Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.637
Filter
Add more filters

Publication year range
1.
Cell ; 152(4): 831-43, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23415230

ABSTRACT

p11, through unknown mechanisms, is required for behavioral and cellular responses to selective serotonin reuptake inhibitors (SSRIs). We show that SMARCA3, a chromatin-remodeling factor, is a target for the p11/annexin A2 heterotetrameric complex. Determination of the crystal structure indicates that SMARCA3 peptide binds to a hydrophobic pocket in the heterotetramer. Formation of this complex increases the DNA-binding affinity of SMARCA3 and its localization to the nuclear matrix fraction. In the dentate gyrus, both p11 and SMARCA3 are highly enriched in hilar mossy cells and basket cells. The SSRI fluoxetine induces expression of p11 in both cell types and increases the amount of the ternary complex of p11/annexin A2/SMARCA3. SSRI-induced neurogenesis and behavioral responses are abolished by constitutive knockout of SMARCA3. Our studies indicate a central role for a chromatin-remodeling factor in the SSRI/p11 signaling pathway and suggest an approach to the development of improved antidepressant therapies. PAPERCLIP:


Subject(s)
Annexin A2/metabolism , DNA-Binding Proteins/metabolism , Dentate Gyrus/metabolism , S100 Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Transcription Factors/metabolism , Amino Acid Sequence , Animals , DNA-Binding Proteins/chemistry , Female , Male , Models, Molecular , Molecular Sequence Data , Mossy Fibers, Hippocampal/metabolism , Sequence Alignment , Signal Transduction , Transcription Factors/chemistry , X-Ray Diffraction
2.
EMBO Rep ; 25(9): 3870-3895, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969946

ABSTRACT

Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.


Subject(s)
Actins , Annexin A2 , Cell Membrane , Cytoskeleton , Septins , Septins/metabolism , Septins/genetics , Humans , Annexin A2/metabolism , Annexin A2/genetics , Cell Membrane/metabolism , Cytoskeleton/metabolism , Actins/metabolism , Nonmuscle Myosin Type IIA/metabolism , Nonmuscle Myosin Type IIA/genetics , HeLa Cells , Calcium/metabolism , S100 Proteins/metabolism , S100 Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
3.
Mol Cell Proteomics ; 23(2): 100723, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253182

ABSTRACT

Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1ß, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.


Subject(s)
Annexin A2 , Microglia , Reperfusion Injury , Animals , Mice , Annexin A2/metabolism , Microglia/metabolism , Multiomics , NF-kappa B/metabolism , Proteomics , Reperfusion Injury/metabolism
4.
Proc Natl Acad Sci U S A ; 120(43): e2307118120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37844241

ABSTRACT

In various epithelial tissues, the epithelial monolayer acts as a barrier. To fulfill its function, the structural integrity of the epithelium is tightly controlled. When normal epithelial cells detach from the basal substratum and delaminate into the apical lumen, the apically extruded cells undergo apoptosis, which is termed anoikis. In contrast, transformed cells often become resistant to anoikis and able to survive and grow in the apical luminal space, leading to the formation of multilayered structures, which can be observed at the early stage of carcinogenesis. However, the underlying molecular mechanisms still remain elusive. In this study, we first demonstrate that S100A10 and ANXA2 (Annexin A2) accumulate in apically extruded, transformed cells in both various cell culture systems and murine epithelial tissues in vivo. ANXA2 acts upstream of S100A10 accumulation. Knockdown of ANXA2 promotes apoptosis of apically extruded RasV12-transformed cells and suppresses the formation of multilayered epithelia. In addition, the intracellular reactive oxygen species (ROS) are elevated in apically extruded RasV12 cells. Treatment with ROS scavenger Trolox reduces the occurrence of apoptosis of apically extruded ANXA2-knockdown RasV12 cells and restores the formation of multilayered epithelia. Furthermore, ROS-mediated p38MAPK activation is observed in apically delaminated RasV12 cells, and ANXA2 knockdown further enhances the p38MAPK activity. Moreover, the p38MAPK inhibitor promotes the formation of multilayered epithelia of ANXA2-knockdown RasV12 cells. These results indicate that accumulated ANXA2 diminishes the ROS-mediated p38MAPK activation in apically extruded transformed cells, thereby blocking the induction of apoptosis. Hence, ANXA2 can be a potential therapeutic target to prevent multilayered, precancerous lesions.


Subject(s)
Annexin A2 , Animals , Mice , Annexin A2/genetics , Apoptosis , Epithelial Cells , Epithelium , Reactive Oxygen Species
5.
J Biol Chem ; 300(2): 105591, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141769

ABSTRACT

Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.


Subject(s)
Annexin A2 , Arthritis, Rheumatoid , MAP Kinase Signaling System , RNA, Long Noncoding , Synoviocytes , Humans , Annexin A2/genetics , Annexin A2/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/physiopathology , Cell Proliferation/genetics , Cells, Cultured , Enzyme Activation/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/physiopathology , Phosphorylation/genetics , Protein Binding/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Synoviocytes/cytology , Synoviocytes/metabolism
6.
Hum Mol Genet ; 32(8): 1334-1347, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36383401

ABSTRACT

More than 250 million people in the world are chronically infected with hepatitis B virus (HBV), which causes serious complications. Host genetic susceptibility is essential for chronic hepatitis B (CHB), and our previous genome-wide association study identified a single-nucleotide polymorphism (SNP), rs1883832, in the 5' untranslated region of CD40 predisposing to chronic HBV infection, but the underlying mechanism remains undefined. This study aimed to investigate whether rs1883832 was the real functional SNP (fSNP) of CD40 and how it modulated HBV clearance in hepatocytes. We determined the fSNP of CD40 and its regulatory protein(s) using luciferase reporter assays, electrophoretic mobility shift assay, flanking restriction enhanced pulldown and chromatin immunoprecipitation. The potential anti-HBV activity of CD40 and its downstream molecule BST2 was assessed in HBV-transfected and HBV-infected hepatoma cells and HBV-infected primary human hepatocytes. Moreover, the mechanism of CD40 was investigated by mRNA sequencing, quantitative real-time polymerase chain reaction, immunofluorescence and western blot. We revealed rs1883832 as the true fSNP of CD40 and identified ANXA2 as a negative regulatory protein that preferentially bound to the risk allele T of rs1883832 and hence reduced CD40 expression. Furthermore, CD40 suppressed HBV replication and transcription in hepatocytes via activating the JAK-STAT pathway. BST2 was identified to be the key IFN-stimulated gene regulated by CD40 after activating JAK-STAT pathway. Inhibition of JAK/STAT/BST2 axis attenuated CD40-induced antiviral effect. In conclusion, a functional variant of CD40 modulates HBV clearance via regulation of the ANXA2/CD40/BST2 axis, which may shed new light on HBV personalized therapy.


Subject(s)
Annexin A2 , Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/genetics , Janus Kinases/metabolism , Genome-Wide Association Study , Signal Transduction , STAT Transcription Factors/metabolism , Hepatocytes/metabolism , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/metabolism , Transcription Factors/genetics , Hepatitis B/metabolism , Antigens, CD/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/pharmacology , Annexin A2/genetics
7.
Exp Cell Res ; 442(1): 114228, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39197578

ABSTRACT

Anterior gradient-2 (AGR2) is highly expressed in several tumors and plays an important role in tumor development. However, the biological function of AGR2 in teratomas has not yet been thoroughly studied. In this study, AGR2 was found to be upregulated in teratoma tissues and in human testicular teratoma cell lines by Western blotting and qRT-PCR assays. A DNA Methylation-Specific PCR assay demonstrated that AGR2 upregulation resulted from hypomethylated AGR2 in teratoma cells. NCC-IT and NT2-D1 cells were transfected with pcDNA-AGR2 or sh-AGR2 to obtain AGR2-overexpressed or -silenced cells, and cell proliferation, invasion and glycolysis were determined using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU), Transwell assays, and commercial kits. The results revealed that overexpression of AGR2 promoted teratoma cell proliferation and invasion and elevated glycolysis levels evidencing by the increase in lactate secretion, glucose consumption, ATP levels and the expression of glycolysis-related proteins, while knockdown of AGR2 showed the opposite results. The interactions between AGR2 and annexin A2 (AnXA2), as well as between AnXA2 and epidermal growth factor receptor (EGFR) were verified by co-immunoprecipitation assay. Mechanistic studies revealed that AGR2 interacts with AnXA2 and increases the level of AnXA2 to recruit more AnXA2 to EGFR, there by promoting EGFR expression. A series of rescue experiments showed that knockdown of AnXA2 or EGFR weakened the promotional effects of AGR2 overexpression on the proliferation, invasion, and glycolysis of teratoma cells. Finally, tumorigenicity assays were performed using NT2-D1 cells stably transfected with either LV-NC-shRNA or LV-shAGR2. The results showed that AGR2 knockdown significantly inhibited teratoma tumor growth in vivo. In conclusion, our data suggested that AGR2 facilitates glycolysis in teratomas through promoting EGFR expression by interacting with AnXA2, thereby promoting teratoma cells proliferation and invasion.


Subject(s)
Annexin A2 , Cell Proliferation , ErbB Receptors , Glycolysis , Mucoproteins , Oncogene Proteins , Testicular Neoplasms , Humans , Mucoproteins/genetics , Mucoproteins/metabolism , Glycolysis/genetics , Oncogene Proteins/metabolism , Oncogene Proteins/genetics , Animals , Cell Proliferation/genetics , Male , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Annexin A2/metabolism , Annexin A2/genetics , Testicular Neoplasms/pathology , Testicular Neoplasms/genetics , Testicular Neoplasms/metabolism , Cell Line, Tumor , Mice, Nude , Gene Expression Regulation, Neoplastic , Signal Transduction , Proteins/metabolism , Proteins/genetics , Cell Movement/genetics , Mice, Inbred BALB C , Neoplasm Invasiveness
8.
Nucleic Acids Res ; 51(3): 1409-1423, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36124719

ABSTRACT

The introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides. We show that a unique mode of hydrophobic interactions between a sulfur atom of the phosphorothioate group and lysine and arginine residues account for the enhanced affinity of modified nucleic acid for the protein. Our results demonstrate that this mechanism of interaction is observed not only for nucleic acid-binding proteins but can also account for the association of PS oligonucleotides with other proteins. Using the anomalous diffraction of sulfur, we showed that preference for phosphorothioate stereoisomers is determined by the hydrophobic environment around the PS linkage that comes not only from protein but also from additional structural features within the ASO such as 5-Me groups on cytosine nucleobases.


Subject(s)
Annexin A2 , Annexin A2/metabolism , Protein Binding/genetics , Oligonucleotides, Antisense/chemistry , Phosphorothioate Oligonucleotides/chemistry , DNA/metabolism , Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Sulfur/metabolism
9.
Biophys J ; 123(16): 2431-2442, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38859585

ABSTRACT

Annexin A2 (A2)-induced microdomain formation is a key step in biological processes such as Ca2+-mediated exocytosis in neuroendocrine cells. In this work, a total of 15 coarse-grained molecular dynamics simulations were performed on vesicle models having a diameter of approximately 250 Å for 15 µs each using the Martini2 force field. Five simulations were performed in the presence of 10 A2, 5 in the presence of A2 but absence of PIP2, and 5 simulations in the absence of A2 but presence of PIP2. Consistent results were generated among the simulations. A2-induced PIP2 microdomain formation was observed and shown to occur in three phases: A2-vesicle association, localized A2-induced PIP2 clustering, and A2 aggregation driving PIP2 microdomain formation. The relationship between A2 aggregation and PIP2 microdomain formation was quantitatively described using a novel method which calculated the variance among protein and lipid positions via the Fréchet mean. A large reduction in PIP2 variance was observed in the presence of A2 but not in its absence. This reduction in PIP2 variance was proportional to the reduction observed in A2 variance and demonstrates that the observed PIP2 microdomain formation is dependent upon A2 aggregation. The three-phase model of A2-induced microdomain formation generated in this work will serve as a valuable guide for further experimental studies and the development of novel A2 inhibitors. No microdomain formation was observed in the absence of A2 and minimal A2-membrane interaction was observed in the absence of PIP2.


Subject(s)
Annexin A2 , Molecular Dynamics Simulation , Annexin A2/metabolism , Annexin A2/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol 4,5-Diphosphate/chemistry , Membrane Microdomains/metabolism , Membrane Microdomains/chemistry
10.
Am J Physiol Cell Physiol ; 326(4): C1042-C1053, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38372137

ABSTRACT

Solute carrier organic anion transporter family member 2A1 (SLCO2A1) is a prostaglandin (PG) transporter and serves as the osmosensitive ATP-permeable maxi-anion channel (Maxi-Cl). Since a heterotetrameric complex of annexin A2 (ANXA2) and S100A10 is obligatory for the channel activity, the present study aimed to determine if they regulate SLCO2A1-mediated PG transport. This study examined PGE2 uptake and ATP release in Anxa2 and/or S100a10 knockout (KO) murine breast C127 cells. Deletion of Slco2a1 decreased PGE2-d4 uptake by wild-type (WT) cells in an isotonic medium (290 mosmol/kgH2O). Decreased osmolarity (135 mosmol/kgH2O) stimulated ATP release but did not affect PGE2 uptake kinetics, showing Km (1,280 nM) and Vmax (10.38 pmol/15 s/mg protein) similar to those in isotonic medium (1,227 nM and 10.65 pmol/15 s/mg protein), respectively, in WT cells. Deletion of Anxa2 associated with loss of S100a10 diminished SLCO2A1-mediated ATP release and uncompetitively inhibited PGE2 uptake with lowered Km (376 nM) and Vmax (2.59 pmol/15 s/mg protein). Moreover, the immunoprecipitation assay confirmed the physical interaction of ANXA2 with SLCO2A1 in WT cells. Enforcement of ANXA2 expression to Anxa2 KO cells partially restored PGE2 uptake and increased Km (744.3 nM) and Vmax (9.07 pmol/15 s/mg protein), whereas the uptake clearance (Vmax/Km) did not change much regardless of ANXA2 expression. These results suggest that an ANXA2/S100A10 complex modulates PG transport activity but osmolality has little effect on it; therefore, the bound form of SLCO2A1, which functions as a PG transporter and Maxi-Cl, may exist regardless of changes in the cell volume.NEW & NOTEWORTHY A previous study indicated that the ANXA2/S100A10 complex represents the regulatory component of SLCO2A1-mediated Maxi-Cl channel activity. The present study showed that apparent PGE2 uptake by C127 cells was osmoinsensitive and uncompetitively inhibited by loss of ANXA2 expression, demonstrating that ANXA2 is a regulatory factor of SLCO2A1-mediated PG transport activity.


Subject(s)
Annexin A2 , Organic Anion Transporters , Prostaglandins , S100 Proteins , Animals , Mice , Adenosine Triphosphate/metabolism , Annexin A2/metabolism , Biological Transport , Dinoprostone/metabolism , Organic Anion Transporters/metabolism , Prostaglandins/metabolism , S100 Proteins/metabolism
11.
J Cell Mol Med ; 28(14): e18575, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39048916

ABSTRACT

In recent years, in the development of emerging immunotherapy, B7-H3 is also termed as CD276 and has become a novel chimeric antigen receptor (CAR)-T target against glioma and other tumours, and aroused extensive attention. However, B7-H3 has three isoforms (2, 3 and 4Ig) with the controversial expression and elusive function in tumour especially glioma. The current study mainly focuses on the regulatory factors and related mechanisms of generation of different B7-H3 isoforms. First, we have determined that 2Ig is dominant in glioma with high malignancy, and 4Ig is widely expressed, whereas 3Ig shows negative expression in all glioma. Next, we have further found that RNA binding protein annexin A2 (ANXA2) is essential for B7-H3 isoform maintenance, but fail to determine the choice of 4Ig or 2Ig. RNA methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and 5-methylcytosine reader Y-box binding protein 1 (YBX1) facilitate the production of 2Ig. Our findings have uncovered a series of factors (ANXA2/NSUN2/YBX1) that can determine the alternative generation of different isoforms of B7-H3 in glioma. Our result aims to help peers gain a clearer understanding of the expression and regulatory mechanisms of B7H3 in tumour patients, and to provide better strategies for designing B7H3 as a target in immunotherapy.


Subject(s)
Annexin A2 , B7 Antigens , Gene Expression Regulation, Neoplastic , Glioma , Protein Isoforms , Humans , Glioma/genetics , Glioma/metabolism , Glioma/pathology , B7 Antigens/metabolism , B7 Antigens/genetics , Protein Isoforms/metabolism , Protein Isoforms/genetics , Annexin A2/metabolism , Annexin A2/genetics , Cell Line, Tumor , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology
12.
Cancer Sci ; 115(6): 1896-1909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480477

ABSTRACT

Cholangiocarcinoma (CCA) is one of the most difficult malignancies to treat as the therapeutic options are limited. Although several driver genes have been identified, most remain unknown. In this study, we identified a failed axon connection homolog (FAXC), whose function is unknown in mammals, by analyzing serially passaged CCA xenograft models. Knockdown of FAXC reduced subcutaneous tumorigenicity in mice. FAXC was bound to annexin A2 (ANXA2) and c-SRC, which are tumor-promoting genes. The FAXC/ANXA2/c-SRC complex forms in the mitochondria. FAXC enhances SRC-dependent ANXA2 phosphorylation at tyrosine-24, and the C-terminal amino acid residues (351-375) of FAXC are required for ANXA2 phosphorylation. Transcriptome data from a xenografted CCA cell line revealed that FAXC correlated with epithelial-mesenchymal transition, hypoxia, and KRAS signaling genes. Collectively, these findings advance our understanding of CCA tumorigenesis and provide candidate therapeutic targets.


Subject(s)
Annexin A2 , Bile Duct Neoplasms , Carcinogenesis , Cholangiocarcinoma , Mitochondria , src-Family Kinases , Animals , Humans , Male , Mice , Annexin A2/metabolism , Annexin A2/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mitochondria/metabolism , Phosphorylation , Signal Transduction , src-Family Kinases/metabolism , src-Family Kinases/genetics
13.
J Cell Sci ; 135(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35362526

ABSTRACT

Proper mitotic spindle orientation depends on the correct anchorage of astral microtubules to the cortex. It relies on the remodeling of the cell cortex, a process not fully understood. Annexin A2 (Anx2; also known as ANXA2) is a protein known to be involved in cortical domain remodeling. Here, we report that in HeLa cell early mitosis, Anx2 recruits the scaffold protein Ahnak at the cell cortex facing spindle poles, and the distribution of both proteins is controlled by cell adhesion. Depletion of either protein or impaired cortical Ahnak localization result in delayed anaphase onset and unstable spindle anchoring, which leads to altered spindle orientation. We find that Ahnak is present in a complex with dynein-dynactin. Furthermore, Ahnak and Anx2 are required for correct dynein and NuMA (also known as NUMA1) cortical localization and dynamics. We propose that the Ahnak-Anx2 complex influences the cortical organization of the astral microtubule-anchoring complex, and thereby mitotic spindle positioning in human cells. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Annexin A2 , Dyneins , Anaphase , Annexin A2/genetics , Annexin A2/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Dynactin Complex/metabolism , Dyneins/metabolism , HeLa Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis , Neoplasm Proteins/metabolism , Spindle Apparatus/metabolism
14.
J Virol ; 97(3): e0154522, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36786600

ABSTRACT

Pseudorabies virus (PRV) infection causes enormous economic losses to the pork industry and severe health consequences in many hosts. Annexin A2 (ANXA2) is a membrane-associated protein with various intracellular functions associated with many viral infections. However, the role of ANXA2 in alphaherpesvirus replication is still not explored. In the present study, we identified the interaction between ANXA2 and PRV US3. The deficiency of ANXA2 significantly restricted PRV proliferation. PRV infection or US3 overexpression led to ANXA2 extracellular translocation. Furthermore, we confirmed that PRV or US3 could lead to the phosphorylation of the Tyr23 ANXA2 and Tyr419 Src kinase, which was associated with the ANXA2 cell surface transposition. US3 can also bind to Src in an ANXA2-independent manner and enhance the interaction between Src and ANXA2. Additionally, inhibitors targeting ANXA2 (A2ti-1) or Src (PP2) could remarkably inhibit PRV propagation in vitro and protect mice from PRV infection in vivo. Collectively, our findings broaden our understanding of the molecular mechanisms of ANXA2 in alphaherpesvirus pathogenicity and suggest that ANXA2 is a potential therapeutic target for treating alphaherpesvirus-induced infectious diseases. IMPORTANCE PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. ANXA2 is a multifunctional calcium- and lipid-binding protein implicated in immune function, multiple human diseases, and viral infection. Herein, we found that ANXA2 was essential to PRV efficient proliferation. PRV infection resulted in the extracellular translocation of ANXA2 through phosphorylation of ANXA2 and Src. ANXA2 and Src formed a complex with PRV US3. Importantly, inhibitors targeting ANXA2 or Src prevented PRV infection in vitro and in vivo. Therefore, our studies reveal a novel strategy by which alphaherpesvirus modifies ANXA2 to promote its replication and highlight ANXA2 as a target in developing novel promising antivirus agents in viral therapy.


Subject(s)
Annexin A2 , Herpesvirus 1, Suid , Pseudorabies , Virus Replication , Animals , Humans , Mice , Annexin A2/genetics , Annexin A2/metabolism , Herpesvirus 1, Suid/metabolism , Herpesvirus 1, Suid/pathogenicity , Phosphorylation , Pseudorabies/virology , Protein Transport
15.
FASEB J ; 37(1): e22715, 2023 01.
Article in English | MEDLINE | ID: mdl-36527391

ABSTRACT

The intersection of protein and lipid biology is of growing importance for understanding how cells address structural challenges during adhesion and migration. While protein complexes engaged with the cytoskeleton play a vital role, support from the phospholipid membrane is crucial for directing localization and assembly of key protein complexes. During angiogenesis, dramatic cellular remodeling is necessary for endothelial cells to shift from a stable monolayer to invasive structures. However, the molecular dynamics between lipids and proteins during endothelial invasion are not defined. Here, we utilized cell culture, immunofluorescence, and lipidomic analyses to identify a novel role for the membrane binding protein Annexin A2 (ANXA2) in modulating the composition of specific membrane lipids necessary for cortical F-actin organization and adherens junction stabilization. In the absence of ANXA2, there is disorganized cortical F-actin, reduced junctional Arp2, excess sprout initiation, and ultimately failed sprout maturation. Furthermore, we observed reduced filipin III labeling of membrane cholesterol in cells with reduced ANXA2, suggesting there is an alteration in phospholipid membrane dynamics. Lipidomic analyses revealed that 42 lipid species were altered with loss of ANXA2, including an accumulation of phosphatidylcholine (16:0_16:0). We found that supplementation of phosphatidylcholine (16:0_16:0) in wild-type endothelial cells mimicked the ANXA2 knock-down phenotype, indicating that ANXA2 regulated the phospholipid membrane upstream of Arp2 recruitment and organization of cortical F-actin. Altogether, these data indicate a novel role for ANXA2 in coordinating events at endothelial junctions needed to initiate sprouting and show that proper lipid modulation is a critical component of these events.


Subject(s)
Annexin A2 , Annexin A2/genetics , Annexin A2/metabolism , Actins/metabolism , Phospholipids , Endothelial Cells/metabolism , Phosphatidylcholines
16.
Arterioscler Thromb Vasc Biol ; 43(10): 1851-1866, 2023 10.
Article in English | MEDLINE | ID: mdl-37589135

ABSTRACT

BACKGROUND: High levels of Lp(a) (lipoprotein(a)) are associated with multiple forms of cardiovascular disease. Lp(a) consists of an apoB100-containing particle attached to the plasminogen homologue apo(a). The pathways for Lp(a) clearance are not well understood. We previously discovered that the plasminogen receptor PlgRKT (plasminogen receptor with a C-terminal lysine) promoted Lp(a) uptake in liver cells. Here, we aimed to further define the role of PlgRKT and to investigate the role of 2 other plasminogen receptors, annexin A2 and S100A10 (S100 calcium-binding protein A10) in the endocytosis of Lp(a). METHODS: Human hepatocellular carcinoma (HepG2) cells and haploid human fibroblast-like (HAP1) cells were used for overexpression and knockout of plasminogen receptors. The uptake of Lp(a), LDL (low-density lipoprotein), apo(a), and endocytic cargos was visualized and quantified by confocal microscopy and Western blotting. RESULTS: The uptake of both Lp(a) and apo(a), but not LDL, was significantly increased in HepG2 and HAP1 cells overexpressing PlgRKT, annexin A2, or S100A10. Conversely, Lp(a) and apo(a), but not LDL, uptake was significantly reduced in HAP1 cells in which PlgRKT and S100A10 were knocked out. Surface binding studies in HepG2 cells showed that overexpression of PlgRKT, but not annexin A2 or S100A10, increased Lp(a) and apo(a) plasma membrane binding. Annexin A2 and S100A10, on the other hand, appeared to regulate macropinocytosis with both proteins significantly increasing the uptake of the macropinocytosis marker dextran when overexpressed in HepG2 and HAP1 cells and knockout of S100A10 significantly reducing dextran uptake. Bringing these observations together, we tested the effect of a PI3K (phosphoinositide-3-kinase) inhibitor, known to inhibit macropinocytosis, on Lp(a) uptake. Results showed a concentration-dependent reduction confirming that Lp(a) uptake was indeed mediated by macropinocytosis. CONCLUSIONS: These findings uncover a novel pathway for Lp(a) endocytosis involving multiple plasminogen receptors that enhance surface binding and stimulate macropinocytosis of Lp(a). Although the findings were produced in cell culture models that have limitations, they could have clinical relevance since drugs that inhibit macropinocytosis are in clinical use, that is, the PI3K inhibitors for cancer therapy and some antidepressant compounds.


Subject(s)
Annexin A2 , Plasminogen , Humans , Plasminogen/chemistry , Plasminogen/metabolism , Lipoprotein(a)/metabolism , Annexin A2/genetics , Dextrans/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Carrier Proteins , Apolipoproteins A/metabolism
17.
Fish Shellfish Immunol ; 148: 109492, 2024 May.
Article in English | MEDLINE | ID: mdl-38467321

ABSTRACT

Annexin A2 (AnxA2), belonging to the annexin family, plays a crucial role in immune responses. In this study, the cDNA of the AnxA2 gene was identified in half-smooth tongue sole, Cynoglossus semilaevis. The transcript of AnxA2 gene in C. semilaevis (CsAnxA2) showed broad tissue distribution, with the highest expression level observed in the gut. CsAnxA2 expression was significantly up-regulated in the intestine, spleen, and kidney tissues following exposure to Shewanella algae. Immunohistochemical staining revealed that CsAnxA2 was predominantly expressed in epithelial cells and significantly elevated after S. algae challenge. Subcellular localization showed that CsAnxA2 was primarily localized in the cytoplasmic compartment. Moreover, proinflammatory cytokines (IL-6, IL-8 and IL-1ß) exhibited significant upregulation after CsAnxA2 was overexpressed in vivo. One hundred and fifty-eight CsAnxA2-interacting proteins were captured in the intestinal tissue, showing the top two normalized abundance observed for actin beta (ACTB) and protein S100-A10 (p11). Fifty-four high abundance CsAnxA2-interacting proteins (HIPs) were primary enriched in ten pathways, with the top three significantly enriched pathways being Salmonella infection, glycolysis/gluconeogenesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. These results provide valuable information for further investigation into the functional mechanism of AnxA2 in C. semilaevis.


Subject(s)
Annexin A2 , Flatfishes , Flounder , Animals , Annexin A2/genetics , Annexin A2/metabolism , Flounder/metabolism , Fish Proteins/chemistry
18.
Cell Mol Life Sci ; 80(10): 289, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37690046

ABSTRACT

Major depressive disorder (MDD) is a pervasive and devastating mental disease. Broad spectrum histone deacetylase (HDAC) inhibitors are considered to have potential for the treatment of depressive phenotype in mice. However, due to its non-specific inhibition, it has extensive side effects and can not be used in clinical treatment of MDD. Therefore, finding specific HDAC subtypes that play a major role in the etiology of MDD is the key to develop corresponding specific inhibitors as antidepressants in the future. Copy number variation in HDAC9 gene is thought to be associated with the etiology of some psychiatric disorders. Herein, we found that HDAC9 was highly expressed in the hippocampus of chronic restraint stress (CRS) mouse model of depression. Upregulation of HDAC9 expression in hippocampal neurons of mice induced depression-like phenotypes, including anhedonia, helplessness, decreased dendritic spine density, and neuronal hypoexcitability. Moreover, knockdown or knockout of HDAC9 in hippocampal neurons alleviated depression-like phenotypes caused by chronic restraint stress (CRS) in WT mice. Importantly, using immunoprecipitation-mass spectrometry (IP-MS), we further found that Annexin A2 (ANXA2) was coupled to and deacetylated by HDAC9. This coupling resulted in the inhibition of ubiquitinated ANXA2 degradation and then mediates depression-like behavior. Overall, we discovered a previously unrecognized role for HDAC9 in hippocampal neurons in the pathogenesis of depression, indicating that inhibition of HDAC9 might be a promising clinical strategy for the treatment of depressive disorders.


Subject(s)
Annexin A2 , Depressive Disorder, Major , Histone Deacetylases , Animals , Mice , Annexin A2/genetics , Depression/genetics , DNA Copy Number Variations , Hippocampus , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Up-Regulation
19.
J Reprod Dev ; 70(4): 238-246, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38910127

ABSTRACT

Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.


Subject(s)
Apoptosis , Corticotropin-Releasing Hormone , Epithelial Cells , Granulosa Cells , Tissue Plasminogen Activator , Animals , Female , Apoptosis/drug effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Mice , Tissue Plasminogen Activator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Corticotropin-Releasing Hormone/metabolism , Signal Transduction/drug effects , Oviducts/metabolism , Oviducts/drug effects , Annexin A2/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Fallopian Tubes/metabolism , Fallopian Tubes/drug effects
20.
J Immunoassay Immunochem ; 45(1): 1-19, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38018145

ABSTRACT

Sunitinib, an antiangiogenic tyrosine kinase inhibitor, is the main treatment for metastatic renal cell carcinoma (mRCC). Development of resistance is a major obstacle against therapy success. The aim of this study was to assess annexin A2 and CD163+ tumor associated macrophages (TAMs) immunohistochemical expression in 50 mRCC cases as regard to patients' prognosis and Sunitinib response. Also, to assess the correlation between annexin A2 and TAMs expression. High annexin A2 expression and TAMs density were associated with serum calcium level (P = 0.024 and 0.037, respectively), larger tumor size (P < 0.001), high tumor grade (P = 0.014 and <0.001, respectively), and the presence of tumor necrosis (P < 0.001). High annexin A2 and TAMs expressions were related to shorter patients' overall survival (P = 0.009 and 0.001, respectively) and progression-free survival (P = 0.003 and 0.001, respectively). Annexin A2 was correlated with TAMs density (r = 0.890). Annexin A2 and TAMs are associated with poor prognostic parameters in mRCC patients, including high nuclear grade, increased tumor size, and the presence of tumor necrosis, together with shorter patients' survivals and poor response to Sunitinib. Annexin A2 expression is correlated with TAMs density suggesting immunomodulatory role of annexin A2.


Subject(s)
Annexin A2 , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Prognosis , Sunitinib/pharmacology , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/drug therapy , Tumor-Associated Macrophages , Kidney Neoplasms/drug therapy , Necrosis
SELECTION OF CITATIONS
SEARCH DETAIL