Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 488
Filter
Add more filters

Publication year range
1.
Biochemistry ; 63(10): 1307-1321, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38688031

ABSTRACT

In this study, we investigated the trimerization mechanism and structure of heat shock factor 1 (HSF1) using western blotting, tryptophan (Trp) fluorescence spectroscopy, and molecular modeling. First, we examined the DNA-binding domains of human (Homo sapiens), goldfish (Carassius auratus), and walleye pollock (Gadus chalcogrammus) HSF1s by mutating key residues (36 and 103) that are thought to directly affect trimer formation. Human, goldfish, and walleye pollock HSF1s contain cysteine at residue 36 but cysteine (C), tyrosine (Y), and phenylalanine (F), respectively, at residue 103. The optimal trimerization temperatures for the wild-type HSF1s of each species were found to be 42, 37, and 20 °C, respectively. Interestingly, a mutation experiment revealed that trimerization occurred at 42 °C when residue 103 was cysteine, at 37 °C when it was tyrosine, and at 20 °C when it was phenylalanine, regardless of the species. In addition, it was confirmed that when residue 103 of the three species was mutated to alanine, trimerization did not occur. This suggests that in addition to trimerization via disulfide bond formation between the cysteine residues in human HSF1, trimerization can also occur via the formation of a different type of bond between cysteine and aromatic ring residues such as tyrosine and phenylalanine. We also confirmed that at least one cysteine is required for the trimerization of HSF1s, regardless of its position (residue 36 or 103). Additionally, it was shown that the trimer formation temperature is related to growth and survival in fish.


Subject(s)
Amino Acids, Aromatic , Cysteine , Heat Shock Transcription Factors , Animals , Humans , Amino Acids, Aromatic/metabolism , Amino Acids, Aromatic/chemistry , Cysteine/chemistry , Cysteine/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Goldfish/metabolism , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/chemistry , Heat Shock Transcription Factors/genetics , Models, Molecular , Protein Domains , Protein Multimerization
2.
Small ; 20(38): e2401665, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38804888

ABSTRACT

Membraneless organelles are cellular biomolecular condensates that are formed by liquid-liquid phase separation (LLPS) of proteins and nucleic acids. LLPS is driven by multiple weak attractive forces, including intermolecular interactions mediated by aromatic amino acids. Considering the contribution of π-electron bearing side chains to protein-RNA LLPS, systematically study sought to how the composition of aromatic amino acids affects the formation of heterotypic condensates and their physical properties. For this, a library of minimalistic peptide building blocks is designed containing varying number and compositions of aromatic amino acids. It is shown that the number of aromatics in the peptide sequence affect LLPS propensity, material properties and (bio)chemical stability of peptide/RNA heterotypic condensates. The findings shed light on the contribution of aromatics' composition to the formation of heterotypic condensates. These insights can be applied for regulation of condensate material properties and improvement of their (bio)chemical stability, for various biomedical and biotechnological applications.


Subject(s)
Amino Acids, Aromatic , Peptides , Amino Acids, Aromatic/chemistry , Peptides/chemistry , RNA/chemistry , Phase Separation
3.
Langmuir ; 40(2): 1470-1486, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38174846

ABSTRACT

Peptides are able to self-organize in structural elements including cross-ß structures. Taking advantage of this tendency, in the last decades, peptides have been scrutinized as molecular elements for the development of multivalent supramolecular architectures. In this context, different classes of peptides, also with completely aromatic sequences, were proposed. Our previous studies highlighted that the (FY)3 peptide, which alternates hydrophobic phenylalanine and more hydrophilic tyrosine residues, is able to self-assemble, thanks to the formation of both polar and apolar interfaces. It was observed that the replacement of Phe and Tyr residues with other noncoded aromatic amino acids like 2-naphthylalanine (Nal) and Dopa affects the interactions among peptides with consequences on the supramolecular organization. Herein, we have investigated the self-assembling behavior of two novel (FY)3 analogues with Trp and Dopa residues in place of the Phe and Tyr ones, respectively. Additionally, PEGylation of the N-terminus was analyzed too. The supramolecular organization, morphology, and capability to gel were evaluated using complementary techniques, including fluorescence, Fourier transform infrared spectroscopy, and scanning electron microscopy. Structural periodicities along and perpendicular to the fiber axis were detected by grazing incidence wide-angle X-ray scattering. Finally, molecular dynamics studies provided interesting insights into the atomic structure of the cross-ß that constitutes the basic motif of the assemblies formed by these novel peptide systems.


Subject(s)
Tryptophan , Tyrosine , Tyrosine/chemistry , Tryptophan/chemistry , Dihydroxyphenylalanine , Peptides/chemistry , Amino Acids, Aromatic/chemistry
4.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201804

ABSTRACT

An asymmetric synthesis is a favorable approach for obtaining enantiomerically pure substances, but racemic resolution remains an efficient strategy. This study aims to elucidate the chiral resolution of aromatic amino acids and their elution order using glycopeptides as chiral selectors through molecular docking analysis. Chiral separation experiments were conducted using Vancomycin as a chiral additive in the mobile phase (CMPA) at various concentrations, coupled with an achiral amino column as the stationary phase. The Autodock Vina 1.1.2 software was employed to perform molecular docking simulations between each enantiomer (ligand) and Vancomycin (receptor) to evaluate binding affinities, demonstrate enantiomeric resolution feasibility, and elucidate chiral recognition mechanisms. Utilizing Vancomycin as CMPA at a concentration of 1.5 mM enabled the separation of tryptophan enantiomers with a resolution of 3.98 and tyrosine enantiomers with a resolution of 2.97. However, a poor chiral resolution was observed for phenylalanine and phenylglycine. Molecular docking analysis was employed to elucidate the lack of separation and elution order for tryptophan and tyrosine enantiomers. By calculating the binding energy, docking results were found to be in good agreement with experimental findings, providing insights into the underlying mechanisms governing chiral recognition in this system and the interaction sites. This comprehensive approach clarifies the complex relationship between chiral discrimination and molecular architecture, offering valuable information for creating and improving chiral separation protocols.


Subject(s)
Amino Acids, Aromatic , Glycopeptides , Molecular Docking Simulation , Glycopeptides/chemistry , Amino Acids, Aromatic/chemistry , Stereoisomerism , Vancomycin/chemistry , Chromatography, High Pressure Liquid/methods , Ligands
5.
Molecules ; 29(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38675699

ABSTRACT

In the face of ongoing water pollution challenges, the intricate interplay between dissolved organic matter and disinfectants like chlorine gives rise to potentially harmful disinfection byproducts (DBPs) during water treatment. The exploration of DBP formation originating from amino acids (AA) is a critical focus of global research. Aromatic DBPs, in particular, have garnered considerable attention due to their markedly higher toxicity compared to their aliphatic counterparts. This work seeks to advance the understanding of DBP formation by investigating chlorination disinfection and kinetics using tyrosine (Tyr), phenylalanine (Phe), and tryptophan (Trp) as precursors. Via rigorous experiments, a total of 15 distinct DBPs with accurate molecular structures were successfully identified. The chlorination of all three AAs yielded highly toxic chlorophenylacetonitriles (CPANs), and the disinfectant dosage and pH value of the reaction system potentially influence chlorination kinetics. Notably, Phe exhibited the highest degradation rate compared to Tyr and Trp, at both the CAA:CHOCl ratio of within 1:2 and a wide pH range (6.0 to 9.0). Additionally, a neutral pH environment triggered the maximal reaction rates of the three AAs, while an acidic condition may reduce their reactivity. Overall, this study aims to augment the DBP database and foster a deeper comprehension of the DBP formation and relevant kinetics underlying the chlorination of aromatic AAs.


Subject(s)
Amino Acids, Aromatic , Disinfection , Halogenation , Water Purification , Kinetics , Amino Acids, Aromatic/chemistry , Water Purification/methods , Disinfectants/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
6.
J Biomol NMR ; 77(4): 183-190, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37338652

ABSTRACT

Cell-free protein synthesis using eCells allows production of amino acids from inexpensive 13C-labelled precursors. We show that the metabolic pathway converting pyruvate, glucose and erythrose into aromatic amino acids is maintained in eCells. Judicious choice of 13C-labelled starting material leads to proteins, where the sidechains of aromatic amino acids display [13C,1H]-HSQC cross-peaks free of one-bond 13C-13C couplings. Selective 13C-labelling of tyrosine and phenylalanine residues is achieved simply by using different compositions of the reaction buffers.


Subject(s)
Amino Acids, Aromatic , Proteins , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Amino Acids, Aromatic/chemistry , Amino Acids/chemistry , Tyrosine/chemistry
7.
Proc Natl Acad Sci U S A ; 117(20): 10806-10817, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32371491

ABSTRACT

Radiation of the plant pyridoxal 5'-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases/chemistry , Catalytic Domain , Evolution, Molecular , Plant Proteins/chemistry , Amino Acids, Aromatic/chemistry , Amino Acids, Aromatic/metabolism , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Substrate Specificity
8.
Chem Rev ; 120(7): 3296-3327, 2020 04 08.
Article in English | MEDLINE | ID: mdl-31424927

ABSTRACT

A detailed understanding of radiative and nonradiative processes in peptides containing an aromatic chromophore requires the knowledge of the nature and energy level of low-lying excited states that could be coupled to the bright 1ππ* excited state. Isolated aromatic amino acids and short peptides provide benchmark cases to study, at the molecular level, the photoinduced processes that govern their excited state dynamics. Recent advances in gas phase laser spectroscopy of conformer-selected peptides have paved the way to a better, yet not fully complete, understanding of the influence of intramolecular interactions on the properties of aromatic chromophores. This review aims at providing an overview of the photophysics and photochemistry at play in neutral and charged aromatic chromophore containing peptides, with a particular emphasis on the charge (electron, proton) and energy transfer processes. A significant impact is exerted by the experimental progress in energy- and time-resolved spectroscopy of protonated species, which leads to a growing demand for theoretical supports to accurately describe their excited state properties.


Subject(s)
Amino Acids, Aromatic/chemistry , Peptides/chemistry , Amino Acids, Aromatic/radiation effects , Energy Transfer , Fluorescence , Fluorescence Resonance Energy Transfer , Peptides/radiation effects , Photochemistry , Protein Conformation , Protons , Spectrophotometry, Ultraviolet/methods , Ultraviolet Rays
9.
Biochemistry ; 60(47): 3566-3581, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34784177

ABSTRACT

In immature oocytes, Balbiani bodies are conserved membraneless condensates implicated in oocyte polarization, the organization of mitochondria, and long-term organelle and RNA storage. In Xenopus laevis, Balbiani body assembly is mediated by the protein Velo1. Velo1 contains an N-terminal prion-like domain (PLD) that is essential for Balbiani body formation. PLDs have emerged as a class of intrinsically disordered regions that can undergo various different types of intracellular phase transitions and are often associated with dynamic, liquid-like condensates. Intriguingly, the Velo1 PLD forms solid-like assemblies. Here we sought to understand why Velo1 phase behavior appears to be biophysically distinct from that of other PLD-containing proteins. Through bioinformatic analysis and coarse-grained simulations, we predict that the clustering of aromatic residues and the amino acid composition of residues between aromatics can influence condensate material properties, organization, and the driving forces for assembly. To test our predictions, we redesigned the Velo1 PLD to test the impact of targeted sequence changes in vivo. We found that the Velo1 design with evenly spaced aromatic residues shows rapid internal dynamics, as probed by fluorescent recovery after photobleaching, even when recruited into Balbiani bodies. Our results suggest that Velo1 might have been selected in evolution for distinctly clustered aromatic residues to maintain the structure of Balbiani bodies in long-lived oocytes. In general, our work identifies several tunable parameters that can be used to augment the condensate material state, offering a road map for the design of synthetic condensates.


Subject(s)
Biomolecular Condensates/metabolism , T-Box Domain Proteins/metabolism , Xenopus Proteins/metabolism , Amino Acids, Aromatic/chemistry , Amino Acids, Aromatic/genetics , Amino Acids, Aromatic/metabolism , Animals , Cell Polarity , Cells, Cultured , Female , Intravital Microscopy , Oocytes/cytology , Oocytes/metabolism , Phase Transition , Primary Cell Culture , Protein Domains/genetics , Protein Engineering , T-Box Domain Proteins/chemistry , T-Box Domain Proteins/genetics , Xenopus Proteins/chemistry , Xenopus Proteins/genetics , Xenopus laevis
10.
Biochem Biophys Res Commun ; 578: 110-114, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34560580

ABSTRACT

The C-terminal, intrinsically disordered, prion-like domain (PrLD) of TDP-43 promotes liquid condensate and solid amyloid formation. These phase changes are crucial to the normal biological functions of the protein but also for its abnormal aggregation, which is implicated in amyotrophic lateral sclerosis (ALS) and certain dementias. We and other previously found that certain amyloid forms emerge from an intermediate condensed state that acts as a nucleus for fibrillization. To quantitatively ascertain the role of individual residues within TDP-43's PrLD in its early self-assembly we have followed the kinetics of NMR 1H-15N HSQC signal loss to obtain values for the lag time, elongation rate and extent of condensate formation at equilibrium. The results of this analysis represent a robust corroboration that aliphatic and aromatic residues are key drivers of condensate formation.


Subject(s)
Amyloidogenic Proteins/metabolism , Amyloidosis/metabolism , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Prions/metabolism , Amino Acids, Aromatic/chemistry , Amyloidogenic Proteins/chemistry , Amyloidosis/pathology , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/chemistry , Humans , Prions/chemistry , Protein Structure, Tertiary
11.
Mol Syst Biol ; 16(5): e9208, 2020 05.
Article in English | MEDLINE | ID: mdl-32449593

ABSTRACT

The C-terminal sequence of a protein is involved in processes such as efficiency of translation termination and protein degradation. However, the general relationship between features of this C-terminal sequence and levels of protein expression remains unknown. Here, we identified C-terminal amino acid biases that are ubiquitous across the bacterial taxonomy (1,582 genomes). We showed that the frequency is higher for positively charged amino acids (lysine, arginine), while hydrophobic amino acids and threonine are lower. We then studied the impact of C-terminal composition on protein levels in a library of Mycoplasma pneumoniae mutants, covering all possible combinations of the two last codons. We found that charged and polar residues, in particular lysine, led to higher expression, while hydrophobic and aromatic residues led to lower expression, with a difference in protein levels up to fourfold. We further showed that modulation of protein degradation rate could be one of the main mechanisms driving these differences. Our results demonstrate that the identity of the last amino acids has a strong influence on protein expression levels.


Subject(s)
Amino Acids/chemistry , Bacteria/chemistry , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Genes, Bacterial , Protein Processing, Post-Translational , Amino Acid Sequence , Amino Acids/metabolism , Amino Acids, Aromatic/chemistry , Amino Acids, Aromatic/metabolism , Arginine/chemistry , Arginine/metabolism , Bacteria/genetics , Bacterial Proteins/classification , Bacterial Proteins/genetics , Cluster Analysis , Codon Usage/genetics , Codon, Terminator/genetics , Computational Biology , Evolution, Molecular , Hydrophobic and Hydrophilic Interactions , Lysine/chemistry , Lysine/metabolism , Mycoplasma pneumoniae/chemistry , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/metabolism , Phylogeny , Protein Domains , Protein Processing, Post-Translational/genetics
12.
Phys Chem Chem Phys ; 23(31): 16767-16775, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34319324

ABSTRACT

Photosensing LOV (Light, Oxygen, Voltage) domains detect and respond to UVA/Blue (BL) light by forming a covalent adduct between the flavin chromophore and a nearby cysteine, via the decay of the flavin triplet excited state. LOV domains where the reactive cysteine has been mutated are valuable fluorescent tools for microscopy and as genetically encoded photosensitisers for reactive oxygen species. Besides being convenient tools for applications, LOV domains without the reactive cysteine (naturally occurring or engineered) can still be functionally photoactivated via formation of a neutral flavin radical. Tryptophans and tyrosines are held as the main partners as potential electron donors to the flavin excited states. In this work, we explore the relevance of aromatic amino acids in determining the photophysical features of the LOV protein Mr4511 from Methylobacterium radiotolerans by introducing point mutations into the C71S variant that does not form the covalent adduct. By using an array of spectroscopic techniques we measured the fluorescence quantum yields and lifetimes, the triplet yields and lifetimes, and the efficiency of singlet oxygen (SO) formation for eleven Mr4511 variants. Insertion of Trp residues at distances between 0.6 and 1.5 nm from the flavin chromophore results in strong quenching of the flavin excited triplet state and, at the shorter distances even of the singlet excited state. The mutation F130W (ca. 0.6 nm) completely quenches the singlet excited state, preventing triplet formation: in this case, even if the cysteine is present, the photo-adduct is not formed. Tyrosines are also quenchers for the flavin excited states, although not as efficient as Trp residues, as demonstrated with their substitution with the inert phenylalanine. For one of these variants, C71S/Y116F, we found that the quantum yield of formation for singlet oxygen is 0.44 in aqueous aerobic solution, vs 0.17 for C71S. Based on our study with Mr4511 and on literature data for other LOV domains we suggest that Trp and Tyr residues too close to the flavin chromophore (at distances less than 0.9 nm) reduce the yield of photoproduct formation and that introduction of inert Phe residues in key positions can help in developing efficient, LOV-based photosensitisers.


Subject(s)
Amino Acids, Aromatic/chemistry , Bacterial Proteins/chemistry , Light , Oxygen/chemistry , Methylobacterium/chemistry , Photochemical Processes
13.
Biochemistry ; 59(49): 4663-4680, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33269926

ABSTRACT

The plant Sesbania mosaic virus [a (+)-ssRNA sobemovirus] VPg protein is intrinsically disordered in solution. For the virus life cycle, the VPg protein is essential for replication and for polyprotein processing that is carried out by a virus-encoded protease. The nuclear magnetic resonance (NMR)-derived tertiary structure of the protease-bound VPg shows it to have a novel tertiary structure with an α-ß-ß-ß topology. The quaternary structure of the high-affinity protease-VPg complex (≈27 kDa) has been determined using HADDOCK protocols with NMR (residual dipolar coupling, dihedral angle, and nuclear Overhauser enhancement) restraints and mutagenesis data as inputs. The geometry of the complex is in excellent agreement with long-range orientational restraints such as residual dipolar couplings and ring-current shifts. A "vein" of aromatic residues on the protease surface is pivotal for the folding of VPg via intermolecular edge-to-face π···π stacking between Trp271 and Trp368 of the protease and VPg, respectively, and for the CH···π interactions between Leu361 of VPg and Trp271 of the protease. The structure of the protease-VPg complex provides a molecular framework for predicting sites of important posttranslational modifications such as RNA linkage and phosphorylation and a better understanding of the coupled folding upon binding of intrinsically disordered proteins. The structural data presented here augment the limited structural data available on viral proteins, given their propensity for structural disorder.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Plant Viruses/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Amino Acids, Aromatic/chemistry , Biophysical Phenomena , Hydrophobic and Hydrophilic Interactions , Intrinsically Disordered Proteins/genetics , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Plant Viruses/genetics , Protein Binding , Protein Conformation , Protein Folding , Protein Interaction Mapping , Static Electricity , Viral Proteins/genetics
14.
J Biol Chem ; 294(13): 4828-4842, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30670586

ABSTRACT

Because of their special organization, multifunctional enzymes play crucial roles in improving the performance of metabolic pathways. For example, the bacterium Prevotella nigrescens contains a distinctive bifunctional protein comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS), catalyzing the first reaction of the biosynthetic pathway of aromatic amino acids, and a chorismate mutase (CM), functioning at a branch of this pathway leading to the synthesis of tyrosine and phenylalanine. In this study, we characterized this P. nigrescens enzyme and found that its two catalytic activities exhibit substantial hetero-interdependence and that the separation of its two distinct catalytic domains results in a dramatic loss of both DAH7PS and CM activities. The protein displayed a unique dimeric assembly, with dimerization solely via the CM domain. Small angle X-ray scattering (SAXS)-based structural analysis of this protein indicated a DAH7PS-CM hetero-interaction between the DAH7PS and CM domains, unlike the homo-association between DAH7PS domains normally observed for other DAH7PS proteins. This hetero-interaction provides a structural basis for the functional interdependence between the two domains observed here. Moreover, we observed that DAH7PS is allosterically inhibited by prephenate, the product of the CM-catalyzed reaction. This allostery was accompanied by a striking conformational change as observed by SAXS, implying that altering the hetero-domain interaction underpins the allosteric inhibition. We conclude that for this C-terminal CM-linked DAH7PS, catalytic function and allosteric regulation appear to be delivered by a common mechanism, revealing a distinct and efficient evolutionary strategy to utilize the functional advantages of a bifunctional enzyme.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Amino Acids, Aromatic/biosynthesis , Bacterial Proteins/chemistry , Prevotella nigrescens/enzymology , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Allosteric Regulation , Amino Acids, Aromatic/chemistry , Amino Acids, Aromatic/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Crystallography, X-Ray , Prevotella nigrescens/genetics , Protein Domains , Scattering, Small Angle , X-Ray Diffraction
15.
J Biomol NMR ; 74(8-9): 365-379, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32651751

ABSTRACT

The fluorine-19 nucleus was recognized early to harbor exceptional properties for NMR spectroscopy. With 100% natural abundance, a high gyromagnetic ratio (83% sensitivity compared to 1H), a chemical shift that is extremely sensitive to its surroundings and near total absence in biological systems, it was destined to become a favored NMR probe, decorating small and large molecules. However, after early excitement, where uptake of fluorinated aromatic amino acids was explored in a series of animal studies, 19F-NMR lost popularity, especially in large molecular weight systems, due to chemical shift anisotropy (CSA) induced line broadening at high magnetic fields. Recently, two orthogonal approaches, (i) CF3 labeling and (ii) aromatic 19F-13C labeling leveraging the TROSY (Transverse Relaxation Optimized Spectroscopy) effect have been successfully applied to study large biomolecular systems. In this perspective, we will discuss the fascinating early work with fluorinated aromatic amino acids, which reveals the enormous potential of these non-natural amino acids in biological NMR and the potential of 19F-NMR to characterize protein and nucleic acid structure, function and dynamics in the light of recent developments. Finally, we explore how fluorine NMR might be exploited to implement small molecule or fragment screens that resemble physiological conditions and discuss the opportunity to follow the fate of small molecules in living cells.


Subject(s)
Fluorine/chemistry , Magnetic Resonance Spectroscopy , Amino Acids, Aromatic/chemistry , Halogenation , Models, Molecular , Molecular Conformation , Molecular Structure , Molecular Weight , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry
16.
Anal Chem ; 92(15): 10402-10411, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32614167

ABSTRACT

Direct interspecies electron transfer (DIET) has been considered as a novel and highly efficient strategy in both natural anaerobic environments and artificial microbial fuel cells. A syntrophic model consisting of Geobacter metallireducens and Geobacter sulfurreducens was studied in this work. We conducted in vivo molecular mapping of the outer surface of the syntrophic community as the interface of nutrients and energy exchange. System for Analysis at the Liquid Vacuum Interface combined with time-of-flight secondary ion mass spectrometry was employed to capture the molecular distribution of syntrophic Geobacter communities in the living and hydrated state. Principal component analysis with selected peaks revealed that syntrophic Geobacter aggregates were well differentiated from other control samples, including syntrophic planktonic cells, pure cultured planktonic cells, and single population biofilms. Our in vivo imaging indicated that a unique molecular surface was formed. Specifically, aromatic amino acids, phosphatidylethanolamine components, and large water clusters were identified as key components that favored the DIET of syntrophic Geobacter aggregates. Moreover, the molecular changes in depths of the Geobacter aggregates were captured using dynamic depth profiling. Our findings shed new light on the interface components supporting electron transfer in syntrophic communities based on in vivo molecular imaging.


Subject(s)
Amino Acids, Aromatic/metabolism , Geobacter/physiology , Mass Spectrometry/methods , Molecular Imaging/methods , Phosphatidylethanolamines/metabolism , Amino Acids, Aromatic/chemistry , Biofilms , Electron Transport , Phosphatidylethanolamines/chemistry , Principal Component Analysis , Water/chemistry , Water/metabolism
17.
J Comput Chem ; 41(5): 472-481, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31652004

ABSTRACT

Cation-π interactions play important roles in molecular recognition and in the stability and function of proteins. However, accurate description of the structure and energetics of cation-π interactions presents a challenge to both additive and polarizable force fields, which are rarely designed to account for the complexation of charged groups with aromatic moieties. We calibrate the Drude polarizable force field for complexes of alkali metal ions (Li+ , Na+ , K+ , Rb+ , Cs+ ), ammonium (NH4+ ), tetramethylammonium (TMA+ ), and tetraethylammonium (TEA+ ) with aromatic amino acid side chain model compounds (benzene, toluene, 4-methylphenol, 3-methylindole) using high-level ab initio quantum chemical properties of these complexes. Molecular dynamics simulations reveal that cation-π complexes of the hard and tightly coordinated Li+ and Na+ ions are not stable in water but that larger ions form stable complexes, with binding free energies ranging between -0.8 and -2.9 kcal/mol. Like in gas phase, all complexes at equilibrium adopt an "en-face" complexation mode in water. The optimized Drude polarizable model provides an accurate description of the cation-π interactions involving small ions and proteins. © 2019 Wiley Periodicals, Inc.


Subject(s)
Amino Acids, Aromatic/chemistry , Density Functional Theory , Metals, Alkali/chemistry , Quaternary Ammonium Compounds/chemistry , Ions/chemistry
18.
Chembiochem ; 21(3): 417-422, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31318464

ABSTRACT

The rare nonproteinogenic amino acid, meta-l-tyrosine is biosynthetically intriguing. Whilst the biogenesis of tyrosine from phenylalanine is well characterised, the mechanistic basis for meta-hydroxylation is unknown. Herein, we report the analysis of 3-hydroxylase (Phe3H) from Streptomyces coeruleorubidus. Insights from kinetic analyses of the wild-type enzyme and key mutants as well as of the biocatalytic conversion of synthetic isotopically labelled substrates and fluorinated substrate analogues advance understanding of the process by which meta-hydroxylation is mediated, revealing T202 to play an important role. In the case of the WT enzyme, a deuterium label at the 3-position is lost, whereas in in the T202A mutant 75 % retention is observed, with loss of stereospecificity. These data suggest that one of two possible mechanisms is at play; direct, enzyme-catalysed deprotonation following electrophilic aromatic substitution or stereospecific loss of one proton after a 1,2-hydride shift. Furthermore, our kinetic parameters for Phe3H show efficient regiospecific generation of meta-l-tyrosine from phenylalanine and demonstrate the enzyme's ability to regiospecifically hydroxylate unnatural fluorinated substrates.


Subject(s)
Amino Acids, Aromatic/metabolism , Phenylalanine Hydroxylase/metabolism , Amino Acids, Aromatic/chemistry , Hydroxylation , Molecular Structure , Phenylalanine Hydroxylase/chemistry , Streptomyces/enzymology
19.
Arch Biochem Biophys ; 681: 108264, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31945312

ABSTRACT

Serum amyloid A variant 1.1 (SAA1.1) is an acute phase protein. In response to injury, inflammation or infection its production increases highly, which may lead to aggregation of the protein and accumulation of its deposits in various organs. Due to the cellular toxicity of the aggregates, as well as the fact that accumulated deposits are a burden that obstructs proper functioning of the affected tissues, it is vital to find a way to suppress the process of pathological aggregates formation. To make this possible, it is necessary to investigate thoroughly the oligomerization process and recognize factors that may influence its course. Some previous studies showed that aromatic interactions are important to the potential of an inhibitor to suppress the aggregation process. In our research we had proved that a five-residue peptide RSFFS (saa1-5) is an efficient inhibitor of aggregation of the most amyloidogenic fragment of SAA1.1, SAA1-12. In the present work the oligomerization and aggregation propensity of SAA1-12 was compared to that of SAA1-27, in order to determine the contribution of the sequence which extends beyond the most amyloidogenic region but encompasses residues reportedly involved in the stabilization of the SAA native conformation. Thioflavin T fluorescence assay, quantitative chromatographic analysis of the insoluble fraction and transmission electron microscopy allowed for a deeper insight into the SAA aggregation process and the morphology of aggregates. Substitutions of Phe3 and/or Phe4 residues in saa1-5 sequence with tryptophan, tyrosine, homophenylalanine, naphthylalanine and ß,ß-diphenylalanine allowed to study the influence of different aromatic systems on the aggregation of SAA1-12 and SAA1-27, and evaluate these results in relation to hSAA1.1 protein. Our results indicate that compounds with aromatic moieties can affect the course of the aggregation process and change the ratio between the soluble and insoluble aggregates.


Subject(s)
Amino Acids, Aromatic/pharmacology , Amyloidosis/drug therapy , Oligopeptides/pharmacology , Serum Amyloid A Protein/metabolism , Amino Acids, Aromatic/chemistry , Amyloidosis/metabolism , Humans , Molecular Dynamics Simulation , Oligopeptides/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/metabolism
20.
Proc Natl Acad Sci U S A ; 114(5): 1003-1008, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096375

ABSTRACT

Many ions are known to affect the activity, stability, and structural integrity of proteins. Although this effect can be generally attributed to ion-induced changes in forces that govern protein folding, delineating the underlying mechanism of action still remains challenging because it requires assessment of all relevant interactions, such as ion-protein, ion-water, and ion-ion interactions. Herein, we use two unnatural aromatic amino acids and several spectroscopic techniques to examine whether guanidinium chloride, one of the most commonly used protein denaturants, and tetrapropylammonium chloride can specifically interact with aromatic side chains. Our results show that tetrapropylammonium, but not guanidinium, can preferentially accumulate around aromatic residues and that tetrapropylammonium undergoes a transition at ∼1.3 M to form aggregates. We find that similar to ionic micelles, on one hand, such aggregates can disrupt native hydrophobic interactions, and on the other hand, they can promote α-helix formation in certain peptides.


Subject(s)
Alanine/analogs & derivatives , Amino Acids, Aromatic/drug effects , Guanidine/pharmacology , Quaternary Ammonium Compounds/pharmacology , Spectrophotometry, Infrared/methods , Alanine/chemistry , Alanine/drug effects , Amino Acids, Aromatic/chemistry , Antimicrobial Cationic Peptides/chemistry , Circular Dichroism , Guanidine/chemistry , Hydrophobic and Hydrophilic Interactions , Nitriles/chemistry , Peptides/chemistry , Protein Denaturation , Protein Stability/drug effects , Protein Structure, Secondary/drug effects , Quaternary Ammonium Compounds/chemistry , Solvents , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL