Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
Add more filters

Publication year range
1.
PLoS Genet ; 20(5): e1011064, 2024 May.
Article in English | MEDLINE | ID: mdl-38709821

ABSTRACT

The capacity for bacterial extracellular electron transfer via secreted metabolites is widespread in natural, clinical, and industrial environments. Recently, we discovered the biological oxidation of phenazine-1-carboxylic acid (PCA), the first example of biological regeneration of a naturally produced extracellular electron shuttle. However, it remained unclear how PCA oxidation was catalyzed. Here, we report the mechanism, which we uncovered by genetically perturbing the branched electron transport chain (ETC) of the soil isolate Citrobacter portucalensis MBL. Biological PCA oxidation is coupled to anaerobic respiration with nitrate, fumarate, dimethyl sulfoxide, or trimethylamine-N-oxide as terminal electron acceptors. Genetically inactivating the catalytic subunits for all redundant complexes for a given terminal electron acceptor abolishes PCA oxidation. In the absence of quinones, PCA can still donate electrons to certain terminal reductases, albeit much less efficiently. In C. portucalensis MBL, PCA oxidation is largely driven by flux through the ETC, which suggests a generalizable mechanism that may be employed by any anaerobically respiring bacterium with an accessible cytoplasmic membrane. This model is supported by analogous genetic experiments during nitrate respiration by Pseudomonas aeruginosa.


Subject(s)
Oxidation-Reduction , Phenazines , Soil Microbiology , Phenazines/metabolism , Electron Transport/genetics , Citrobacter/genetics , Citrobacter/metabolism , Anaerobiosis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
Fungal Genet Biol ; 172: 103897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750926

ABSTRACT

Long Terminal Repeat (LTR) retrotransposons are a class of repetitive elements that are widespread in the genomes of plants and many fungi. LTR retrotransposons have been associated with rapidly evolving gene clusters in plants and virulence factor transfer in fungal-plant parasite-host interactions. We report here the abundance and transcriptional activity of LTR retrotransposons across several species of the early-branching Neocallimastigomycota, otherwise known as the anaerobic gut fungi (AGF). The ubiquity of LTR retrotransposons in these genomes suggests key evolutionary roles in these rumen-dwelling biomass degraders, whose genomes also contain many enzymes that are horizontally transferred from other rumen-dwelling prokaryotes. Up to 10% of anaerobic fungal genomes consist of LTR retrotransposons, and the mapping of sequences from LTR retrotransposons to transcriptomes shows that the majority of clusters are transcribed, with some exhibiting expression greater than 104 reads per kilobase million mapped reads (rpkm). Many LTR retrotransposons are strongly differentially expressed upon heat stress during fungal cultivation, with several exhibiting a nearly three-log10 fold increase in expression, whereas growth substrate variation modulated transcription to a lesser extent. We show that some LTR retrotransposons contain carbohydrate-active enzymes (CAZymes), and the expansion of CAZymes within genomes and among anaerobic fungal species may be linked to retrotransposon activity. We further discuss how these widespread sequences may be a source of promoters and other parts towards the bioengineering of anaerobic fungi.


Subject(s)
Genome, Fungal , Retroelements , Terminal Repeat Sequences , Retroelements/genetics , Terminal Repeat Sequences/genetics , Genome, Fungal/genetics , Anaerobiosis/genetics , Neocallimastigomycota/genetics , Gene Expression Regulation, Fungal/genetics , Phylogeny , Transcription, Genetic , Transcriptome/genetics
3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33906945

ABSTRACT

Anaerobic fungi (class Neocallimastigomycetes) thrive as low-abundance members of the herbivore digestive tract. The genomes of anaerobic gut fungi are poorly characterized and have not been extensively mined for the biosynthetic enzymes of natural products such as antibiotics. Here, we investigate the potential of anaerobic gut fungi to synthesize natural products that could regulate membership within the gut microbiome. Complementary 'omics' approaches were combined to catalog the natural products of anaerobic gut fungi from four different representative species: Anaeromyces robustus (Arobustus), Caecomyces churrovis (Cchurrovis), Neocallimastix californiae (Ncaliforniae), and Piromyces finnis (Pfinnis). In total, 146 genes were identified that encode biosynthetic enzymes for diverse types of natural products, including nonribosomal peptide synthetases and polyketide synthases. In addition, N. californiae and C. churrovis genomes encoded seven putative bacteriocins, a class of antimicrobial peptides typically produced by bacteria. During standard laboratory growth on plant biomass or soluble substrates, 26% of total core biosynthetic genes in all four strains were transcribed. Across all four fungal strains, 30% of total biosynthetic gene products were detected via proteomics when grown on cellobiose. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of fungal supernatants detected 72 likely natural products from A. robustus alone. A compound produced by all four strains of anaerobic fungi was putatively identified as the polyketide-related styrylpyrone baumin. Molecular networking quantified similarities between tandem mass spectrometry (MS/MS) spectra among these fungi, enabling three groups of natural products to be identified that are unique to anaerobic fungi. Overall, these results support the finding that anaerobic gut fungi synthesize natural products, which could be harnessed as a source of antimicrobials, therapeutics, and other bioactive compounds.


Subject(s)
Biological Products/isolation & purification , Fungal Proteins/isolation & purification , Fungi/chemistry , Proteomics , Anaerobiosis/genetics , Biological Products/chemistry , Biomass , Chromatography, Liquid , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gastrointestinal Microbiome/genetics , Lignin/chemistry , Lignin/genetics , Neocallimastigales/chemistry , Neocallimastigales/genetics , Neocallimastix/chemistry , Neocallimastix/genetics , Piromyces/chemistry , Piromyces/genetics , Tandem Mass Spectrometry
4.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891842

ABSTRACT

Time-series experiments are crucial for understanding the transient and dynamic nature of biological phenomena. These experiments, leveraging advanced classification and clustering algorithms, allow for a deep dive into the cellular processes. However, while these approaches effectively identify patterns and trends within data, they often need to improve in elucidating the causal mechanisms behind these changes. Building on this foundation, our study introduces a novel algorithm for temporal causal signaling modeling, integrating established knowledge networks with sequential gene expression data to elucidate signal transduction pathways over time. Focusing on Escherichia coli's (E. coli) aerobic to anaerobic transition (AAT), this research marks a significant leap in understanding the organism's metabolic shifts. By applying our algorithm to a comprehensive E. coli regulatory network and a time-series microarray dataset, we constructed the cross-time point core signaling and regulatory processes of E. coli's AAT. Through gene expression analysis, we validated the primary regulatory interactions governing this process. We identified a novel regulatory scheme wherein environmentally responsive genes, soxR and oxyR, activate fur, modulating the nitrogen metabolism regulators fnr and nac. This regulatory cascade controls the stress regulators ompR and lrhA, ultimately affecting the cell motility gene flhD, unveiling a novel regulatory axis that elucidates the complex regulatory dynamics during the AAT process. Our approach, merging empirical data with prior knowledge, represents a significant advance in modeling cellular signaling processes, offering a deeper understanding of microbial physiology and its applications in biotechnology.


Subject(s)
Algorithms , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Escherichia coli/genetics , Escherichia coli/metabolism , Anaerobiosis/genetics , Aerobiosis , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Signal Transduction/genetics , Models, Biological , Gene Expression Profiling/methods
5.
Mol Biol Evol ; 38(6): 2240-2259, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33528570

ABSTRACT

The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).


Subject(s)
Archamoebae/genetics , Biological Evolution , Entamoeba histolytica/genetics , Genome, Protozoan , Parasites/genetics , Adaptation, Biological/genetics , Anaerobiosis/genetics , Animals , Archamoebae/metabolism , Gene Transfer, Horizontal , Genome Size , Transcriptome
6.
Plant Physiol ; 186(2): 1042-1059, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33638990

ABSTRACT

Rice production is shifting from transplanting seedlings to direct sowing of seeds. Following heavy rains, directly sown seeds may need to germinate under anaerobic environments, but most rice (Oryza sativa) genotypes cannot survive these conditions. To identify the genetic architecture of complex traits, we quantified percentage anaerobic germination (AG) in 2,700 (wet-season) and 1,500 (dry-season) sequenced rice genotypes and performed genome-wide association studies (GWAS) using 693,502 single nucleotide polymorphisms. This was followed by post-GWAS analysis with a generalized SNP-to-gene set analysis, meta-analysis, and network analysis. We determined that percentage AG is intermediate-to-high among indica subpopulations, and AG is a polygenic trait associated with transcription factors linked to ethylene responses or genes involved in metabolic processes that are known to be associated with AG. Our post-GWAS analysis identified several genes involved in a wide variety of metabolic processes. We subsequently performed functional analysis focused on the small RNA and methylation pathways. We selected CLASSY 1 (CLSY1), a gene involved in the RNA-directed DNA methylation (RdDm) pathway, for further analyses under AG and found several lines of evidence that CLSY1 influences AG. We propose that the RdDm pathway plays a role in rice responses to water status during germination and seedling establishment developmental stages.


Subject(s)
Epigenesis, Genetic , Ethylenes/metabolism , Genetic Variation , Oryza/genetics , Plant Growth Regulators/metabolism , Anaerobiosis/genetics , Genome-Wide Association Study , Genotype , Germination/genetics , Oryza/physiology , Polymorphism, Single Nucleotide/genetics , Seedlings/genetics , Seedlings/physiology , Seeds/genetics , Seeds/physiology , Water/physiology
7.
Biotechnol Bioeng ; 119(1): 315-320, 2022 01.
Article in English | MEDLINE | ID: mdl-34633065

ABSTRACT

In anoxic environments, microbial activation of alkanes for subsequent metabolism occurs most commonly through the addition of fumarate to a subterminal carbon, producing an alkylsuccinate. Alkylsuccinate synthases are complex, multi-subunit enzymes that utilize a catalytic glycyl radical and require a partner, activating enzyme for hydrogen abstraction. While many genes encoding putative alkylsuccinate synthases have been identified, primarily from nitrate- and sulfate-reducing bacteria, few have been characterized and none have been reported to be functionally expressed in a heterologous host. Here, we describe the functional expression of the (1-methylalkyl)succinate synthase (Mas) system from Azoarcus sp. strain HxN1 in recombinant Escherichia coli. Mass spectrometry confirms anaerobic biosynthesis of the expected products of fumarate addition to hexane, butane, and propane. Maximum production of (1-methylpentyl)succinate is observed when masC, masD, masE, masB, and masG are all present on the expression plasmid; omitting masC reduces production by 66% while omitting any other gene eliminates production. Meanwhile, deleting iscR (encoding the repressor of the E. coli iron-sulfur cluster operon) improves product titer, as does performing the biotransformation at reduced temperature (18°C), both suggesting alkylsuccinate biosynthesis is largely limited by functional expression of this enzyme system.


Subject(s)
Alkanes/metabolism , Escherichia coli , Metabolic Engineering , Succinates/metabolism , Anaerobiosis/genetics , Azoarcus/enzymology , Azoarcus/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Networks and Pathways/genetics
8.
Nature ; 536(7615): 179-83, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27487207

ABSTRACT

Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.


Subject(s)
Alphaproteobacteria/classification , Alphaproteobacteria/metabolism , Aquatic Organisms/metabolism , Nitrogen/analysis , Oceans and Seas , Oxygen/analysis , Seawater/chemistry , Adaptation, Physiological/genetics , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Anaerobiosis/genetics , Aquatic Organisms/enzymology , Aquatic Organisms/genetics , Aquatic Organisms/isolation & purification , Denitrification , Gene Expression Profiling , Genes, Bacterial , Genome, Bacterial/genetics , Nitrate Reductases/genetics , Nitrate Reductases/metabolism , Nitrates/metabolism , Nitrites/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , Single-Cell Analysis , Transcription, Genetic
9.
Proc Natl Acad Sci U S A ; 116(8): 3171-3176, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718429

ABSTRACT

Hydrogen sulfide (H2S) production in the intestinal microbiota has many contributions to human health and disease. An important source of H2S in the human gut is anaerobic respiration of sulfite released from the abundant dietary and host-derived organic sulfonate substrate in the gut, taurine (2-aminoethanesulfonate). However, the enzymes that allow intestinal bacteria to access sulfite from taurine have not yet been identified. Here we decipher the complete taurine desulfonation pathway in Bilophila wadsworthia 3.1.6 using differential proteomics, in vitro reconstruction with heterologously produced enzymes, and identification of critical intermediates. An initial deamination of taurine to sulfoacetaldehyde by a known taurine:pyruvate aminotransferase is followed, unexpectedly, by reduction of sulfoacetaldehyde to isethionate (2-hydroxyethanesulfonate) by an NADH-dependent reductase. Isethionate is then cleaved to sulfite and acetaldehyde by a previously uncharacterized glycyl radical enzyme (GRE), isethionate sulfite-lyase (IslA). The acetaldehyde produced is oxidized to acetyl-CoA by a dehydrogenase, and the sulfite is reduced to H2S by dissimilatory sulfite reductase. This unique GRE is also found in Desulfovibrio desulfuricans DSM642 and Desulfovibrio alaskensis G20, which use isethionate but not taurine; corresponding knockout mutants of D. alaskensis G20 did not grow with isethionate as the terminal electron acceptor. In conclusion, the novel radical-based C-S bond-cleavage reaction catalyzed by IslA diversifies the known repertoire of GRE superfamily enzymes and enables the energy metabolism of B. wadsworthia This GRE is widely distributed in gut bacterial genomes and may represent a novel target for control of intestinal H2S production.


Subject(s)
Alcohol Oxidoreductases/genetics , Bilophila/enzymology , Hydrogen Sulfide/metabolism , Proteomics , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Anaerobiosis/genetics , Bilophila/chemistry , Bilophila/metabolism , Gastrointestinal Microbiome/genetics , Humans , Hydrogen Sulfide/chemistry , Oxidation-Reduction , Taurine/metabolism
10.
Proc Natl Acad Sci U S A ; 116(8): 3300-3309, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30723146

ABSTRACT

The rice SUB1A-1 gene, which encodes a group VII ethylene response factor (ERFVII), plays a pivotal role in rice survival under flooding stress, as well as other abiotic stresses. In Arabidopsis, five ERFVII factors play roles in regulating hypoxic responses. A characteristic feature of Arabidopsis ERFVIIs is a destabilizing N terminus, which functions as an N-degron that targets them for degradation via the oxygen-dependent N-end rule pathway of proteolysis, but permits their stabilization during hypoxia for hypoxia-responsive signaling. Despite having the canonical N-degron sequence, SUB1A-1 is not under N-end rule regulation, suggesting a distinct hypoxia signaling pathway in rice during submergence. Herein we show that two other rice ERFVIIs gene, ERF66 and ERF67, are directly transcriptionally up-regulated by SUB1A-1 under submergence. In contrast to SUB1A-1, ERF66 and ERF67 are substrates of the N-end rule pathway that are stabilized under hypoxia and may be responsible for triggering a stronger transcriptional response to promote submergence survival. In support of this, overexpression of ERF66 or ERF67 leads to activation of anaerobic survival genes and enhanced submergence tolerance. Furthermore, by using structural and protein-interaction analyses, we show that the C terminus of SUB1A-1 prevents its degradation via the N-end rule and directly interacts with the SUB1A-1 N terminus, which may explain the enhanced stability of SUB1A-1 despite bearing an N-degron sequence. In summary, our results suggest that SUB1A-1, ERF66, and ERF67 form a regulatory cascade involving transcriptional and N-end rule control, which allows rice to distinguish flooding from other SUB1A-1-regulated stresses.


Subject(s)
Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Adaptation, Physiological/genetics , Anaerobiosis/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Oryza/growth & development , Signal Transduction/genetics , Substrate Specificity
11.
J Biol Chem ; 295(13): 4124-4133, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221031

ABSTRACT

An early exposure to lipid biochemistry in the laboratory of Konrad Bloch resulted in a fascination with the biosynthesis, structures, and functions of bacterial lipids. The discovery of plasmalogens (1-alk-1'-enyl, 2-acyl phospholipids) in anaerobic Gram-positive bacteria led to studies on the physical chemistry of these lipids and the cellular regulation of membrane lipid polymorphism in bacteria. Later studies in several laboratories showed that the formation of the alk-1-enyl ether bond involves an aerobic process in animal cells and thus is fundamentally different from that in anaerobic organisms. Our work provides evidence for an anaerobic process in which plasmalogens are formed from their corresponding diacyl lipids. Studies on the roles of phospholipases in Listeria monocytogenes revealed distinctions between its phospholipases and those previously discovered in other bacteria and showed how the Listeria enzymes are uniquely fitted to the intracellular lifestyle of this significant human pathogen.


Subject(s)
Anaerobiosis/genetics , Lipids/genetics , Plasmalogens/metabolism , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Fatty Acids/biosynthesis , Fatty Acids/genetics , Fatty Acids/metabolism , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Lipids/biosynthesis , Lipids/chemistry , Phosphatidylethanolamines/biosynthesis , Phosphatidylethanolamines/genetics , Phosphatidylethanolamines/metabolism , Plasmalogens/chemistry , Plasmalogens/genetics
12.
Infect Immun ; 89(3)2021 02 16.
Article in English | MEDLINE | ID: mdl-33361201

ABSTRACT

The Enteritidis and Dublin serovars of Salmonella enterica are phylogenetically closely related yet differ significantly in host range and virulence. S Enteritidis is a broad-host-range serovar that commonly causes self-limited gastroenteritis in humans, whereas S Dublin is a cattle-adapted serovar that can infect humans, often resulting in invasive extraintestinal disease. The mechanism underlying the higher invasiveness of S Dublin remains undetermined. In this work, we quantitatively compared the proteomes of clinical isolates of each serovar grown under gut-mimicking conditions. Compared to S Enteritidis, the S Dublin proteome was enriched in proteins linked to response to several stress conditions, such as those encountered during host infection, as well as to virulence. The S Enteritidis proteome contained several proteins related to central anaerobic metabolism pathways that were undetected in S Dublin. In contrast to what has been observed in other extraintestinal serovars, most of the coding genes for these pathways are not degraded in S Dublin. Thus, we provide evidence that S Dublin metabolic functions may be much more affected than previously reported based on genomic studies. Single and double null mutants in stress response proteins Dps, YciF, and YgaU demonstrate their relevance to S Dublin invasiveness in a murine model of invasive salmonellosis. All in all, this work provides a basis for understanding interserovar differences in invasiveness and niche adaptation, underscoring the relevance of using proteomic approaches to complement genomic studies.


Subject(s)
Anaerobiosis/genetics , Proteomics , Salmonella enteritidis/genetics , Salmonella enteritidis/pathogenicity , Serogroup , Stress, Physiological/genetics , Virulence/genetics , Genetic Variation , Genomics , Host Specificity , Humans , Salmonella Infections/genetics , Salmonella Infections/pathology
13.
Mol Microbiol ; 114(2): 333-347, 2020 08.
Article in English | MEDLINE | ID: mdl-32301184

ABSTRACT

Bacteroides thetaiotaomicron was examined to determine whether its obligate anaerobiosis is imposed by endogenous reactive oxygen species or by molecular oxygen itself. Previous analyses established that aerated B. thetaiotaomicron loses some enzyme activities due to a high rate of endogenous superoxide formation. However, the present study establishes that another key step in central metabolism is poisoned by molecular oxygen itself. Pyruvate dissimilation was shown to depend upon two enzymes, pyruvate:formate lyase (PFL) and pyruvate:ferredoxin oxidoreductase (PFOR), that lose activity upon aeration. PFL is a glycyl-radical enzyme whose vulnerability to oxygen is already understood. The rate of PFOR damage was unaffected by the level of superoxide or peroxide, showing that molecular oxygen itself is the culprit. The cell cannot repair PFOR, which amplifies the impact of damage. The rates of PFOR and fumarase inactivation are similar, suggesting that superoxide dismutase is calibrated so the oxygen- and superoxide-sensitive enzymes are equally sensitive to aeration. The physiological purpose of PFL and PFOR is to degrade pyruvate without disrupting the redox balance, and they do so using catalytic mechanisms that are intrinsically vulnerable to oxygen. In this way, the anaerobic excellence and oxygen sensitivity of B. thetaiotaomicron are two sides of the same coin.


Subject(s)
Anaerobiosis/physiology , Bacteroides thetaiotaomicron/metabolism , Oxygen/metabolism , Acetyltransferases/metabolism , Anaerobiosis/genetics , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Oxygen/physiology , Pyruvate Synthase/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
14.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638949

ABSTRACT

Urothelial cancer is a malignant tumor with metastatic ability and high mortality. Malignant tumors of the urinary system include upper tract urothelial cancer and bladder cancer. In addition to typical genetic alterations and epigenetic modifications, metabolism-related events also occur in urothelial cancer. This metabolic reprogramming includes aberrant expression levels of genes, metabolites, and associated networks and pathways. In this review, we summarize the dysfunctions of glycolytic enzymes in urothelial cancer and discuss the relevant phenotype and signal transduction. Moreover, we describe potential prognostic factors and risks to the survival of clinical cancer patients. More importantly, based on several available databases, we explore relationships between glycolytic enzymes and genetic changes or drug responses in urothelial cancer cells. Current advances in glycolysis-based inhibitors and their combinations are also discussed. Combining all of the evidence, we indicate their potential value for further research in basic science and clinical applications.


Subject(s)
Enzyme Inhibitors/pharmacology , Signal Transduction/genetics , Urologic Neoplasms/enzymology , Urologic Neoplasms/genetics , Warburg Effect, Oncologic/drug effects , Anaerobiosis/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Humans , Phenotype , Prognosis , Up-Regulation/genetics
15.
Infect Immun ; 88(2)2020 01 22.
Article in English | MEDLINE | ID: mdl-31792073

ABSTRACT

Isoprenoids are an essential and diverse class of molecules, present in all forms of life, that are synthesized from an essential common precursor derived from either the mevalonate pathway or the nonmevalonate pathway. Most bacteria have one pathway or the other, but the Gram-positive, facultative intracellular pathogen Listeria monocytogenes is unusual because it carries all the genes for both pathways. While the mevalonate pathway has previously been reported to be essential, here we demonstrate that the nonmevalonate pathway can support growth of strains 10403S and EGD-e, but only anaerobically. L. monocytogenes lacking the gene hmgR, encoding the rate-limiting enzyme of the mevalonate pathway, had a doubling time of 4 h under anaerobic conditions, in contrast to the 45 min doubling time of the wild type. In contrast, deleting hmgR in two clinical isolates resulted in mutants that grew significantly faster, doubling in approximately 2 h anaerobically, although they still failed to grow under aerobic conditions without mevalonate. The difference in anaerobic growth rate was traced to three amino acid changes in the nonmevalonate pathway enzyme GcpE, and these changes were sufficient to increase the growth rate of 10403S to the rate observed in the clinical isolates. Despite an increased growth rate, virulence was still dependent on the mevalonate pathway in 10403S strains expressing the more active GcpE allele.


Subject(s)
Anaerobiosis/genetics , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Mevalonic Acid/metabolism , Signal Transduction/genetics , Terpenes/metabolism , Amino Acids/genetics , Amino Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genes, Bacterial/genetics , Listeria monocytogenes/genetics , Virulence/genetics
16.
Microb Pathog ; 140: 103936, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31862389

ABSTRACT

AIM: The aim of this study was to understand the role of anaerobic regulator FNR (Fumarate Nitrate Reduction) in Salmonella Typhimurium through proteomic approach. METHODS AND RESULTS: We did label free quantitative proteomic analysis of Salmonella Typhimurium PM45 wild type and the fnr null mutant cultured under anaerobic conditions. The data revealed 153 significantly differentially expressed proteins (DEPs) in the mutant out of 1798 total proteins identified. Out of 153 DEPs, 94 proteins were up-regulated (repressed by FNR) and 59 proteins were down-regulated (activated by FNR) in the mutant. The network analysis indicated up-regulation of TCA cycle, electron transport chain and ethanolamine metabolism and down regulation of pyruvate metabolism and glycerol and glycerophospholipid metabolism. CONCLUSIONS: Our study showed that FNR represses ethanolamine utilization. The different metabolic pathways such as pyruvate metabolism, glycerol metabolism and glycerophospholipid metabolism were activated by FNR. Further, FNR positively regulated the DNA binding protein Fis, one of the global regulators of virulence in Salmonella Typhimurium. Thus, our finding highlights the pivotal role of FNR in regulating bacterial metabolism and virulence during anaerobiosis for systemic infection of the host.


Subject(s)
Anaerobiosis/genetics , Escherichia coli Proteins , Iron-Sulfur Proteins , Metabolic Networks and Pathways/genetics , Salmonella typhimurium , Virulence/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Gene Expression Regulation, Bacterial , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Mutation , Proteomics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
17.
BMC Genet ; 21(1): 6, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31952473

ABSTRACT

BACKGROUND: Anaerobic germination is one of the most important traits for rice under direct-seeded conditions. The trait reduces risk of crop failure due to waterlogged conditions after seeding and allows water to be used as a means of weed control. The identification of QTLs and causal genes for anaerobic germination will facilitate breeding for improved direct-seeded rice varieties. In this study, we explored a BC1F2:3 population developed from a cross between BJ1, an indica landrace, and NSIC Rc222, a high-yielding recurrent parent. The population was phenotyped under different screening methods (anaerobic screenhouse, anaerobic tray, and aerobic screenhouse) to establish the relationship among the methods and to identify the most suitable screening method, followed by bulk segregant analysis (BSA) to identify large-effect QTLs. RESULTS: The study showed high heritability for survival (SUR) under all three phenotyping conditions. Although high correlation was observed within screening environments between survival at 14 and 21 days after seeding, the correlation across environments was low. Germination under aerobic and anaerobic conditions showed very low correlation, indicating the independence of their genetic control. The results were further confirmed through AMMI analysis. Four significant markers with an effect on anaerobic germination were identified through BSA. CIM analysis revealed qAG1-2, qAG6-2, qAG7-4, and qAG10-1 having significant effects on the trait. qAG6-2 and qAG10-1 were consistent across screening conditions and seedling age while qAG1-2 and qAG7-4 were specific to screening methods. All QTLs showed an effect when survival across all screening methods was analyzed. Together, the QTLs explained 39 to 55% of the phenotypic variation for survival under anaerobic conditions. No QTL effects were observed under aerobic conditions. CONCLUSIONS: The study helped us understand the effect of phenotyping method on anaerobic germination, which will lead to better phenotyping for this trait in future studies. The QTLs identified through this study will allow the improvement of breeding lines for the trait through marker-assisted selection or through forward breeding approaches such as genomic selection. The high frequency of the BJ1 allele of these QTLs will enhance the robustness of germination under anaerobic conditions in inbred and hybrid rice varieties.


Subject(s)
Anaerobiosis/genetics , Chromosome Mapping , Germination/genetics , Oryza/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Biological Variation, Population , Gene-Environment Interaction , Oryza/metabolism , Phenotype
18.
Mol Cell Proteomics ; 17(10): 1937-1947, 2018 10.
Article in English | MEDLINE | ID: mdl-30038032

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most used models for bacterial pathogenesis and successful infection requires its adaptation to the low oxygen environment in host gastrointestinal tracts. Central to this process is the Arc (aerobic respiratory control) two-component regulatory system that contains a sensor kinase ArcB and a response regulator ArcA. Nevertheless, a comprehensive profile of the ArcA regulon on the proteome level is still lacking in S. Typhimurium. Here we quantitatively profiled Salmonella proteome during anaerobiosis in an arcA-deleting mutant compared with its parental strain. In addition to known processes under its control, notably we found that ArcA represses ethanolamine utilization by directly binding to the promoter region of the eut operon. Furthermore, we found opposing changes of several bacterial genes on the protein and transcript levels in the arcA-deleting mutant including the virulence genes of Salmonella pathogenicity island 1 (SPI-1), thereby indicating potentially prevalent post-transcriptional regulatory mechanisms. Altogether, our study provides important new insights into ArcA-dependent bacterial physiology and virulence during Salmonella anaerobiosis.


Subject(s)
Bacterial Proteins/genetics , Proteomics , Regulon/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Adenosine Triphosphate/metabolism , Anaerobiosis/genetics , Animals , Bacterial Proteins/metabolism , Base Sequence , Caenorhabditis elegans/microbiology , Citric Acid Cycle/genetics , Ethanolamine/metabolism , Gene Expression Regulation, Bacterial , Lysogeny/genetics , Mutation/genetics , Operon/genetics , Promoter Regions, Genetic/genetics , Protein Interaction Maps , Salmonella typhimurium/pathogenicity , Virulence Factors/metabolism
19.
Proc Natl Acad Sci U S A ; 114(46): 12261-12266, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29087312

ABSTRACT

The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O2 availability. We found that the intracellular, labile Fe2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe2+ availability drove the formation of more Fe2+-Fur and, accordingly, more DNA binding. O2 regulation of Fur activity required the anaerobically induced FeoABC Fe2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Homeostasis/genetics , Iron/metabolism , Oxygen/metabolism , Repressor Proteins/genetics , Aerobiosis/genetics , Anaerobiosis/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Operon , Repressor Proteins/metabolism
20.
BMC Biol ; 17(1): 19, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30823887

ABSTRACT

BACKGROUND: Spironucleus salmonicida is an anaerobic parasite that can cause systemic infections in Atlantic salmon. Unlike other diplomonad parasites, such as the human pathogen Giardia intestinalis, Spironucleus species can infiltrate the blood stream of their hosts eventually colonizing organs, skin and gills. How this presumed anaerobe can persist and invade oxygenated tissues, despite having a strictly anaerobic metabolism, remains elusive. RESULTS: To investigate how S. salmonicida response to oxygen stress, we performed RNAseq transcriptomic analyses of cells grown in the presence of oxygen or antioxidant-free medium. We found that over 20% of the transcriptome is differentially regulated in oxygen (1705 genes) and antioxidant-depleted (2280 genes) conditions. These differentially regulated transcripts encode proteins related to anaerobic metabolism, cysteine and Fe-S cluster biosynthesis, as well as a large number of proteins of unknown function. S. salmonicida does not encode genes involved in the classical elements of oxygen metabolism (e.g., catalases, superoxide dismutase, glutathione biosynthesis, oxidative phosphorylation). Instead, we found that genes encoding bacterial-like oxidoreductases were upregulated in response to oxygen stress. Phylogenetic analysis revealed some of these oxygen-responsive genes (e.g., nadh oxidase, rubrerythrin, superoxide reductase) are rare in eukaryotes and likely derived from lateral gene transfer (LGT) events into diplomonads from prokaryotes. Unexpectedly, we observed that many host evasion- and invasion-related genes were also upregulated under oxidative stress suggesting that oxygen might be an important signal for pathogenesis. CONCLUSION: While oxygen is toxic for related organisms, such as G. intestinalis, we find that oxygen is likely a gene induction signal for host invasion- and evasion-related pathways in S. salmonicida. These data provide the first molecular evidence for how S. salmonicida could tolerate oxic host environments and demonstrate how LGT can have a profound impact on the biology of anaerobic parasites.


Subject(s)
Anaerobiosis/genetics , Diplomonadida/genetics , Oxygen/administration & dosage , Stress, Physiological/genetics , Animals , Diplomonadida/drug effects , Gene Expression Regulation/drug effects , Salmon/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL