Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.226
Filter
Add more filters

Publication year range
1.
Cell ; 185(20): 3739-3752.e18, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36113465

ABSTRACT

Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.


Subject(s)
Cystine , Protons , Amino Acid Transport Systems/metabolism , Cysteine/metabolism , Cystine/metabolism , Humans , Lysosomes/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Cell ; 184(5): 1245-1261.e21, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636132

ABSTRACT

How early events in effector T cell (TEFF) subsets tune memory T cell (TMEM) responses remains incompletely understood. Here, we systematically investigated metabolic factors in fate determination of TEFF and TMEM cells using in vivo pooled CRISPR screening, focusing on negative regulators of TMEM responses. We found that amino acid transporters Slc7a1 and Slc38a2 dampened the magnitude of TMEM differentiation, in part through modulating mTORC1 signaling. By integrating genetic and systems approaches, we identified cellular and metabolic heterogeneity among TEFF cells, with terminal effector differentiation associated with establishment of metabolic quiescence and exit from the cell cycle. Importantly, Pofut1 (protein-O-fucosyltransferase-1) linked GDP-fucose availability to downstream Notch-Rbpj signaling, and perturbation of this nutrient signaling axis blocked terminal effector differentiation but drove context-dependent TEFF proliferation and TMEM development. Our study establishes that nutrient uptake and signaling are key determinants of T cell fate and shape the quantity and quality of TMEM responses.


Subject(s)
Amino Acids/metabolism , CD8-Positive T-Lymphocytes/cytology , Immunologic Memory , Signal Transduction , Amino Acid Transport Systems/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems , Cell Cycle , Cell Differentiation , Disease Models, Animal , Female , Gene Knock-In Techniques , Lymphocytic Choriomeningitis/immunology , Male , Mice , Mice, Transgenic , Precursor Cells, T-Lymphoid/cytology
3.
Cell ; 171(3): 642-654.e12, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053970

ABSTRACT

The mTORC1 kinase is a master growth regulator that senses many environmental cues, including amino acids. Activation of mTORC1 by arginine requires SLC38A9, a poorly understood lysosomal membrane protein with homology to amino acid transporters. Here, we validate that SLC38A9 is an arginine sensor for the mTORC1 pathway, and we uncover an unexpectedly central role for SLC38A9 in amino acid homeostasis. SLC38A9 mediates the transport, in an arginine-regulated fashion, of many essential amino acids out of lysosomes, including leucine, which mTORC1 senses through the cytosolic Sestrin proteins. SLC38A9 is necessary for leucine generated via lysosomal proteolysis to exit lysosomes and activate mTORC1. Pancreatic cancer cells, which use macropinocytosed protein as a nutrient source, require SLC38A9 to form tumors. Thus, through SLC38A9, arginine serves as a lysosomal messenger that couples mTORC1 activation to the release from lysosomes of the essential amino acids needed to drive cell growth.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids, Essential/metabolism , Lysosomes/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Amino Acid Transport Systems/chemistry , Amino Acid Transport Systems/genetics , Animals , Arginine/metabolism , Cell Line , Cell Line, Tumor , Humans , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Sequence Alignment
4.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34717796

ABSTRACT

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Subject(s)
Amino Acid Transport Systems/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Regulation , Amino Acid Transport Systems/metabolism , Autoimmunity , Biomarkers , Cytokines/genetics , Cytokines/metabolism , Disease Susceptibility , Energy Metabolism , Humans , Immunity , Signal Transduction
5.
Mol Cell ; 80(3): 384-395, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32997964

ABSTRACT

Metabolism reprogramming is critical for both cancer progression and effective immune responses in the tumor microenvironment. Amino acid metabolism in different cells and their cross-talk shape tumor immunity and therapy efficacy in patients with cancer. In this review, we focus on multiple amino acids and their transporters, solute carrier (SLC) members. We discuss their involvement in regulation of immune responses in the tumor microenvironment and assess their associations with cancer immunotherapy, chemotherapy, and radiation therapy, and we review their potential as targets for cancer therapy. We stress the necessity to understand individual amino acids and their transporters in different cell subsets, the molecular intersection between amino acid metabolism, and effective T cell immunity and its relevance in cancer therapies.


Subject(s)
Amino Acid Transport Systems/metabolism , Neoplasms/immunology , Solute Carrier Proteins/metabolism , Amino Acid Transport Systems/physiology , Amino Acids/metabolism , Animals , Humans , Immunity , Immunotherapy , Membrane Transport Proteins/physiology , Neoplasms/pathology , Solute Carrier Proteins/physiology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology
6.
Cell ; 147(5): 1104-17, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22118465

ABSTRACT

The TORC1 kinase signaling complex is a key determinant of cell growth that senses nutritional status and responds by coordinating diverse cellular processes including transcription, translation, and autophagy. Here, we demonstrate that TORC1 modulates the composition of plasma membrane (PM) proteins by regulating ubiquitin-mediated endocytosis. The mechanism involves the Npr1 kinase, a negative regulator of endocytosis that is itself negatively regulated by TORC1. We show that Npr1 inhibits the activity of Art1, an arrestin-like adaptor protein that promotes endocytosis by targeting the Rsp5 ubiquitin ligase to specific PM cargoes. Npr1 antagonizes Art1-mediated endocytosis via N-terminal phosphorylation, a modification that prevents Art1 association with the PM. Thus, our study adds ubiquitin ligase targeting and control of endocytosis to the known effector mechanisms of TORC1, underscoring how TORC1 coordinates ubiquitin-mediated endocytosis with protein synthesis and autophagy in order to regulate cell growth.


Subject(s)
DNA-Binding Proteins/metabolism , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Transcription Factors/metabolism , Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Cell Membrane/metabolism , Endocytosis , Phosphorylation , Stress, Physiological , Ubiquitin-Protein Ligases/metabolism
7.
Mol Cell ; 70(1): 120-135.e8, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625033

ABSTRACT

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.


Subject(s)
Autophagy , Galectins/metabolism , Lysosomes/enzymology , TOR Serine-Threonine Kinases/metabolism , Tuberculosis/enzymology , AMP-Activated Protein Kinases/metabolism , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Animals , Disease Models, Animal , Female , Galectins/deficiency , Galectins/genetics , HEK293 Cells , HeLa Cells , Humans , Lysosomes/microbiology , Lysosomes/pathology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Multiprotein Complexes , Mycobacterium tuberculosis/pathogenicity , Signal Transduction , THP-1 Cells , TOR Serine-Threonine Kinases/genetics , Tuberculosis/genetics , Tuberculosis/microbiology , Tuberculosis/pathology
8.
J Biol Chem ; 300(5): 107270, 2024 May.
Article in English | MEDLINE | ID: mdl-38599381

ABSTRACT

Higher demand for nutrients including glucose is characteristic of cancer. "Starving cancer" has been pursued to curb tumor progression. An intriguing regime is to inhibit glucose transporter GLUT1 in cancer cells. In addition, during cancer progression, cancer cells may suffer from insufficient glucose supply. Yet, cancer cells can somehow tolerate glucose starvation. Uncovering the underlying mechanisms shall shed insight into cancer progression and benefit cancer therapy. TFE3 is a transcription factor known to activate autophagic genes. Physiological TFE3 activity is regulated by phosphorylation-triggered translocation responsive to nutrient status. We recently reported TFE3 constitutively localizes to the cell nucleus and promotes cell proliferation in kidney cancer even under nutrient replete condition. It remains unclear whether and how TFE3 responds to glucose starvation. In this study, we show TFE3 promotes kidney cancer cell resistance to glucose starvation by exposing cells to physiologically relevant glucose concentration. We find glucose starvation triggers TFE3 protein stabilization through increasing its O-GlcNAcylation. Furthermore, through an unbiased functional genomic study, we identify SLC36A1, a lysosomal amino acid transporter, as a TFE3 target gene sensitive to TFE3 protein level. We find SLC36A1 is overexpressed in kidney cancer, which promotes mTOR activity and kidney cancer cell proliferation. Importantly, SLC36A1 level is induced by glucose starvation through TFE3, which enhances cellular resistance to glucose starvation. Suppressing TFE3 or SLC36A1 significantly increases cellular sensitivity to GLUT1 inhibitor in kidney cancer cells. Collectively, we uncover a functional TFE3-SLC36A1 axis that responds to glucose starvation and enhances starvation tolerance in kidney cancer.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Glucose , Kidney Neoplasms , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glucose/deficiency , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Amino Acid Transport Systems , Symporters
9.
EMBO J ; 40(1): e105164, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33155685

ABSTRACT

MhsT of Bacillus halodurans is a transporter of hydrophobic amino acids and a homologue of the eukaryotic SLC6 family of Na+ -dependent symporters for amino acids, neurotransmitters, osmolytes, or creatine. The broad range of transported amino acids by MhsT prompted the investigation of the substrate recognition mechanism. Here, we report six new substrate-bound structures of MhsT, which, in conjunction with functional studies, reveal how the flexibility of a Gly-Met-Gly (GMG) motif in the unwound region of transmembrane segment 6 (TM6) is central for the recognition of substrates of different size by tailoring the binding site shape and volume. MhsT mutants, harboring substitutions within the unwound GMG loop and substrate binding pocket that mimick the binding sites of eukaryotic SLC6A18/B0AT3 and SLC6A19/B0AT1 transporters of neutral amino acids, exhibited impaired transport of aromatic amino acids that require a large binding site volume. Conservation of a general (G/A/C)ΦG motif among eukaryotic members of SLC6 family suggests a role for this loop in a common mechanism for substrate recognition and translocation by SLC6 transporters of broad substrate specificity.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Bacillus/metabolism , Binding Sites/physiology , Protein Conformation , Substrate Specificity/physiology
10.
Am J Hum Genet ; 109(2): 253-269, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35065708

ABSTRACT

Mucus obstruction is a central feature in the cystic fibrosis (CF) airways. A genome-wide association study (GWAS) of lung disease by the CF Gene Modifier Consortium (CFGMC) identified a significant locus containing two mucin genes, MUC20 and MUC4. Expression quantitative trait locus (eQTL) analysis using human nasal epithelia (HNE) from 94 CF-affected Canadians in the CFGMC demonstrated MUC4 eQTLs that mirrored the lung association pattern in the region, suggesting that MUC4 expression may mediate CF lung disease. Complications arose, however, with colocalization testing using existing methods: the locus is complex and the associated SNPs span a 0.2 Mb region with high linkage disequilibrium (LD) and evidence of allelic heterogeneity. We previously developed the Simple Sum (SS), a powerful colocalization test in regions with allelic heterogeneity, but SS assumed eQTLs to be present to achieve type I error control. Here we propose a two-stage SS (SS2) colocalization test that avoids a priori eQTL assumptions, accounts for multiple hypothesis testing and the composite null hypothesis, and enables meta-analysis. We compare SS2 to published approaches through simulation and demonstrate type I error control for all settings with the greatest power in the presence of high LD and allelic heterogeneity. Applying SS2 to the MUC20/MUC4 CF lung disease locus with eQTLs from CF HNE revealed significant colocalization with MUC4 (p = 1.31 × 10-5) rather than with MUC20. The SS2 is a powerful method to inform the responsible gene(s) at a locus and guide future functional studies. SS2 has been implemented in the application LocusFocus.


Subject(s)
Amino Acid Transport Systems/genetics , Cystic Fibrosis/genetics , Models, Statistical , Mucin-4/genetics , Mucins/genetics , Quantitative Trait Loci , Alleles , Amino Acid Transport Systems/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Gene Expression Profiling , Gene Expression Regulation , Genetic Heterogeneity , Genome, Human , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Lung/metabolism , Lung/pathology , Mucin-4/metabolism , Mucins/metabolism , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Polymorphism, Single Nucleotide
11.
Plant Cell ; 34(12): 4840-4856, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36040205

ABSTRACT

Selected ß-amino acids, such as ß-aminobutyric acid (BABA) and R-ß-homoserine (RBH), can prime plants for resistance against a broad spectrum of diseases. Here, we describe a genome-wide screen of fully annotated Arabidopsis thaliana T-DNA insertion lines for impaired in RBH-induced immunity (iri) mutants against the downy mildew pathogen Hyaloperonospora arabidopsidis, yielding 104 lines that were partially affected and four lines that were completely impaired in RBH-induced resistance (IR). We confirmed the iri1-1 mutant phenotype with an independent T-DNA insertion line in the same gene, encoding the high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER 1 (LHT1). Uptake experiments with yeast cells expressing LHT1 and mass spectrometry-based quantification of RBH and BABA in leaves of lht1 mutant and LHT1 overexpression lines revealed that LHT1 acts as the main transporter for cellular uptake and systemic distribution of RBH and BABA. Subsequent characterization of lht1 mutant and LHT1 overexpression lines for IR and growth responses revealed that the levels of LHT1-mediated uptake determine the tradeoff between IR and plant growth by RBH and BABA.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Amino Acids/metabolism , Arabidopsis/metabolism , Plant Development , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Plant Diseases
12.
Nature ; 572(7771): 614-619, 2019 08.
Article in English | MEDLINE | ID: mdl-31435015

ABSTRACT

Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health.


Subject(s)
Adipose Tissue, Brown/metabolism , Amino Acid Transport Systems/metabolism , Amino Acids, Branched-Chain/metabolism , Energy Metabolism , Homeostasis , Mitochondrial Proteins/metabolism , Solute Carrier Proteins/metabolism , Thermogenesis , Adipose Tissue, Brown/cytology , Animals , Cold Temperature , Glucose Intolerance/metabolism , Humans , Male , Mice , Mitochondria/metabolism , Obesity/metabolism
13.
Proc Natl Acad Sci U S A ; 119(41): e2205874119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191186

ABSTRACT

ATB[Formula: see text] (SLC6A14) is a member of the amino acid transporter branch of the SLC6 family along with GlyT1 (SLC6A9) and GlyT2 (SLC6A5), two glycine-specific transporters coupled to 2:1 and 3:1 Na[Formula: see text]:Cl[Formula: see text], respectively. In contrast, ATB[Formula: see text] exhibits broad substrate specificity for all neutral and cationic amino acids, and its ionic coupling remains unsettled. Using the reversal potential slope method, we demonstrate a 3:1:1 Na[Formula: see text]:Cl[Formula: see text]:Gly stoichiometry for ATB[Formula: see text] that is consistent with its 2.1 e/Gly charge coupling. Like GlyT2, ATB[Formula: see text] behaves as a unidirectional transporter with virtually no glycine efflux at negative potentials after uptake, except by heteroexchange as remarkably shown by leucine activation of NMDARs in Xenopus oocytes coexpressing both membrane proteins. Analysis and computational modeling of the charge movement of ATB[Formula: see text] reveal a higher affinity for sodium in the absence of substrate than GlyT2 and a gating mechanism that locks Na[Formula: see text] into the apo-transporter at depolarized potentials. A 3:1 Na[Formula: see text]:Cl[Formula: see text] stoichiometry justifies the concentrative transport properties of ATB[Formula: see text] and explains its trophic role in tumor growth, while rationalizing its phylogenetic proximity to GlyT2 despite their extreme divergence in specificity.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Sodium , Amino Acid Transport Systems/metabolism , Amino Acids , Glycine/metabolism , Glycine Plasma Membrane Transport Proteins/chemistry , Ions/metabolism , Leucine , Phylogeny , Sodium/metabolism
14.
Am J Physiol Cell Physiol ; 326(3): C866-C879, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38284122

ABSTRACT

Prevention/management of cachexia remains a critical issue in muscle wasting conditions. The branched-chain amino acids (BCAA) have anabolic properties in skeletal muscle, but their use in treating cachexia has minimal benefits. This may be related to altered BCAA metabolism consequent to the use of chemotherapy, a main cancer treatment. Since this topic is minimally studied, we investigated the effect of chemotherapy on BCAA concentrations, transporter expression, and their metabolism. L6 myotubes were treated with vehicle (1.4 µL/mL DMSO) or a chemotherapy drug cocktail, FOLFIRI [CPT-11 (20 µg/mL), leucovorin (10 µg/mL), and 5-fluorouracil (50 µg/mL)] for 24-48 h. Chemotherapy reduced myotube diameter (-43%), myofibrillar protein content (-50%), and phosphorylation of the mechanistic target of rapamycin complex 1 (mTORC1) substrate S6K1thr389 (-80%). Drug-treated myotubes exhibited decreased BCAA concentrations (-52%) and expression of their transporter, L-type amino acid transporter 1 (LAT1; -67%). BCAA transaminase BCAT2 level was increased, but there was a reduction in PP2CM (-54%), along with increased inhibitory phosphorylation of BCKD-E1αser293 (+98%), corresponding with decreased BCKD enzyme activity (-23%) in chemotherapy-treated myotubes. Decreases in BCAA concentrations were a later response, preceded by decreases in LAT1 and BCKD activity. Although supplementation with the BCAA restored myotube BCAA levels, it had minimal effects on preventing the loss of myofibrillar proteins. However, RNAi-mediated depletion of neural precursor cell-expressed developmentally downregulated gene 4 (NEdd4), the protein ligase responsible for ubiquitin-dependent degradation of LAT1, attenuated the effects of chemotherapy on BCAA concentrations, anabolic signaling, protein synthesis, and myofibrillar protein abundance. Thus, if our findings are validated in preclinical models, interventions regulating muscle amino acid transporters might represent a promising strategy to treat cachexia.NEW & NOTEWORTHY This is the first study to attenuate chemotherapy-induced myotube atrophy by manipulating a BCAA transporter. Our findings suggest that positive regulation of amino acid transporters may be a promising strategy to treat cachexia.


Subject(s)
Amino Acids, Branched-Chain , Cachexia , Humans , Amino Acids, Branched-Chain/metabolism , Muscle Fibers, Skeletal/metabolism , Amino Acid Transport Systems , Atrophy
15.
Funct Integr Genomics ; 24(2): 47, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430379

ABSTRACT

Amino acid transporters (AATs) are essential integral membrane proteins that serve multiple roles, such as facilitating the transport of amino acids across cell membranes. They play a crucial role in the growth and development of plants. Phaseolus vulgaris, a significant legume crop, serves as a valuable model for studying root symbiosis. In this study, we have conducted an exploration of the AAT gene family in P. vulgaris. In this research, we identified 84 AAT genes within the P. vulgaris genome sequence and categorized them into 12 subfamilies based on their similarity and phylogenetic relationships with AATs found in Arabidopsis and rice. Interestingly, these AAT genes were not evenly distributed across the chromosomes of P. vulgaris . Instead, there was an unusual concentration of these genes located toward the outer edges of chromosomal arms. Upon conducting motif analysis and gene structural analysis, we observed a consistent presence of similar motifs and an intron-exon distribution pattern among the subfamilies. When we analyzed the expression profiles of PvAAT genes, we noted tissue-specific expression patterns. Furthermore, our investigation into AAT gene expression under rhizobial and mycorrhizal symbiotic conditions revealed that certain genes exhibited high levels of expression. Specifically, ATLa5 and LHT2 was notably upregulated under both symbiotic conditions. These findings point towards a potential role of AATs in the context of rhizobial and mycorrhizal symbiosis in P. vulgaris, in addition to their well-established regulatory functions.


Subject(s)
Arabidopsis , Phaseolus , Rhizobium , Symbiosis/genetics , Phaseolus/genetics , Phylogeny , Amino Acid Transport Systems/genetics , Cell Membrane
16.
Microbiology (Reading) ; 170(3)2024 03.
Article in English | MEDLINE | ID: mdl-38426877

ABSTRACT

When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.


Subject(s)
Amino Acid Transport Systems , Cystic Fibrosis , Pseudomonas Infections , Staphylococcal Infections , Staphylococcus aureus , Amino Acid Transport Systems/genetics , Biofilms , Cystic Fibrosis/complications , Glutamates/genetics , Glutamates/metabolism , Glutamates/pharmacology , Mutation , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/genetics , Bacterial Proteins/genetics
17.
BMC Plant Biol ; 24(1): 447, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783192

ABSTRACT

BACKGROUND: Amino acids are not only the main form of N in rice, but also are vital for its growth and development. These processes are facilitated by amino acid transporters within the plant. Despite their significance, only a few AAP amino acid transporters have been reported. RESULTS: In this study, we observed that there were differences in the expression of amino acid transporter OsAAP7 among 521 wild cultivated rice varieties, and it directly negatively correlated with tillering and grain yield per plant. We revealed that OsAAP7 protein was localized to the endoplasmic reticulum and had absorption and transport affinity for amino acids such as phenylalanine (Phe), lysine (Lys), leucine (Leu), and arginine (Arg) using subcellular localization, yeast substrate testing, fluorescent amino acid uptake, and amino acid content determination. Further hydroponic studies showed that exogenous application of amino acids Phe, Lys and Arg inhibited the growth of axillary buds in the overexpression lines, and promoted the elongation of axillary buds in the mutant lines. Finally, RNA-seq analysis showed that the expression patterns of genes related to nitrogen, auxin and cytokinin pathways were changed in axillary buds of OsAAP7 transgenic plants. CONCLUSIONS: This study revealed the gene function of OsAAP7, and found that blocking of amino acid transporter OsAAP7 with CRISPR/Cas9 technology promoted tillering and yield by determining basic and neutral amino acids accumulation in rice.


Subject(s)
Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems/genetics , Plants, Genetically Modified , Amino Acids, Neutral/metabolism , Gene Expression Regulation, Plant , Amino Acids/metabolism
18.
BMC Plant Biol ; 24(1): 515, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851681

ABSTRACT

BACKGROUND: Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS: In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the ß-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION: The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.


Subject(s)
Arabidopsis , CRISPR-Cas Systems , Plant Diseases , Tylenchoidea , Animals , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Arabidopsis/genetics , Arabidopsis/parasitology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Disease Susceptibility , Gene Knockout Techniques , Plant Diseases/parasitology , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/parasitology , Tylenchoidea/physiology
19.
Nat Methods ; 18(7): 788-798, 2021 07.
Article in English | MEDLINE | ID: mdl-34127857

ABSTRACT

Lysosomes are critical for cellular metabolism and are heterogeneously involved in various cellular processes. The ability to measure lysosomal metabolic heterogeneity is essential for understanding their physiological roles. We therefore built a single-lysosome mass spectrometry (SLMS) platform integrating lysosomal patch-clamp recording and induced nano-electrospray ionization (nanoESI)/mass spectrometry (MS) that enables concurrent metabolic and electrophysiological profiling of individual enlarged lysosomes. The accuracy and reliability of this technique were validated by supporting previous findings, such as the transportability of lysosomal cationic amino acids transporters such as PQLC2 and the lysosomal trapping of lysosomotropic, hydrophobic weak base drugs such as lidocaine. We derived metabolites from single lysosomes in various cell types and classified lysosomes into five major subpopulations based on their chemical and biological divergence. Senescence and carcinoma altered metabolic profiles of lysosomes in a type-specific manner. Thus, SLMS can open more avenues for investigating heterogeneous lysosomal metabolic changes during physiological and pathological processes.


Subject(s)
Lysosomes/metabolism , Metabolomics/methods , Patch-Clamp Techniques , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Cellular Senescence , Fibroblasts/cytology , Fibroblasts/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lidocaine/chemistry , Lidocaine/metabolism , Reproducibility of Results , Signal-To-Noise Ratio , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
20.
Plant Biotechnol J ; 22(5): 1282-1298, 2024 May.
Article in English | MEDLINE | ID: mdl-38124464

ABSTRACT

The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.


Subject(s)
Hordeum , Oryza , Hordeum/genetics , Hordeum/metabolism , Oryza/genetics , Oryza/metabolism , Phylogeny , Genes, Plant , Melanins/genetics , Melanins/metabolism , Plant Breeding , Amino Acid Transport Systems/genetics
SELECTION OF CITATIONS
SEARCH DETAIL