotl were sensitive to pharmacological agents known to interrupt calmodulin and protein kinase C (PKC) activity: chlorpromazine (CLP), trifluoperazine (TFP), and W-7 (all calmodulin inhibitors) and chelerythrine, a PKC inhibitor, all attenuated ATP-elicited increases in H+ efflux. ATP-initiated H+ fluxes of axolotl Müller cells were also significantly reduced by amiloride, suggesting a significant contribution by sodium-hydrogen exchangers (NHEs). In addition, α-cyano-4-hydroxycinnamate (4-cin), a monocarboxylate transport (MCT) inhibitor, also reduced the ATP-induced increase in H+ efflux in both axolotl and tiger salamander Müller cells, and when combined with amiloride, abolished ATP-evoked increase in H+ efflux. These data suggest that axolotl Müller cells are likely to be an excellent model system to understand the cell-signaling pathways regulating H+ release from glia and the role this may play in modulating neuronal signaling.NEW & NOTEWORTHY Glial cells are a key structural part of the tripartite synapse and have been suggested to regulate synaptic transmission, but the regulatory mechanisms remain unclear. We show that extracellular ATP, a potent glial cell activator, induces H+ efflux from axolotl retinal Müller (glial) cells through a calcium-dependent pathway that is likely to involve calmodulin, PKC, Na+/H+ exchange, and monocarboxylate transport, and suggest that such H+ release may play a key role in modulating neuronal transmission.


Subject(s)
Ambystoma mexicanum , Ependymoglial Cells , Animals , Ependymoglial Cells/metabolism , Ambystoma mexicanum/metabolism , Calmodulin/metabolism , Calcium/metabolism , Amiloride/metabolism , Adenosine Triphosphate/metabolism , Neuroglia/metabolism , Retina
11.
Exp Physiol ; 109(5): 766-778, 2024 May.
Article in English | MEDLINE | ID: mdl-38551893

ABSTRACT

It has been proposed that diuretics can improve renal tissue oxygenation through inhibition of tubular sodium reabsorption and reduced metabolic demand. However, the impact of clinically used diuretic drugs on the renal cortical and medullary microcirculation is unclear. Therefore, we examined the effects of three commonly used diuretics, at clinically relevant doses, on renal cortical and medullary perfusion and oxygenation in non-anaesthetised healthy sheep. Merino ewes received acetazolamide (250 mg; n = 9), furosemide (20 mg; n = 10) or amiloride (10 mg; n = 7) intravenously. Systemic and renal haemodynamics, renal cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ , and renal function were then monitored for up to 8 h post-treatment. The peak diuretic response occurred 2 h (99.4 ± 14.8 mL/h) after acetazolamide, at which stage cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ were not significantly different from their baseline levels. The peak diuretic response to furosemide occurred at 1 h (196.5 ± 12.3 mL/h) post-treatment but there were no significant changes in cortical and medullary tissue oxygenation during this period. However, cortical tissue P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fell from 40.1 ± 3.8 mmHg at baseline to 17.2 ± 4.4 mmHg at 3 h and to 20.5 ± 5.3 mmHg at 6 h after furosemide administration. Amiloride did not produce a diuretic response and was not associated with significant changes in cortical or medullary tissue oxygenation. In conclusion, clinically relevant doses of diuretic agents did not improve regional renal tissue oxygenation in healthy animals during the 8 h experimentation period. On the contrary, rebound renal cortical hypoxia may develop after dissipation of furosemide-induced diuresis.


Subject(s)
Acetazolamide , Amiloride , Diuretics , Furosemide , Kidney Cortex , Kidney Medulla , Animals , Furosemide/pharmacology , Acetazolamide/pharmacology , Amiloride/pharmacology , Diuretics/pharmacology , Sheep , Female , Kidney Cortex/drug effects , Kidney Cortex/metabolism , Kidney Medulla/drug effects , Kidney Medulla/metabolism , Oxygen/metabolism , Hemodynamics/drug effects , Oxygen Consumption/drug effects
12.
Curr Opin Pediatr ; 36(2): 211-218, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37909881

ABSTRACT

PURPOSE OF REVIEW: Hypertension, commonly known as high blood pressure, is a widespread health condition affecting a large number of individuals across the globe. Although lifestyle choices and environmental factors are known to have a significant impact on its development, there is growing recognition of the influence of genetic factors in the pathogenesis of hypertension. This review specifically focuses on the hereditary causes of hypertension that are associated with increased sodium transport through the thiazide-sensitive NaCl cotransporter (NCC) or amiloride-sensitive epithelial sodium channel (ENaC), crucial mechanisms involved in regulating blood pressure in the kidneys. By examining genetic mutations and signaling molecules linked to the dysregulation of sodium transport, this review aims to deepen our understanding of the hereditary causes of hypertension and shed light on potential therapeutic targets. RECENT FINDINGS: Liddle syndrome (LS) is a genetic disorder that typically manifests early in life and is characterized by hypertension, hypokalemic metabolic alkalosis, hyporeninemia, and suppressed aldosterone secretion. This condition is primarily caused by gain-of-function mutations in ENaC. In contrast, Pseudohypoaldosteronism type II (PHAII) is marked by hyperkalemia and hypertension, alongside other clinical features such as hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. PHAII results from overactivations of NCC, brought about by gain-of-function mutations in its upstream signaling molecules, including WNK1 (with no lysine (K) 1), WNK4, Kelch-like 3 (KLHL3), and cullin3 (CUL3). SUMMARY: NCC and ENaC are integral components, and their malfunctions lead to disorders like LS and PHAII, hereditary causes of hypertension. Current treatments for LS involve ENaC blockers (e.g., triamterene and amiloride) in conjunction with low-sodium diets, effectively normalizing blood pressure and potassium levels. In PHAII, thiazide diuretics, which inhibit NCC, are the mainstay treatment, albeit with some limitations and potential side effects. Ongoing research in developing alternative treatments, including small molecules targeting key regulators, holds promise for more effective and tailored hypertension solutions.


Subject(s)
Hypertension , Pseudohypoaldosteronism , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Amiloride/metabolism , Hypertension/genetics , Hypertension/complications , Kidney/metabolism , Pseudohypoaldosteronism/diagnosis , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/metabolism , Sodium/metabolism
13.
Bioorg Med Chem ; 99: 117603, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38246115

ABSTRACT

NHE5, an isoform of the Na+/H+ exchanger (NHE) protein, is an ion-transporting membrane protein that regulates intracellular pH and is highly expressed in colorectal adenocarcinoma. Therefore, we hypothesized that NHE5 inhibitors can be used as anticancer drugs. However, because NHE1 is ubiquitously expressed in all cells, it is extremely important to demonstrate its selective inhibitory activity against NHE5. We used amiloride, an NHE non-selective inhibitor, as a lead compound and created UTX-143, which has NHE5-selective inhibitory activity, using a structure-activity relationship approach. UTX-143 showed selective cytotoxic effects on cancer cells and reduced the migratory and invasive abilities of cancer cells. These results suggest a new concept wherein drugs exhibit cancer-specific cytotoxic effects through selective inhibition of NHE5 and the possibility of UTX-143 as a lead NHE5-selective inhibitor.


Subject(s)
Amiloride , Sodium , Amiloride/pharmacology , Sodium/metabolism , Sodium-Hydrogen Exchangers/metabolism , Membrane Proteins/metabolism , Hydrogen , Hydrogen-Ion Concentration
14.
Biosci Biotechnol Biochem ; 88(2): 203-205, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37947260

ABSTRACT

Licking behavior with various salts in transmembrane channel-like 4 (Tmc4) knockout (KO) mice was observed. In Tmc4 KO mice, a significant decrease in sensitivity to chloride salts, such as NaCl, KCl, and NH4Cl, was observed, while no significant decrease in sensitivity to Na-gluconate was observed. This finding suggests that TMC4 may be involved in the detection of chloride taste.


Subject(s)
Chlorides , Salts , Animals , Mice , Amiloride , Mice, Knockout , Potassium Chloride/pharmacology , Taste
15.
Arch Pharm (Weinheim) ; 357(8): e2400063, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38704748

ABSTRACT

Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease (CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-dependent, we investigated the effect of low exposition to lithium in a long-term experimental rat model. Rats were fed with a normal diet (control group), with the addition of lithium (Li+ group), or with lithium and amiloride (Li+/Ami group) for 6 months, allowing obtaining low plasma lithium concentrations (0.25 ± 0.06 and 0.43 ± 0.16 mmol/L, respectively). Exposition to low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of kidney tubules, which were identified as collecting ducts (CDs) on immunofluorescent staining. Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and microcystic dilations were observed. The ratio between principal cells and intercalated cells was higher in microcystic than in hypertrophied tubules. There was no correlation between AQP2 messenger RNA levels and cellular remodeling of the CD. Additional amiloride treatment in the Li+/Ami group did not allow consistent morphometric and cellular composition changes compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic dilations of the CD, with differential cellular composition in hypertrophied and microcystic CDs, suggesting different underlying cellular mechanisms.


Subject(s)
Amiloride , Aquaporin 2 , Diabetes Insipidus, Nephrogenic , Disease Models, Animal , Kidney Tubules, Collecting , Animals , Diabetes Insipidus, Nephrogenic/chemically induced , Diabetes Insipidus, Nephrogenic/prevention & control , Kidney Tubules, Collecting/drug effects , Kidney Tubules, Collecting/pathology , Kidney Tubules, Collecting/metabolism , Male , Rats , Aquaporin 2/metabolism , Amiloride/pharmacology , Rats, Wistar , Time Factors , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/chemically induced , Lithium/pharmacology , Dose-Response Relationship, Drug
16.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612396

ABSTRACT

Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.


Subject(s)
Amiloride , Benzamidines , Humans , Molecular Docking Simulation , Acid Sensing Ion Channels , Pain
17.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338690

ABSTRACT

Tafalgin (Taf) is a tetrapeptide opioid used in clinical practice in Russia as an analgesic drug for subcutaneous administration as a solution (4 mg/mL; concentration of 9 mM). We found that the acid-sensing ion channels (ASICs) are another molecular target for this molecule. ASICs are proton-gated sodium channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Using electrophysiological methods, we demonstrated that Taf could increase the integral current through heterologically expressed ASIC with half-maximal effective concentration values of 0.09 mM and 0.3 mM for rat and human ASIC3, respectively, and 1 mM for ASIC1a. The molecular mechanism of Taf action was shown to be binding to the channel in the resting state and slowing down the rate of desensitization. Taf did not compete for binding sites with both protons and ASIC3 antagonists, such as APETx2 and amiloride (Ami). Moreover, Taf and Ami together caused an unusual synergistic effect, which was manifested itself as the development of a pronounced second desensitizing component. Thus, the ability of Taf to act as a positive allosteric modulator of these channels could potentially cause promiscuous effects in clinical practice. This fact must be considered in patients' treatment.


Subject(s)
Acid Sensing Ion Channels , Analgesics, Opioid , Rats , Humans , Animals , Acid Sensing Ion Channels/metabolism , Analgesics, Opioid/pharmacology , Amiloride/pharmacology , Protons , Binding Sites
18.
J Physiol ; 601(9): 1625-1653, 2023 05.
Article in English | MEDLINE | ID: mdl-36200489

ABSTRACT

Acid-sensing ion channels (ASICs) are members of the diverse family of degenerin/epithelial sodium channels (DEG/ENaCs). They perform a wide range of physiological roles in healthy organisms, including in gut function and synaptic transmission, but also play important roles in disease, as acidosis is a hallmark of painful inflammatory and ischaemic conditions. We performed a screen for acid sensitivity on all 30 subunits of the Caenorhabditis elegans DEG/ENaC family using two-electrode voltage clamp in Xenopus oocytes. We found two groups of acid-sensitive DEG/ENaCs characterised by being either inhibited or activated by increasing proton concentrations. Three of these acid-sensitive C. elegans DEG/ENaCs were activated by acidic pH, making them functionally similar to the vertebrate ASICs. We also identified three new members of the acid-inhibited DEG/ENaC group, giving a total of seven additional acid-sensitive channels. We observed sensitivity to the anti-hypertensive drug amiloride as well as modulation by the trace element zinc. Acid-sensitive DEG/ENaCs were found to be expressed in both neurons and non-neuronal tissue, highlighting the likely functional diversity of these channels. Our findings provide a framework to exploit the C. elegans channels as models to study the function of these acid-sensing channels in vivo, as well as to study them as potential targets for anti-helminthic drugs. KEY POINTS: Acidosis plays many roles in healthy physiology, including synaptic transmission and gut function, but is also a key feature of inflammatory pain, ischaemia and many other conditions. Cells monitor acidosis of their surroundings via pH-sensing channels, including the acid-sensing ion channels (ASICs). These are members of the degenerin/epithelial sodium channel (DEG/ENaC) family, along with, as the name suggests, vertebrate ENaCs and degenerins of the roundworm Caenorhabditis elegans. By screening all 30 C. elegans DEG/ENaCs for pH dependence, we describe, for the first time, three acid-activated members, as well as three additional acid-inhibited channels. We surveyed both groups for sensitivity to amiloride and zinc; like their mammalian counterparts, their currents can be blocked, enhanced or unaffected by these modulators. Likewise, they exhibit diverse ion selectivity. Our findings underline the diversity of acid-sensitive DEG/ENaCs across species and provide a comparative resource for better understanding the molecular basis of their function.


Subject(s)
Caenorhabditis elegans , Epithelial Sodium Channels , Animals , Epithelial Sodium Channels/physiology , Degenerin Sodium Channels/physiology , Acid Sensing Ion Channels , Amiloride/pharmacology , Mammals
19.
J Biol Chem ; 298(5): 101847, 2022 05.
Article in English | MEDLINE | ID: mdl-35314195

ABSTRACT

Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling-mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.


Subject(s)
Capsaicin , Colitis , TRPV Cation Channels , Amiloride , Animals , Capsaicin/pharmacology , Chlorides/metabolism , Colitis/drug therapy , Colon/metabolism , Glucose , Mice , Mice, Knockout , Ouabain , Sodium/metabolism , TRPV Cation Channels/antagonists & inhibitors
20.
Am J Physiol Renal Physiol ; 325(4): F426-F435, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37560772

ABSTRACT

Albuminuria in kidney transplant recipients (KTRs) is associated with hypertension and aberrant glomerular filtration of serine proteases that may proteolytically activate the epithelial Na+ channel (ENaC). The present nonrandomized, pharmacodynamic intervention study aimed to investigate if inhibition of ENaC increases Na+ excretion and reduces extracellular volume in KTRs dependent on the presence of albuminuria. KTRs with and without albuminuria (albumin-to-creatinine ratio > 300 mg/g, n = 7, and <30 mg/g, n = 7, respectively) were included and ingested a diet with fixed Na+ content (150 mmol/day) for 5 days. On the last day, amiloride at 10 mg was administered twice. Body weight, 24-h urine electrolyte excretion, body water content, and ambulatory blood pressure as well as plasma renin, angiotensin II, and aldosterone concentrations were determined before and after amiloride. Amiloride led to a significant decrease in body weight, increase in 24-h urinary Na+ excretion, and decrease in 24-h urinary K+ excretion in both groups. Urine output increased in the nonalbuminuric group only. There was no change in plasma renin, aldosterone, and angiotensin II concentrations after amiloride, whereas a significant decrease in nocturnal systolic blood pressure and increase in 24-h urine aldosterone excretion was observed in albuminuric KTRs only. There was a significant correlation between 24-h urinary albumin excretion and amiloride-induced 24-h urinary Na+ excretion. In conclusion, ENaC activity contributes to Na+ and water retention in KTRs with and without albuminuria. ENaC is a relevant pharmacological target in KTRs; however, larger and long-term studies are needed to evaluate whether the magnitude of this effect depends on the presence of albuminuria.NEW & NOTEWORTHY Amiloride has a significant natriuretic effect in kidney transplant recipients (KTRs) that relates to urinary albumin excretion. The epithelial Na+ channel may be a relevant direct pharmacological target to counter Na+ retention and hypertension in KTRs. Epithelial Na+ channel blockers should be further investigated as a mean to mitigate Na+ and water retention and to potentially obtain optimal blood pressure control in KTRs.


Subject(s)
Hypertension , Kidney Transplantation , Water-Electrolyte Imbalance , Humans , Amiloride/pharmacology , Amiloride/therapeutic use , Albuminuria , Natriuresis , Kidney Transplantation/adverse effects , Renin , Aldosterone , Angiotensin II , Blood Pressure Monitoring, Ambulatory , Sodium/metabolism , Weight Loss , Body Weight , Water , Epithelial Sodium Channels
SELECTION OF CITATIONS
SEARCH DETAIL