Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.199
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 21(5): 513-524, 2020 05.
Article in English | MEDLINE | ID: mdl-32284594

ABSTRACT

Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Gene Expression Profiling/methods , Microglia/physiology , Multiple Sclerosis/genetics , Neurogenic Inflammation/genetics , Animals , Antioxidants/therapeutic use , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Regulatory Networks , High-Throughput Screening Assays , Humans , Immunity, Innate , Isoxazoles/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Multiple Sclerosis/drug therapy , Neurogenic Inflammation/drug therapy , Oxidative Stress , Sequence Analysis, RNA , Single-Cell Analysis
2.
Nano Lett ; 24(7): 2131-2141, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38227823

ABSTRACT

Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.


Subject(s)
Acute Lung Injury , Reperfusion Injury , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NF-E2-Related Factor 2/therapeutic use , Reactive Oxygen Species/metabolism , Biomimetics , Acute Lung Injury/drug therapy , Lung/metabolism , Reperfusion Injury/drug therapy , Ischemia , Reperfusion/adverse effects , Oxidative Stress
3.
Nano Lett ; 24(32): 9906-9915, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087644

ABSTRACT

Rectifying the aberrant microenvironment of a disease through maintenance of redox homeostasis has emerged as a promising perspective with significant therapeutic potential for Alzheimer's disease (AD). Herein, we design and construct a novel nanozyme-boosted MOF-CRISPR platform (CMOPKP), which can maintain redox homeostasis and rescue the impaired microenvironment of AD. By modifying the targeted peptides KLVFFAED, CMOPKP can traverse the blood-brain barrier and deliver the CRISPR activation system for precise activation of the Nrf2 signaling pathway and downstream redox proteins in regions characterized by oxidative stress, thereby reinstating neuronal antioxidant capacity and preserving redox homeostasis. Furthermore, cerium dioxide possessing catalase enzyme-like activity can synergistically alleviate oxidative stress. Further in vivo studies demonstrate that CMOPKP can effectively alleviate cognitive impairment in 3xTg-AD mouse models. Therefore, our design presents an effective way for regulating redox homeostasis in AD, which shows promise as a therapeutic strategy for mitigating oxidative stress in AD.


Subject(s)
Alzheimer Disease , Oxidative Stress , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Animals , Mice , Oxidative Stress/drug effects , Humans , NF-E2-Related Factor 2/metabolism , Metal-Organic Frameworks/chemistry , Disease Models, Animal , CRISPR-Cas Systems/genetics , Cerium/chemistry , Cerium/therapeutic use , Cerium/pharmacology , Blood-Brain Barrier/metabolism , Oxidation-Reduction , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use
4.
J Cell Mol Med ; 28(13): e18508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953556

ABSTRACT

Both osteoporosis and tendinopathy are widely prevalent disorders, encountered in diverse medical contexts. Whilst each condition has distinct pathophysiological characteristics, they share several risk factors and underlying causes. Notably, oxidative stress emerges as a crucial intersecting factor, playing a pivotal role in the onset and progression of both diseases. This imbalance arises from a dysregulation in generating and neutralising reactive oxygen species (ROS), leading to an abnormal oxidative environment. Elevated levels of ROS can induce multiple cellular disruptions, such as cytotoxicity, apoptosis activation and reduced cell function, contributing to tissue deterioration and weakening the structural integrity of bones and tendons. Antioxidants are substances that can prevent or slow down the oxidation process, including Vitamin C, melatonin, resveratrol, anthocyanins and so on, demonstrating potential in treating these overlapping disorders. This comprehensive review aims to elucidate the complex role of oxidative stress within the interlinked pathways of these comorbid conditions. By integrating contemporary research and empirical findings, our objective is to outline new conceptual models and innovative treatment strategies for effectively managing these prevalent diseases. This review underscores the importance of further in-depth research to validate the efficacy of antioxidants and traditional Chinese medicine in treatment plans, as well as to explore targeted interventions focused on oxidative stress as promising areas for future medical advancements.


Subject(s)
Antioxidants , Osteoporosis , Oxidative Stress , Reactive Oxygen Species , Tendinopathy , Humans , Osteoporosis/metabolism , Osteoporosis/therapy , Osteoporosis/drug therapy , Antioxidants/therapeutic use , Tendinopathy/metabolism , Tendinopathy/therapy , Tendinopathy/pathology , Reactive Oxygen Species/metabolism , Animals
5.
J Biol Chem ; 299(9): 105127, 2023 09.
Article in English | MEDLINE | ID: mdl-37544647

ABSTRACT

Diabetic keratopathy, commonly associated with a hyperactive inflammatory response, is one of the most common eye complications of diabetes. The peptide hormone fibroblast growth factor-21 (FGF-21) has been demonstrated to have anti-inflammatory and antioxidant properties. However, whether administration of recombinant human (rh) FGF-21 can potentially regulate diabetic keratopathy is still unknown. Therefore, in this work, we investigated the role of rhFGF-21 in the modulation of corneal epithelial wound healing, the inflammation response, and oxidative stress using type 1 diabetic mice and high glucose-treated human corneal epithelial cells. Our experimental results indicated that the application of rhFGF-21 contributed to the enhancement of epithelial wound healing. This treatment also led to advancements in tear production and reduction in corneal edema. Moreover, there was a notable reduction in the levels of proinflammatory cytokines such as TNF-α, IL-6, IL-1ß, MCP-1, IFN-γ, MMP-2, and MMP-9 in both diabetic mouse corneal epithelium and human corneal epithelial cells treated with high glucose. Furthermore, we found rhFGF-21 treatment inhibited reactive oxygen species production and increased levels of anti-inflammatory molecules IL-10 and SOD-1, which suggests that FGF-21 has a protective role in diabetic corneal epithelial healing by increasing the antioxidant capacity and reducing the release of inflammatory mediators and matrix metalloproteinases. Therefore, we propose that administration of FGF-21 may represent a potential treatment for diabetic keratopathy.


Subject(s)
Corneal Diseases , Diabetes Complications , Diabetes Mellitus, Experimental , Epithelium, Corneal , Fibroblast Growth Factors , Inflammation Mediators , Oxidative Stress , Wound Healing , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Corneal Diseases/complications , Corneal Diseases/drug therapy , Corneal Diseases/metabolism , Diabetes Complications/drug therapy , Diabetes Complications/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Epithelium, Corneal/drug effects , Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factors/therapeutic use , Glucose/adverse effects , Glucose/metabolism , Inflammation Mediators/metabolism , Matrix Metalloproteinases/metabolism , Oxidative Stress/drug effects , Wound Healing/drug effects
6.
Immunology ; 172(3): 329-342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38354831

ABSTRACT

Alterations in airway epithelial homeostasis increase viral respiratory infections risk. Viral infections frequently are associated with chronic obstructive pulmonary disease (COPD) exacerbations, events that dramatically promote disease progression. Mechanism promoting the main respiratory viruses entry and virus-evocated innate and adaptive immune responses have now been elucidated, and an oxidative stress central role in these pathogenic processes has been recognized. Presence of reactive oxygen species in macrophages and other cells allows them to eliminate virus, but its excess alters the balance between innate and adaptive immune responses and proteases/anti-proteases and leads to uncontrolled inflammation, tissue damage, and hypercoagulability. Different upper and lower airway cell types also play a role in viral entry and infection. Carbocysteine is a muco-active drug with anti-oxidant and anti-inflammatory properties used for the management of several chronic respiratory diseases. Although the use of anti-oxidants has been proposed as an effective strategy in COPD exacerbations management, the molecular mechanisms that explain carbocysteine efficacy have not yet been fully clarified. The present review describes the most relevant features of the common respiratory virus pathophysiology with a focus on epithelial cells and oxidative stress role and reports data supporting a putative role of carbocysteine in viral respiratory infections.


Subject(s)
Carbocysteine , Oxidative Stress , Respiratory Mucosa , Respiratory Tract Infections , Virus Diseases , Humans , Carbocysteine/therapeutic use , Carbocysteine/pharmacology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Oxidative Stress/drug effects , Respiratory Mucosa/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/drug effects , Virus Diseases/immunology , Virus Diseases/drug therapy , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy
7.
Cell Physiol Biochem ; 58(1): 14-32, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232236

ABSTRACT

BACKGROUND/AIMS: Ischemic reperfusion (I-R) injury is greatly influenced by the testicular torsion/detorsion process (TDP). In this instance, the anti-inflammatory properties of plateletrich plasma (PRP) combined with tadalafil (Td) significantly promote tissue healing in the I-R injury model. METHODS: Five groups of rats were created: the control group, the I-R group not receiving any therapy, the I-R group receiving a single dosage of Td (0.25 mg/kg, I.P.), the I-R group receiving a single dose of PRP (80 l, intratesticular), and the I-R group receiving both Td and PRP. Sperm morphology, motility, and histology were assessed. The levels of TNF-, BAX, antioxidant status, and testosterone were measured. Additionally, E-selectin expression was done. RESULTS: PRP reduced oxidative stress, inflammation, and apoptosis while also boosting testosterone levels, which alleviated I-R injury. Otherwise, PRP reduces E-selectin expression, which modifies the pathways that control endothelial function. Td also partially demonstrated its testicular-protective activity at the same time. CONCLUSION: PRP's proven anti-inflammatory, antioxidant, and antiapoptotic potentials make it a natural treatment for testicular harm caused by tadalafil. For the first time, it was demonstrated that PRP therapy restored the functionality of the vascular endothelium, specifically the control of E-selectin expression. Combining Td and PRP therapy may be a promising strategy for improving response to PDE5 inhibitors.


Subject(s)
Platelet-Rich Plasma , Reperfusion Injury , Spermatic Cord Torsion , Humans , Rats , Male , Animals , Spermatic Cord Torsion/drug therapy , Spermatic Cord Torsion/complications , Spermatic Cord Torsion/metabolism , Tadalafil/pharmacology , Tadalafil/therapeutic use , Tadalafil/metabolism , E-Selectin/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Semen , Testis/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Testosterone , Ischemia/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Malondialdehyde/metabolism
8.
J Pharmacol Exp Ther ; 388(2): 358-366, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37652711

ABSTRACT

Reactive oxygen species have an emerging role in the pathologic consequences of status epilepticus. We have previously demonstrated the efficacy of a water-for-injection formulation of the meso-porphyrin catalytic antioxidant, manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin (AEOL10150) against oxidative stress, neuroinflammation, and neuronal death initiated by kainic acid, pilocarpine, diisopropylflurophosphate (DFP), and soman. This previous dose and dosing strategy of AEOL10150 required smaller multiple daily injections, precluding our ability to test its efficacy against delayed consequences of nerve agent exposure such as neurodegeneration and cognitive dysfunction. Therefore, we developed formulations of AEOL10150 designed to deliver a larger dose once daily with improved brain pharmacodynamics. We examined four new formulations of AEOL10150 that resulted in 8 times higher subcutaneous dose with lower acute toxicity, slower absorption, longer half-life, and higher maximal plasma concentrations compared with our previous strategy. AEOL10150 brain levels exhibited improved pharmacodynamics over 24 hours with all four formulations. We tested a subcutaneous dose of 40 mg/kg AEOL10150 in two formulations (2% carboxymethyl cellulose and 4% polyethylene glycol-4000) in the DFP rat model, and both formulations exhibited significant protection against DFP-induced oxidative stress. Additionally, and in one formulation (4% polyethylene glycol-4000), AEOL10150 significantly protected against DFP-induced neuronal death, microglial activation, delayed memory impairment, and mortality. These results suggest that reformulation of AEOL10150 can attenuate acute and delayed outcomes of organophosphate neurotoxicity. SIGNIFICANCE STATEMENT: Reformulation of manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin allowed higher tolerated doses of the compound with improved pharmacodynamics. Specifically, one new formulation allowed fewer daily doses and improvement in acute and delayed outcomes of organophosphate toxicity.


Subject(s)
Cognitive Dysfunction , Metalloporphyrins , Nerve Agents , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Rats, Sprague-Dawley , Nerve Agents/toxicity , Neuroinflammatory Diseases , Manganese , Oxidative Stress , Metalloporphyrins/pharmacology , Metalloporphyrins/therapeutic use , Organophosphates , Polyethylene Glycols
9.
J Pharmacol Exp Ther ; 388(2): 670-687, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38129126

ABSTRACT

Inflammatory mechanisms and oxidative stress seem to contribute to the pathogenesis of hypertension. ITH13001 is a melatonin-phenyl-acrylate hybrid that moderately induces the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) and has a potent oxidant scavenging effect compared with other derivatives of its family. Here we investigated the effect of ITH13001 on hypertension and the associated cardiovascular alterations. Angiotensin II (AngII)-infused mice were treated with ITH13001 (1 mg/kg per day, i.p.) for 2 weeks. The ITH13001 treatment prevented: 1) the development of hypertension, cardiac hypertrophy, and increased collagen and B-type natriuretic peptide (Bnp) expression in the heart; 2) the reduction of elasticity, incremental distensibility, fenestrae area, intraluminal diameter, and endothelial cell number in mesenteric resistance arteries (MRA); 3) the endothelial dysfunction in aorta and MRA; 4) the plasma and cardiovascular oxidative stress and the reduced aortic nitric oxide (NO) bioavailability; 5) the increased cardiac levels of the cytokines interleukin (IL)-1ß, IL-6, and C-C motif chemokine ligand 2 (Ccl2), the T cell marker cluster of differentiation 3 (Cd3), the inflammasome NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), the proinflammatory enzymes inducible nitric oxide synthase (iNOS) and COX-2, the toll-like receptor 4 (TLR4) adapter protein myeloid differentiation primary response 88 (MyD88), and the nuclear factor kappa B (NF-κB) subunit p65; 6) the greater aortic expression of the cytokines tumor necrosis factor alpha (Tnf-α), Ccl2 and IL-6, Cd3, iNOS, MyD88, and NLRP3. Although ITH13001 increased nuclear Nrf2 levels and heme oxygenase 1 (HO-1) expression in vascular smooth muscle cells, both cardiac and vascular Nrf2, Ho-1, and NADPH quinone dehydrogenase 1 (Nqo1) levels remained unmodified irrespective of AngII infusion. Summarizing, ITH13001 improved hypertension-associated cardiovascular alterations independently of Nrf2 pathway activation, likely due to its direct antioxidant and anti-inflammatory properties. Therefore, ITH13001 could be a useful therapeutic strategy in patients with resistant hypertension. SIGNIFICANCE STATEMENT: Despite the existing therapeutic arsenal, only half of the patients treated for hypertension have adequately controlled blood pressure; therefore, the search for new compounds to control this pathology and the associated damage to end-target organs (cerebral, cardiac, vascular, renal) is of particular interest. The present study demonstrates that a new melatonin derivative, ITH13001, prevents hypertension development and the associated cardiovascular alterations due to its antioxidant and anti-inflammatory properties, making this compound a potential candidate for treatment of resistant hypertensive patients.


Subject(s)
Hypertension , Melatonin , Humans , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Angiotensin II , Melatonin/pharmacology , Melatonin/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Interleukin-6/metabolism , NF-E2-Related Factor 2/metabolism , Myeloid Differentiation Factor 88/metabolism , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/prevention & control , NF-kappa B/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology
10.
Biol Reprod ; 111(3): 543-556, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-38869910

ABSTRACT

Melatonin is a pineal hormone that regulates testicular activity (i.e., steroidogenesis and spermatogenesis) through two complementary mechanisms, indirect effects exerted via the hypothalamic-adenohypophyseal axis and direct actions that take place on the different cell populations of the male gonad. The effects of increased age on the testis and the general mechanisms involved in testicular pathology leading to infertility are still only poorly understood. However, there is growing evidence that link testicular aging and idiopathic male infertility to local inflammatory and oxidative stress events. Because literature data strongly indicate that melatonin exhibits anti-inflammatory and anti-oxidant properties, this review focuses on the potential benefits exerted by this indoleamine at testicular level in male reproductive fertility and aging. Taking into account that the effects of melatonin supplementation on testicular function are currently being investigated, the overview covers not only promising prospects but also many questions concerning the future therapeutic value of this indoleamine as an anti-aging drug as well as in the management of cases of male infertility for which there are no medical treatments currently available.


Subject(s)
Aging , Anti-Inflammatory Agents , Antioxidants , Infertility, Male , Melatonin , Testis , Male , Melatonin/therapeutic use , Melatonin/pharmacology , Humans , Antioxidants/therapeutic use , Antioxidants/pharmacology , Testis/drug effects , Testis/metabolism , Infertility, Male/drug therapy , Aging/drug effects , Aging/physiology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Animals , Oxidative Stress/drug effects
11.
J Virol ; 97(2): e0136322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688653

ABSTRACT

Viral infections alter host cell metabolism and homeostasis; however, the mechanisms that regulate these processes have only begun to be elucidated. We report here that Zika virus (ZIKV) infection activates the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2), which precedes oxidative stress. Downregulation of Nrf2 or inhibition of glutathione (GSH) synthesis resulted in significantly increased viral replication. Interestingly, 6-amino-nicotinamide (6-AN), a nicotinamide analog commonly used as an inhibitor of the pentose phosphate pathway (PPP), decreased viral replication by over 1,000-fold. This inhibition was neither recapitulated by the knockdown of PPP enzymes, glucose 6-phosphate dehydrogenase (G6PD), or 6-phosphogluconate dehydrogenase (6PGD), nor prevented by supplementation with ribose 5-phosphate. Instead, our metabolomics and metabolic phenotype studies support a mechanism in which 6-AN depletes cells of NAD(H) and impairs NAD(H)-dependent glycolytic steps resulting in inhibition of viral replication. The inhibitory effect of 6-AN was rescued with precursors of the salvage pathway but not with those of other NAD+ biosynthesis pathways. Inhibition of glycolysis reduced viral protein levels, which were recovered transiently. This transient recovery in viral protein synthesis was prevented when oxidative metabolism was inhibited by blockage of the mitochondrial pyruvate carrier, fatty acid oxidation, or glutaminolysis, demonstrating a compensatory role of mitochondrial metabolism in ZIKV replication. These results establish an antagonistic role for the host cell Nrf2/GSH/NADPH-dependent antioxidant response against ZIKV and demonstrate the dependency of ZIKV replication on NAD(H). Importantly, our work suggests the potential use of NAD(H) antimetabolite therapy against the viral infection. IMPORTANCE Zika virus (ZIKV) is a major public health concern of international proportions. While the incidence of ZIKV infections has declined substantially in recent years, the potential for the reemergence or reintroduction remains high. Although viral infection alters host cell metabolism and homeostasis to promote its replication, deciphering the mechanism(s) involved in these processes is important for identifying therapeutic targets. The present work reveals the complexities of host cell redox regulation and metabolic dependency of ZIKV replication. An antagonistic effect of the Nrf2/GSH/NADP(H)-dependent antioxidant response against ZIKV infection and an essential role of NAD(H) metabolism and glycolysis for viral replication are established for the first time. These findings highlight the potential use of NAD(H) antimetabolites to counter ZIKV infection and pathogenesis.


Subject(s)
Host Microbial Interactions , NF-E2-Related Factor 2 , Virus Replication , Zika Virus Infection , Zika Virus , Humans , Antioxidants/metabolism , Antioxidants/therapeutic use , NAD/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Viral Proteins/metabolism , Virus Replication/physiology , Zika Virus/physiology , Zika Virus Infection/drug therapy , Zika Virus Infection/prevention & control , Zika Virus Infection/virology , Oxidoreductases/genetics , Gene Knockdown Techniques , Cells, Cultured , Host Microbial Interactions/physiology
12.
Microvasc Res ; 155: 104713, 2024 09.
Article in English | MEDLINE | ID: mdl-38914307

ABSTRACT

Peripheral artery disease (PAD) is the manifestation of atherosclerosis characterized by the accumulation of plaques in the arteries of the lower limbs. Interestingly, growing evidence suggests that the pathology of PAD is multifaceted and encompasses both vascular and skeletal muscle dysfunctions, which contributes to blunted physical capabilities and diminished quality of life. Importantly, it has been suggested that many of these pathological impairments may stem from blunted reduction-oxidation (redox) handling. Of note, in those with PAD, excessive production of reactive oxygen species (ROS) outweighs antioxidant capabilities resulting in oxidative damage, which may have systemic consequences. It has been suggested that antioxidant supplementation may be able to assist in handling ROS. However, the activation of various ROS production sites makes it difficult to determine the efficacy of these antioxidant supplements. Therefore, this review focuses on the common cellular mechanisms that facilitate ROS production and discusses how excessive ROS may impair vascular and skeletal muscle function in PAD. Furthermore, we provide insight for current and potential antioxidant therapies, specifically highlighting activation of the Kelch-like ECH-associated protein 1 (Keap1) - Nuclear Factor Erythroid 2-related factor 2 (Nrf2) pathway as a potential pharmacological therapy to combat ROS accumulation and aid in vascular function, and physical performance in patients with PAD. Altogether, this review provides a better understanding of excessive ROS in the pathophysiology of PAD and enhances our perception of potential therapeutic targets that may improve vascular function, skeletal muscle function, walking capacity, and quality of life in patients with PAD.


Subject(s)
Antioxidants , Muscle, Skeletal , Oxidative Stress , Peripheral Arterial Disease , Reactive Oxygen Species , Signal Transduction , Humans , Peripheral Arterial Disease/physiopathology , Peripheral Arterial Disease/metabolism , Peripheral Arterial Disease/drug therapy , Peripheral Arterial Disease/therapy , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/therapeutic use , Animals , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism
13.
Toxicol Appl Pharmacol ; 487: 116949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688425

ABSTRACT

Pulmonary fibrosis is a lung disorder characterized by the accumulation of abnormal extracellular matrix, scar tissue formation, and tissue stiffness. Type II alveolar epithelial cells (AEII) play a critical role in repairing lung tissue after injury, and repeated injury to these cells is a key factor in the development of pulmonary fibrosis. Chronic exposure to PM2.5, a type of air pollution, has been shown to increase the incidence and severity of pulmonary fibrosis by enhancing the activation of EMT in lung epithelial cells. Melatonin, a hormone with antioxidant properties, has been shown to prevent EMT and reduce fibrosis in previous studies. However, the mechanism through which melatonin targets EMT to prevent pulmonary fibrosis caused by PM2.5 exposure has not been extensively discussed before. In this current study, we found that melatonin effectively prevented pulmonary fibrosis caused by prolonged exposure to PM2.5 by targeting EMT. The study demonstrated changes in cellular morphology and expression of EMT markers. Furthermore, the cell migratory potential induced by prolonged exposure to PM2.5 was greatly reduced by melatonin treatment. Finally, in vivo animal studies showed reduced EMT markers and improved pulmonary function. These findings suggest that melatonin has potential clinical use for the prevention of pulmonary fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Melatonin , Particulate Matter , Pulmonary Fibrosis , Melatonin/pharmacology , Melatonin/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Animals , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Particulate Matter/toxicity , Male , Mice , Mice, Inbred C57BL , Cell Movement/drug effects , Humans , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use
14.
Toxicol Appl Pharmacol ; 489: 117008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908719

ABSTRACT

The current study aimed to determine the safety and efficacy of Coag-A through in vivo analysis in CFA induced mice model. Treatment of CFA induced arthritis in mice with Coagulansin-A (10 mg/kg i.p. daily for 28 days), a withanolide obtained from Withania coagulans, as well as standard drug treatment with Dexamethasone (5 mg/kg i.p) was provided. The effect of Coag-A on body weight, relative organ weight, hematology, serum biochemistry, survival rate, oxidative stress markers, and antioxidant enzymes was evaluated. The liver and kidney histopathology were also assessed to ascertain its safety profile. Treatment of arthritic mice with Coag-A considerably improved body weight, relative organ weight of liver, kidney, and spleen, ameliorated hematology and serum biochemistry, and increased survival and antioxidant potential. Coag-A was found to be safer with fewer adverse effects showing hepato-protective, nephroprotective, and anti-inflammatory effect. It also significantly (p < 0.001) improved histopathology of CFA-induced mice when compared with Dexa. In conclusion, compared to dexamethasone, Coag-A has demonstrated a greater therapeutic benefit and fewer side effects in the treatment of arthritis against the CFA-induced model.


Subject(s)
Arthritis, Experimental , Animals , Mice , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/chemically induced , Male , Withanolides/pharmacology , Withanolides/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dexamethasone , Oxidative Stress/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Liver/drug effects , Liver/pathology , Liver/metabolism , Withania/chemistry , Female
15.
Curr Opin Clin Nutr Metab Care ; 27(3): 244-251, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38386477

ABSTRACT

PURPOSE OF REVIEW: Sarcopenia increases in prevalence at older ages and may be exacerbated by poor diet. Whole foods rich in specific nutrients may be myoprotective and mitigate the risk of sarcopenia. Here we review recent evidence published from observational and intervention studies regarding myoprotective foods and explore their benefit for the prevention and/or treatment of sarcopenia in older adults. RECENT FINDINGS: We found limited new evidence for the role of whole foods in sarcopenia and sarcopenia components (muscle mass, strength, physical performance). There was some evidence for higher consumption of protein-rich foods (milk and dairy) being beneficial for muscle strength in observational and intervention studies. Higher consumption of antioxidant-rich foods (fruit and vegetables) was associated with better physical performance and lower odds of sarcopenia in observational studies. Evidence for other protein- and antioxidant-rich foods were inconsistent or lacking. There remains a clear need for intervention studies designed to identify the role of whole foods for the treatment of sarcopenia. SUMMARY: Although evidence for myoprotective roles of dairy, fruit and vegetables is emerging from observational studies, higher level evidence from intervention studies is needed for these foods to be recommended in diets of older adults to prevent and/or treat sarcopenia.


Subject(s)
Sarcopenia , Humans , Aged , Sarcopenia/prevention & control , Aging/physiology , Antioxidants/therapeutic use , Muscle Strength/physiology , Muscle, Skeletal/physiology , Vegetables
16.
Crit Rev Biotechnol ; 44(3): 462-476, 2024 May.
Article in English | MEDLINE | ID: mdl-36842998

ABSTRACT

Nature derived compounds represent a valuable source of bioactive molecules with enormous potential. The sea is one of the richest environments, full of skilled organisms, where algae stand out due to their unique characteristics. Marine macroalgae adapt their phenotypic characteristics, such as chemical composition, depending on the environmental conditions where they live. The compounds produced by these organisms show tremendous potential to be used in the biomedical field, due to their antioxidant, anti-inflammatory, immunomodulatory, and anti-cancer properties.Cancer is one of the deadliest diseases in the world, and the lack of effective treatments highlights the urgent need for the development of new therapeutic strategies. This review provides an overview of the current advances regarding the anti-cancer activity of the three major groups of marine macroalgae, i.e., red algae (Rhodophyta), brown algae (Phaeophyceae), and green algae (Chlorophyta) on pancreatic, lung, breast, cervical, colorectal, liver, and gastric cancers as well as leukemia and melanoma. In addition, future perspectives, and limitations regarding this field of work are also discussed.


Subject(s)
Chlorophyta , Phaeophyceae , Rhodophyta , Seaweed , Rhodophyta/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use
17.
Exp Eye Res ; 241: 109836, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387712

ABSTRACT

Dry eye disease is a multifactorial dysfunction of the tear film and ocular surface, with etiology involving inflammation and oxidative stress on the ocular surface. Pterostilbene (PS) is a secondary metabolite extracted from plants, which possesses remarkable anti-inflammatory and antioxidant effects. However, its application is limited by light instability and very poor water solubility. We modified fat-soluble PS into a biparental pterostilbene-glutaric anhydride-arginine-glycine-aspartic acid (PS-GA-RGD) nanomedicine by prodrug ligation of functional peptides. The aim of this study was to explore the protective effect and potential mechanism of PS-GA-RGD on dry eye disease in vitro and in vivo. We demonstrated good long-term biocompatibility of PS-GA-RGD through rabbit eye stimulation test. Lipopolysaccharide (LPS) was used to induce murine macrophages RAW 264.7 to establish an inflammation and oxidative stress model. In this model, PS-GA-RGD effectively reduced the production of ROS and 8-OHdG, enhancing the expression of antioxidant factor Nrf2 and antioxidant enzyme heme oxygenase-1. In addition, the expression of NF-κB inflammatory pathway significantly increased in LPS-induced RAW 264.7 cells, while PS-GA-RGD could significantly reduce this pathway. Hypertonic saline was utilized to establish a hypertonic model of human corneal epithelial cells. PS-GA-RGD was found to significantly reduce the production of ROS and NLRP3 inflammasomes in this model, exhibiting superior efficacy compared to PS. Experimental dry eye animal models were co-induced with subcutaneous injection of scopolamine and an intelligently controlled environmental system. We demonstrated that PS-GA-RGD nano drugs can prevent and reduce corneal epithelial cell defects and apoptosis, protect conjunctival goblet cells, and have an excellent anti-inflammatory effect. Finally, we demonstrated that RGD sequence in PS-GA-RGD can enhance cellular uptake, corneal retention, and penetration, thereby increasing their bioavailability and efficacy by a cell uptake assay and rabbit corneal drug retention experiment. Overall, this study highlights the potential of PS-GA-RGD nanomedicines in the treatment of dry eyes.


Subject(s)
Antioxidants , Dry Eye Syndromes , Mice , Humans , Animals , Rabbits , Antioxidants/pharmacology , Antioxidants/therapeutic use , Reactive Oxygen Species/metabolism , Lipopolysaccharides , Dry Eye Syndromes/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/therapeutic use , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Disease Models, Animal
18.
Exp Eye Res ; 238: 109739, 2024 01.
Article in English | MEDLINE | ID: mdl-38042515

ABSTRACT

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Subject(s)
Bacterial Infections , Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Rats , Humans , Animals , Burns, Chemical/complications , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Corneal Neovascularization/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hydrogen Peroxide/pharmacology , Neovascularization, Pathologic/metabolism , Corneal Injuries/drug therapy , Human Umbilical Vein Endothelial Cells , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Disease Models, Animal , Alkalies/toxicity
19.
FASEB J ; 37(7): e23012, 2023 07.
Article in English | MEDLINE | ID: mdl-37272854

ABSTRACT

As an end product of purine metabolism, uric acid (UA) is a major endogenous antioxidant in humans. However, impaired UA synthesis and excretion can lead to hyperuricemia (HUA), which may in turn induce endothelial dysfunction (ED) and contribute to the pathogenesis of cardiovascular diseases (CVDs; e.g., atherosclerosis and hypertension). In this review, we discuss recent advances and novel insights into the effects exerted by HUA conditions in ED and related underlying mechanisms focusing on impaired UA metabolism, reduction in the synthesis and bioavailability of nitric oxide, endothelial cell injury, the endothelial-to-mesenchymal transition, insulin resistance, procoagulant activity, and acquisition of an inflammatory phenotype. We additionally discuss intervention strategies for HUA-induced ED and the paradoxical roles of UA in endothelial function. We summarize major conclusions and perspectives: the deleterious effects of HUA contribute to the initiation and progression of CVD-related ED. However, the treatment strategies (in addition to urate-lowering therapy) for increasing endothelial function are limited because the majority of literature on pharmacological and pathophysiological mechanisms underlying HUA-induced ED solely describes in vitro models. Therefore, a better understanding of the mechanisms involved in HUA-induced ED is critical to the development of novel therapies for preventing and treating CVD-HUA comorbidities.


Subject(s)
Cardiovascular Diseases , Hypertension , Hyperuricemia , Humans , Hyperuricemia/metabolism , Cardiovascular Diseases/etiology , Antioxidants/therapeutic use , Uric Acid/metabolism , Hypertension/metabolism
20.
Neurochem Res ; 49(3): 649-659, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010604

ABSTRACT

Cisplatin, a chemotherapy drug containing platinum, is considered a neurotoxic agent. On the other hand, crocin, the primary component of saffron, possesses neuroprotective and antioxidant properties. In this study, 28 healthy adult male Wistar rats weighing 200-250 g were used (6-7 weeks old). Rats were divided into a control group (Ctr), a crocin group (Cro), a cisplatin group (Cis), and a crocin with cisplatin group (Cro + Cis). Rotarod, open field, and shuttle box tests were performed to assess balance, explorative behavior, and avoidance memory. After behavioral testing, the hippocampus was extracted to analyze oxidative stress parameters such as GPx (glutathione peroxidase), SOD (superoxide dismutase), CAT (catalase), and MDA (malondialdehyde) activity. Shuttle box, rotarod, and open field results showed that crocin can substantially mitigate the deleterious effects of cisplatin on avoidance memory, explorative behavior, motor coordination, and balance. Crocin was also able to effectively avoid the negative effects of cisplatin on MDA, GPx, and CAT during the assessment of oxidative indicators, while the beneficial effect of crocin on cisplatin was not statistically significant in terms of SOD level. In conclusion, since free radicals produced by cisplatin are a contributing factor to memory loss and movement disorders, crocin, owing to its antioxidant properties, improved passive avoidance learning as well as motor activity.


Subject(s)
Antioxidants , Carotenoids , Cisplatin , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Cisplatin/toxicity , Rats, Wistar , Oxidative Stress , Superoxide Dismutase/metabolism , Nutritional Support
SELECTION OF CITATIONS
SEARCH DETAIL