Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.113
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(19): e2220622120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126676

ABSTRACT

The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.


Subject(s)
Diabetes Mellitus, Type 2 , Oryza , Starch Synthase , Resistant Starch/metabolism , Oryza/genetics , Starch Synthase/genetics , Plant Breeding , Starch , Amylose , Plant Proteins/genetics
2.
Plant Physiol ; 195(3): 1851-1865, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38573555

ABSTRACT

Starch is the major energy storage compound in plants. Both transient starch and long-lasting storage starch accumulate in the form of insoluble, partly crystalline granules. The structure of these granules is related to the structure of the branched polymer amylopectin: linear chains of glucose units organized in double helices that align to form semicrystalline lamellae, with branching points located in amorphous regions between them. EARLY STARVATION 1 (ESV1) and LIKE EARLY STARVATION 1 (LESV) proteins are involved in the maintenance of starch granule structure and in the phase transition of amylopectin, respectively, in Arabidopsis (Arabidopsis thaliana). These proteins contain a conserved tryptophan-rich C-terminal domain folded into an antiparallel ß-sheet, likely responsible for binding of the proteins to starch, and different N-terminal domains whose structure and function are unknown. In this work, we combined biochemical and biophysical approaches to analyze the structures of LESV and ESV1 and their interactions with the different starch polyglucans. We determined that both proteins interact with amylopectin but not with amylose and that only LESV is capable of interacting with amylopectin during starch biosynthesis. While the C-terminal domain interacts with amylopectin in its semicrystalline form, the N-terminal domain of LESV undergoes induced conformational changes that are probably involved in its specific function of mediating glucan phase transition. These results clarify the specific mechanism of action of these 2 proteins in the biosynthesis of starch granules.


Subject(s)
Amylopectin , Arabidopsis Proteins , Arabidopsis , Starch , Amylopectin/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Starch/metabolism , Starch/biosynthesis , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Binding , Amylose/metabolism
3.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656412

ABSTRACT

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Subject(s)
Amylose , Gene Editing , Hordeum , Plant Proteins , Starch Synthase , Amylose/metabolism , Hordeum/genetics , Hordeum/metabolism , Gene Editing/methods , Starch Synthase/genetics , Starch Synthase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , CRISPR-Cas Systems , Amylopectin/metabolism , Sucrose/metabolism , Sugars/metabolism , Gene Expression Regulation, Plant , Mutation , beta-Glucans/metabolism , Plants, Genetically Modified , Solubility
4.
Plant Cell Physiol ; 65(5): 781-789, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38447119

ABSTRACT

MicroRNAs (miRNAs) are known to play critical roles in regulating rice agronomic traits through mRNA cleavage or translational repression. Our previous study indicated that miR5504 regulates plant height by affecting cell proliferation and expansion. Here, the two independent homozygous mir5504 mutants (CR1 and CR2) and overexpression lines (OE1 and OE2) were further used to investigate the functions of miR5504. The panicle length, 1000-grain weight and grain yield per plant of miR5504-OE lines were identical to those of Nipponbare (NIP), but the 1000-grain weight of mir5504 mutants was reduced by about 10% and 9%, respectively. Meanwhile, the grain width and thickness of mir5504 mutants decreased significantly by approximately 10% and 11%, respectively. Moreover, the cytological results revealed a significant decrease in cell number along grain width direction and cell width in spikelet in mir5504, compared with those in NIP. In addition, several major storage substances of the rice seeds were measured. Compared to NIP, the amylose content of the mir5504 seeds was noticeably decreased, leading to an increase of nearly 10 mm in gel consistency (GC) in mir5504 lines. Further investigation confirmed that LOC_Os08g16914 was the genuine target of miR5504: LOC_Os08g16914 over-expression plants phenocopied the mir5504 mutants. This study provides insights into the role of miR5504 in rice seed development.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , MicroRNAs , Oryza , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Mutation , Genetic Pleiotropy , Plants, Genetically Modified , RNA, Plant/genetics , RNA, Plant/metabolism , Amylose/metabolism
5.
BMC Plant Biol ; 24(1): 524, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853253

ABSTRACT

BACKGROUND: Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS: To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS: Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.


Subject(s)
Amylose , Dioscorea , Genome-Wide Association Study , Plant Tubers , Polymorphism, Single Nucleotide , Amylose/metabolism , Dioscorea/genetics , Dioscorea/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Plants, Genetically Modified/genetics , Genes, Plant
6.
Chembiochem ; 25(5): e202300832, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38220779

ABSTRACT

Amylose, the linear polymer of α-1,4-linked glucopyranose units, is known to crystallize as a parallel double helix, but evidence of this duplex forming in solution has remained elusive for decades. We show how the dimerization of short amylose chains can be detected in solution using NMR spectroscopy when the glucans are labeled at the reducing-end with an aromatic moiety that overcomes chemical shift degeneracy leading to distinct signals for the single-stranded and duplex amylose. A set of α-1,4 glucans with varying lengths of 6, 12, 18, and 22 glucose units and a 4-aminobenzamide label were synthesized, enabling the first systematic thermodynamic study of the association of amylose in solution. The dimerization is enthalpically driven, entropically unfavorable and beyond a minimum length of 12, each additional pair of glucose residues stabilizes the duplex by 0.85 kJ mol-1 . This fundamental knowledge provides a basis for a quantitative understanding of starch structure, gelation and enzymatic digestion, and lays the foundations for the strategic use of α-1,4-glucans in the development of self-assembled materials.


Subject(s)
Amylose , Starch , Dimerization , Glucans , Glucose
7.
Electrophoresis ; 45(3-4): 218-233, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37794622

ABSTRACT

In this work, a preparative supercritical fluid chromatography (SFC) method was first developed to separate a series of chiral compounds evaluated as lactam-based P2RX7 antagonists. Subsequently, high-performance liquid chromatography, SFC, and capillary electrophoresis (CE) were comparatively investigated as QC tools to determine the enantiomeric purity of the separated isomers, including analytical performance and greenness. The screening of the best conditions was carried out in liquid and SFC on the nine derivatives and the amylose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase was found to be highly efficient. The same screening was carried out in CE and very different conditions, either in acidic or basic background electrolyte and different cyclodextrins used as chiral selectors, allowed the separation of six of the nine derivatives. 1-((3,4-Dichlorophenyl)carbamoyl)-5-oxopyrrolidine-2-carboxylic acid (compound 1) was chosen as a probe, and its semi-preparative separation by SFC and enantiomeric verification using the three techniques are presented. Its limit of detection and limit of quantification are calculated for each method. Finally, the greenness of each quality control method was evaluated.


Subject(s)
Amylose , Chromatography, Supercritical Fluid , Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , Stereoisomerism , Electrophoresis, Capillary
8.
Theor Appl Genet ; 137(7): 159, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872054

ABSTRACT

KEY MESSAGE: Integrated linkage and association analysis revealed genetic basis across multiple environments. The genes Zm00001d003102 and Zm00001d015905 were further verified to influence amylose content using gene-based association study. Maize kernel amylose is an important source of human food and industrial raw material. However, the genetic basis underlying maize amylose content is still obscure. Herein, we used an intermated B73 × Mo17 (IBM) Syn10 doubled haploid population composed of 222 lines and a germplasm set including 305 inbred lines to uncover the genetic control for amylose content under four environments. Linkage mapping detected 16 unique QTL, among which four were individually repeatedly identified across multiple environments. Genome-wide association study revealed 17 significant (P = 2.24E-06) single-nucleotide polymorphisms, of which two (SYN19568 and PZE-105090500) were located in the intervals of the mapped QTL (qAC2 and qAC5-3), respectively. According to the two population co-localized loci, 20 genes were confirmed as the candidate genes for amylose content. Gene-based association analysis indicated that the variants in Zm00001d003102 (Beta-16-galactosyltransferase GALT29A) and Zm00001d015905 (Sugar transporter 4a) affected amylose content across multi-environment. Tissue expression analysis showed that the two genes were specifically highly expressed in the ear and stem, respectively, suggesting that they might participate in sugar transport from source to sink organs. Our study provides valuable genetic information for breeding maize varieties with high amylose.


Subject(s)
Amylose , Chromosome Mapping , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Amylose/metabolism , Amylose/genetics , Genome-Wide Association Study , Phenotype , Genetic Linkage , Genes, Plant , Genotype , Genetic Association Studies
9.
Mol Pharm ; 21(7): 3540-3552, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38900044

ABSTRACT

Molecular dynamics (MD) simulations of linear amylose fragments containing 10 to 40 glucose units were used to study the complexation of the prototypical compound, 3-pentadecylphenol (PDP)─a natural product with surfactant-like properties─in aqueous solution. The amylose-PDP binding leverages mainly hydrophobic interactions together with excluded volume effects. It was found that while the most stable complexes contained PDP inside the helical structure of the amylose in the expected guest-host (inclusion) complexation manner, at higher temperatures, the commonly observed PDP-amylose complexes often involved more nonspecific interactions than inclusion complexation. In the case where a stoichiometric excess of PDP was added to the simulation box, self-aggregation of the small molecule precluded its ability to enter the internal helical part of the oligosaccharide, and as a result, inclusion complexation became ineffective. MD simulation trajectories were analyzed preliminarily using cluster analysis (CA), followed by more rigorous solvent accessible surface area (SASA) determination over the temperature range spanning from 277 to 433 K. It was found that using the SASA of PDP corrected for its intrinsic conformational changes, together with a generic hidden Markov model (HMM), an adequate quantification of the different types of PDP-amylose aggregates was obtained to allow further analysis. The enthalpy change associated with the guest-host binding equilibrium constant (Kgh) in aqueous solution was estimated to be -75 kJ/mol, which is about twice as high as one might expect based on experimentally measured values of similar complexes in the solid state where the (unsolvated) helical structure of amylose remains rigid. On the other hand, the nonspecific binding (Kns) enthalpy change associated with PDP-amylose interactions in the same solution environment was found to be about half of the inclusion complexation value.


Subject(s)
Amylose , Molecular Dynamics Simulation , Phenols , Amylose/chemistry , Phenols/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents/chemistry , Temperature , Thermodynamics
10.
Langmuir ; 40(10): 5214-5227, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38469650

ABSTRACT

Amylose is a linear polysaccharide with a unique ability to form helical inclusion complexes with the appropriate guest components. Numerous studies have been conducted on encapsulation of bioactive compounds for various applications. In the biomedical field, biohybrid micro/nanomotors (MNMs) have emerged as innovative candidates due to their excellent biocompatible and biodegradable properties. This study was inspired by the biohybrid- and enzymatic-propelled MNMs and explored the potential of amylose inclusion complexes (ICs) in creating these MNMs. The study developed a new type of micromotor made from (PEG-co-PBA)-b-amylose. Nanoprecipitation, dimethyl sulfoxide (DMSO), and ultrasound-treated methods were employed to create spherical, thick crystalline, and rod-bacterial-like morphologies, respectively. Candida antarctica lipase B (CALB) was used as the catalytic fuel to induce the motion by the enzymatic degradation of ester linkages in the polymeric segment. Optical microscopy was utilized to observe the motion of the motors following incubation with enzyme concentrations of 5, 10, and 20% (w/w). The results demonstrated that the velocity of the motors increased proportionally with the percentage of added enzyme. Additionally, a comprehensive molecular docking evaluation with PyRx software provided insight into the interaction of the CALB enzyme with polymeric moieties and demonstrated a good affinity between the enzyme and polymer in the binding site. This study provides novel insight into the design and development of enzymatically driven polymeric micromotors and nanomotors.


Subject(s)
Amylose , Polymers , Amylose/chemistry , Molecular Docking Simulation , Motion , Catalysis
11.
Biomacromolecules ; 25(6): 3302-3311, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38717957

ABSTRACT

This study aimed to visualize the microstructures of starch hydrogels using synchrotron-based X-ray micro-computed tomography (µCT). Waxy maize starch (WMS, 3.3% amylose, db), pea starch (PS, 40.3% amylose), and high-amylose maize starch (HMS, 63.6% amylose) were cooked at 95 and 140 °C to prepare starch hydrogels. WMS and HMS failed to form a gel after 95 °C cooking and storage, while PS developed a firm gel. At 140 °C cooking, HMS of a high amylose nature was fully gelatinized and generated a rigid gel with the highest strength. Both scanning electron microscopy (SEM) and µCT revealed the unique structural features of various starch hydrogels/pastes prepared at different temperatures, which were greatly affected by the degree of swelling and dispersity of the starches. As a nondestructive method, µCT showed certain advantages over SEM, including minimal shrinkage of the hydrogels, relatively simple sample preparation, and allowing for three-dimensional reconstruction of the hydrogel microstructure. This study indicated that synchrotron-based µCT could be a useful technique in visualizing biopolymer-based hydrogels.


Subject(s)
Hydrogels , Starch , Synchrotrons , X-Ray Microtomography , Zea mays , Hydrogels/chemistry , X-Ray Microtomography/methods , Starch/chemistry , Zea mays/chemistry , Amylose/chemistry , Microscopy, Electron, Scanning/methods
12.
Chirality ; 36(2): e23632, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994273

ABSTRACT

The R,S-enantiomer impurity and diastereomer impurities (S,S-isomer and R,R-isomer) of the solifenacin (S,R-enantiomer) were effectively separated and quantified simultaneously utilizing normal-phase high-performance liquid chromatography with a chiral stationary phase consisting of amylose tris (3,5-dimethylphenylcarbamate) coated on silica-gel (Chiralpak, AD-H). The enantiomeric and stereo-selective separation was achieved within a run time of 35 minutes using a mobile phase of 'n-hexane, ethanol, and diethylamine' in an isocratic elution mode with a detection wavelength of 220 nm. The validation attributes assessed were accuracy (which showed excellent recoveries between 97.5% and 100.4%) and linearity (which was proven in the range of 0.081-1.275 µg.mL-1 , with a linear regression of 0.999). The stress testing experiments proved that the developed methodology by the HPLC technique has stability-indicating characteristics, as all closely eluting peak pairs were separated well with a resolution of 2.3 and without any interference. The proposed methodology was highly efficient in separating and simultaneously determining the chiral impurities (enantiomers and diastereomers) of the solifenacin in the release and stability sample analyses of drug substances and tablets in pharmaceutical formulations.


Subject(s)
Amylose , Phenylcarbamates , Solifenacin Succinate , Chromatography, High Pressure Liquid/methods , Amylose/chemistry , Stereoisomerism , Receptors, Muscarinic
13.
Chirality ; 36(5): e23679, 2024 May.
Article in English | MEDLINE | ID: mdl-38752268

ABSTRACT

Each year, new psychoactive substances appear on the global drug market leading to constant changes. Most of these compounds with stimulating effect possess a chiral center, thus leading to two enantiomers with presumably different pharmacological properties. Among them, synthetic cathinones, often misleadingly traded as "bath salts," play an important role. There is little knowledge about the distinct effect of the enantiomers. The aim of this study was to test a commercially available Lux® i-Amylose-3 column by HPLC-UV for enantiorecognition of cathinone derivatives. Overall, 80 compounds were tested in normal phase mode, where 75 substances were separated under initial conditions. After method optimization, at least partial separation was achieved for the remaining compounds. The same set of substances was measured in polar-organic mode, where 63 analytes were resolved into their enantiomers under initial conditions with very short retention times. Both modes showed complementary results for the individual compounds. Furthermore, the tested methods proved to be suitable for differentiation of positional isomers, which can be useful for drug checking programs. All measurements were carried out under isocratic conditions, and intraday and interday repeatability tests were performed.


Subject(s)
Alkaloids , Stereoisomerism , Chromatography, High Pressure Liquid/methods , Alkaloids/chemistry , Alkaloids/isolation & purification , Amylose/chemistry , Amylose/analogs & derivatives , Pyrrolidines
14.
Chirality ; 36(3): e23659, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445305

ABSTRACT

Due to a great demand for amylose and cellulose polymeric chromatographic chiral columns, the enantiomeric separation of thiourea derivatives of naringenin was achieved on the different amylose (Chiralpak-IB) and cellulose chiral (Chiralcel-OJ and Chiralcel-OD-3R) columns with varied chromatographic conditions. The isocratic mobile phases used were ethanol and methanol, where ethanol/hexane and methanol/hexane were used as gradient mode and were prepared in volume/volume relation. The separation and resolution factors for all the enantiomers were in the range of 1.25 to 3.47 and 0.48 to 1.75, respectively. The enantiomeric resolution was obtained within 12 min making fast separation. The docking studies confirmed the chiral recognition mechanisms with binding affinities in the range of -4.7 to -5.7 kcal/mol. The reported compounds have good anticoagulant activities and may be used as anticoagulants in the future. Besides, chiral separation is fast and is useful for enantiomeric separation in any laboratory in the world.


Subject(s)
Amylose , Flavanones , Hexanes , Methanol , Stereoisomerism , Cellulose , Polymers , Ethanol , Thiourea
15.
J Sep Sci ; 47(1): e2300655, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014608

ABSTRACT

Metconazole is one of the widely-used chiral triazole fungicides in controlling wheat leaf rust, powdery mildew, Fusarium head blight with high efficacy, and so forth. In the current work, the effects of chiral stationary phases, alcoholic modifiers, and column temperature on the chiral separation of metconazole were discussed in detail. Amylose tris(3,5-dimethylphenylcarbamate)-coated chiral stationary phase exhibited much stronger chiral recognition ability toward metconazole stereoisomers in the CO2 /ethanol mixture as compared to the others. Then, a two-step semi-preparative separation of metconazole was performed through supercritical fluid chromatography and high-performance liquid chromatography, and the enantiomeric excess values of four stereoisomers were achieved over 98%. Moreover, the enantioselective cytotoxicity of cis-metconazole against HepG2 cells has been investigated, and the order of the cell proliferation toxicity against HepG2 cells was (1R, 5S)-metconazole > (1S, 5R)-metconazole > the mixture. Briefly, this study would provide valuable information in the preparative separation of optically pure metconazole products through chromatographic techniques and their environmental risk assessment.


Subject(s)
Chromatography, Supercritical Fluid , Stereoisomerism , Chromatography, Supercritical Fluid/methods , Amylose/chemistry , Triazoles/toxicity
16.
Int J Mol Sci ; 25(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38203760

ABSTRACT

Grain size in rice (Oryza sativa L.) shapes yield and quality, but the underlying molecular mechanism is not fully understood. We functionally characterized GRAIN NUMBER AND LARGE GRAIN SIZE 44 (GNL44), encoding a RING-type protein that localizes to the cytoplasm. The gnl44 mutant has fewer but enlarged grains compared to the wild type. GNL44 is mainly expressed in panicles and developing grains. Grain chalkiness was higher in the gnl44 mutant than in the wild type, short-chain amylopectin content was lower, middle-chain amylopectin content was higher, and appearance quality was worse. The amylose content and gel consistency of gnl44 were lower, and protein content was higher compared to the wild type. Rapid Visco Analyzer results showed that the texture of cooked gnl44 rice changed, and that the taste value of gnl44 was lower, making the eating and cooking quality of gnl44 worse than that of the wild type. We used gnl44, qgl3, and gs3 monogenic and two-gene near-isogenic lines to study the effects of different combinations of genes affecting grain size on rice quality-related traits. Our results revealed additive effects for these three genes on grain quality. These findings enrich the genetic resources available for rice breeders.


Subject(s)
Oryza , Oryza/genetics , Amylopectin , Amylose , Calcium Carbonate , Cooking , Edible Grain/genetics
17.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203801

ABSTRACT

The eating and cooking quality (ECQ) directly affects the taste of rice, being closely related to factors such as gelatinization temperature (GT), gel consistency (GC) and amylose content (AC). Mining the quantitative trait loci (QTLs), and gene loci controlling ECQ-related traits is vital. A genome-wide association study on ECQ-related traits was conducted, combining 1.2 million single nucleotide polymorphisms (SNPs) with the phenotypic data of 173 rice accessions. Two QTLs for GT, one for GC and five for AC were identified, of which two were found in previously reported genes, and six were newly found. There were 28 positional candidate genes in the region of qAC11. Based on a linkage disequilibrium (LD) analysis, three candidate genes were screened within the LD region associated with AC. There were significant differences between the haplotypes of LOC_Os11g10170, but no significant differences were found for the other two genes. The qRT-PCR results showed that the gene expression levels in the accessions with high ACs were significantly larger than those in the accessions with low ACs at 35d and 42d after flowering. Hap 2 and Hap 3 of LOC_Os11g10170 reduced the AC by 13.09% and 10.77%, respectively. These results provide a theoretical and material basis for improving the ECQ of rice.


Subject(s)
Oryza , Quantitative Trait Loci , Oryza/genetics , Genome-Wide Association Study , Amylose , Cooking
18.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928007

ABSTRACT

Three types of starch with different amylose content were esterified and blended with polybutylene succinate (PBS) to obtain esterified manioc starch/PBS (EMS/PBS), esterified corn starch/PBS (ECS/PBS), and esterified waxy corn starch/PBS (EWS/PBS) composites. The EMS/PBS and ECS/PBS composites with high amylose content displayed typical V-type crystal structures. The original crystals of EWS, which had low amylose content, were disrupted during the esterification process. EWS exhibited the strongest interaction with PBS and the most favorable interface compatibility. The pyrolysis temperature was in order of EMS/PBS < ECS/PBS < EWS/PBS. The elongation at break of the three blends was higher than that of pure PBS. The esterification and plasticization of the EWS/PBS composite were the most comprehensive. The EWS/PBS composite showed the lowest storage modulus (G') and complex viscosity (η*). The interfacial bonding force of the composite materials increased with more amylopectin, decreasing intermolecular forces and destroying crystal structures, which decreased G' and η* and increased toughness. The EWS/PBS composite, with the least amylose content, had the best hydrophobicity and degradation performance.


Subject(s)
Amylose , Amylose/chemistry , Esterification , Starch/chemistry , Polymers/chemistry , Viscosity , Polyenes/chemistry , Zea mays/chemistry , Butylene Glycols/chemistry
19.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473945

ABSTRACT

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of the potential impurities of dexketoprofen, including the distomer R-ketoprofen. After screening the separation capability of four polysaccharide columns (Lux Amylose-1, Lux Amylose-2, Lux Cellulose-1 and Lux Cellulose-2) in polar organic and in reversed-phase modes, appropriate enantioseparation was observed only on the Lux Amylose-2 column in an acidified acetonitrile/water mixture. A detailed investigation of the mobile phase composition and temperature for enantio- and chemoselectivity showed many unexpected observations. It was observed that both the resolution and the enantiomer elution order can be fine-tuned by varying the temperature and mobile phase composition. Moreover, hysteresis of the retention times and enantioselectivity was also observed in reversed-phase mode using methanol/water mixtures on amylose-type columns. This could indicate that the three-dimensional structure of the amylose column can change by transitioning from a polar organic to a reversed-phase mode, which affects the enantioseparation process. Temperature-dependent enantiomer elution order and rare enthalpic/entropic controlled enantioseparation in the operative temperature range were also observed in reversed-phase mode. To find the best methodological conditions for the determination of dexketoprofen impurities, a full factorial optimization design was performed. Using the optimized parameters (Lux Amylose-2 column with water/acetonitrile/acetic acid 50/50/0.1 (v/v/v) at a 1 mL/min flow rate at 20 °C), baseline separations were achieved between all compounds within 15 min. Our newly developed HPLC method was validated according to the current guidelines, and its application was tested on commercially available pharmaceutical formulations. According to the authors' knowledge, this is the first study to report hysteretic behavior on polysaccharide columns in reversed-phase mode.


Subject(s)
Amylose , Chromatography, Reverse-Phase , Ketoprofen/analogs & derivatives , Tromethamine , Amylose/chemistry , Temperature , Polysaccharides/chemistry , Cellulose/chemistry , Chromatography, High Pressure Liquid/methods , Water , Acetonitriles , Stereoisomerism
20.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542442

ABSTRACT

The Shanlan landrace rice in Hainan Province, China, is a unique upland rice germplasm that holds significant value as a genetic resource for rice breeding. However, its genetic diversity and its usefulness in rice breeding have not been fully explored. In this study, a total of eighty-four Shanlan rice, three typical japonica rice cultivars, and three typical indica rice cultivars were subjected to resequencing of their genomes. As a result, 11.2 million high-quality single nucleotide polymorphisms (SNPs) and 1.6 million insertion/deletions (InDels) were detected. Population structure analysis showed all the rice accessions could be divided into three main groups, i.e., Geng/japonica 1 (GJ1), GJ2, and Xian/indica (XI). However, the GJ1 group only had seven accessions including three typical japonica cultivars, indicating that most Shanlan landrace rice are different from the modern japonica rice. Principal component analysis (PCA) showed that the first three principal components explained 60.7% of the genetic variation. Wide genetic diversity in starch physicochemical parameters, such as apparent amylose content (AAC), pasting viscosity, texture properties, thermal properties, and retrogradation representing the cooking and eating quality was also revealed among all accessions. The genome-wide association study (GWAS) for these traits was conducted and identified 32 marker trait associations in the entire population. Notably, the well-known gene Waxy (Wx) was identified for AAC, breakdown viscosity, and gumminess of the gel texture, and SSIIa was identified for percentage of retrogradation and peak gelatinization temperature. Upon further analysis of nucleotide diversity in Wx, six different alleles, wx, Wxa, Wxb, Wxin, Wxla/mw, and Wxlv in Shanlan landrace rice were identified, indicating rich gene resources in Shanlan rice for quality rice breeding. These findings are expected to contribute to the development of new rice with premium quality.


Subject(s)
Genome-Wide Association Study , Oryza , Oryza/metabolism , Plant Breeding , Amylose/genetics , Polymorphism, Single Nucleotide , Cooking
SELECTION OF CITATIONS
SEARCH DETAIL