Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(3): 370-380, 2021 03.
Article in English | MEDLINE | ID: mdl-33574619

ABSTRACT

During chronic infection and cancer, a self-renewing CD8+ T cell subset maintains long-term immunity and is critical to the effectiveness of immunotherapy. These stem-like CD8+ T cells diverge from other CD8+ subsets early after chronic viral infection. However, pathways guarding stem-like CD8+ T cells against terminal exhaustion remain unclear. Here, we show that the gene encoding transcriptional repressor BACH2 is transcriptionally and epigenetically active in stem-like CD8+ T cells but not terminally exhausted cells early after infection. BACH2 overexpression enforced stem-like cell fate, whereas BACH2 deficiency impaired stem-like CD8+ T cell differentiation. Single-cell transcriptomic and epigenomic approaches revealed that BACH2 established the transcriptional and epigenetic programs of stem-like CD8+ T cells. In addition, BACH2 suppressed the molecular program driving terminal exhaustion through transcriptional repression and epigenetic silencing. Thus, our study reveals a new pathway that enforces commitment to stem-like CD8+ lineage and prevents an alternative terminally exhausted cell fate.


Subject(s)
Arenaviridae Infections/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Epigenesis, Genetic , Precursor Cells, T-Lymphoid/metabolism , Transcription, Genetic , Animals , Arenaviridae Infections/genetics , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Lineage , Cells, Cultured , Chronic Disease , Disease Models, Animal , Host-Pathogen Interactions , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Precursor Cells, T-Lymphoid/immunology , Precursor Cells, T-Lymphoid/virology , Signal Transduction
2.
Nat Immunol ; 22(4): 434-448, 2021 04.
Article in English | MEDLINE | ID: mdl-33649580

ABSTRACT

T cells dynamically interact with multiple, distinct cellular subsets to determine effector and memory differentiation. Here, we developed a platform to quantify cell location in three dimensions to determine the spatial requirements that direct T cell fate. After viral infection, we demonstrated that CD8+ effector T cell differentiation is associated with positioning at the lymph node periphery. This was instructed by CXCR3 signaling since, in its absence, T cells are confined to the lymph node center and alternatively differentiate into stem-like memory cell precursors. By mapping the cellular sources of CXCR3 ligands, we demonstrated that CXCL9 and CXCL10 are expressed by spatially distinct dendritic and stromal cell subsets. Unlike effector cells, retention of stem-like memory precursors in the paracortex is associated with CCR7 expression. Finally, we demonstrated that T cell location can be tuned, through deficiency in CXCL10 or type I interferon signaling, to promote effector or stem-like memory fates.


Subject(s)
Arenaviridae Infections/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Chemokine CXCL10/metabolism , Chemokine CXCL9/metabolism , Immunologic Memory , Lymph Nodes/metabolism , Precursor Cells, T-Lymphoid/metabolism , Receptors, CXCR3/metabolism , Animals , Arenaviridae Infections/genetics , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Lineage , Cells, Cultured , Chemokine CXCL10/genetics , Chemokine CXCL9/genetics , Chemotaxis, Leukocyte , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Host-Pathogen Interactions , Interferon Type I/metabolism , Ligands , Lymph Nodes/immunology , Lymph Nodes/virology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Precursor Cells, T-Lymphoid/immunology , Precursor Cells, T-Lymphoid/virology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, CCR7/metabolism , Receptors, CXCR3/genetics , Signal Transduction , Stem Cell Niche , Stromal Cells/immunology , Stromal Cells/metabolism
3.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289100

ABSTRACT

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Subject(s)
Arenaviridae , Reverse Genetics , Animals , Female , Humans , Arenaviridae/genetics , Arenaviridae Infections/virology , Arenaviruses, New World/genetics , Chlorocebus aethiops , Hemorrhagic Fevers, Viral/virology , Phenotype , Reverse Genetics/methods , Vaccines , Vero Cells
4.
Nat Immunol ; 14(8): 840-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23812098

ABSTRACT

Follicular helper T cells (TFH cells) are the prototypic helper T cell subset specialized to enable B cells to form germinal centers (GCs) and produce high-affinity antibodies. We found that expression of microRNAs (miRNAs) by T cells was essential for TFH cell differentiation. More specifically, we show that after immunization of mice with protein, the miRNA cluster miR-17∼92 was critical for robust differentiation and function of TFH cells in a cell-intrinsic manner that occurred regardless of changes in proliferation. In a viral infection model, miR-17∼92 restrained the expression of genes 'inappropriate' to the TFH cell subset, including the direct miR-17∼92 target Rora. Removal of one Rora allele partially 'rescued' the inappropriate gene signature in miR-17∼92-deficient TFH cells. Our results identify the miR-17∼92 cluster as a critical regulator of T cell-dependent antibody responses, TFH cell differentiation and the fidelity of the TFH cell gene-expression program.


Subject(s)
Cell Differentiation/immunology , Gene Expression Regulation/immunology , MicroRNAs/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adaptive Immunity/immunology , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Flow Cytometry , Immunohistochemistry , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Statistics, Nonparametric , T-Lymphocytes, Helper-Inducer/cytology
5.
Nature ; 567(7749): 525-529, 2019 03.
Article in English | MEDLINE | ID: mdl-30814730

ABSTRACT

T cells become dysfunctional when they encounter self antigens or are exposed to chronic infection or to the tumour microenvironment1. The function of T cells is tightly regulated by a combinational co-stimulatory signal, and dominance of negative co-stimulation results in T cell dysfunction2. However, the molecular mechanisms that underlie this dysfunction remain unclear. Here, using an in vitro T cell tolerance induction system in mice, we characterize genome-wide epigenetic and gene expression features in tolerant T cells, and show that they are distinct from effector and regulatory T cells. Notably, the transcription factor NR4A1 is stably expressed at high levels in tolerant T cells. Overexpression of NR4A1 inhibits effector T cell differentiation, whereas deletion of NR4A1 overcomes T cell tolerance and exaggerates effector function, as well as enhancing immunity against tumour and chronic virus. Mechanistically, NR4A1 is preferentially recruited to binding sites of the transcription factor AP-1, where it represses effector-gene expression by inhibiting AP-1 function. NR4A1 binding also promotes acetylation of histone 3 at lysine 27 (H3K27ac), leading to activation of tolerance-related genes. This study thus identifies NR4A1 as a key general regulator in the induction of T cell dysfunction, and a potential target for tumour immunotherapy.


Subject(s)
Gene Expression Regulation/genetics , Genome , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Acetylation , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Cell Line, Tumor , Colitis/immunology , Colitis/pathology , Colitis/therapy , Epigenesis, Genetic , Female , Histones/chemistry , Histones/metabolism , Immune Tolerance/genetics , Immunotherapy , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , T-Lymphocytes/immunology , Transcription Factor AP-1/metabolism , Transcription, Genetic
7.
J Virol ; 95(22): e0105421, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34432522

ABSTRACT

Arenaviruses initiate infection by delivering a transcriptionally competent ribonucleoprotein (RNP) complex into the cytosol of host cells. The arenavirus RNP consists of the large (L) RNA-dependent RNA polymerase (RdRP) bound to a nucleoprotein (NP)-encapsidated genomic RNA (viral RNA [vRNA]) template. During transcription and replication, L must transiently displace RNA-bound NP to allow for template access into the RdRP active site. Concomitant with RNA replication, new subunits of NP must be added to the nascent complementary RNAs (cRNA) as they emerge from the product exit channel of L. Interactions between L and NP thus play a central role in arenavirus gene expression. We developed an approach to purify recombinant functional RNPs from mammalian cells in culture using a synthetic vRNA and affinity-tagged L and NP. Negative-stain electron microscopy of purified RNPs revealed they adopt diverse and flexible structures, like RNPs of other Bunyavirales members. Monodispersed L-NP and trimeric ring-like NP complexes were also obtained in excess of flexible RNPs, suggesting that these heterodimeric structures self-assemble in the absence of suitable RNA templates. This work allows for further biochemical analysis of the interaction between arenavirus L and NP proteins and provides a framework for future high-resolution structural analyses of this replication-associated complex. IMPORTANCE Arenaviruses are rodent-borne pathogens that can cause severe disease in humans. All arenaviruses begin the infection cycle with delivery of the virus replication machinery into the cytoplasm of the host cell. This machinery consists of an RNA-dependent RNA polymerase-which copies the viral genome segments and synthesizes all four viral mRNAs-bound to the two nucleoprotein-encapsidated genomic RNAs. How this complex assembles remains a mystery. Our findings provide direct evidence for the formation of diverse intracellular arenavirus replication complexes using purification strategies for the polymerase, nucleoprotein, and genomic RNA of Machupo virus, which causes Bolivian hemorrhagic fever in humans. We demonstrate that the polymerase and nucleoprotein assemble into higher-order structures within cells, providing a model for the molecular events of arenavirus RNA synthesis. These findings provide a framework for probing the architectures and functions of the arenavirus replication machinery and thus advancing antiviral strategies targeting this essential complex.


Subject(s)
Arenaviridae Infections/virology , Arenaviruses, New World/isolation & purification , RNA, Viral/isolation & purification , RNA-Dependent RNA Polymerase/isolation & purification , Ribonucleoproteins/isolation & purification , Viral Proteins/isolation & purification , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , Molecular Structure , Spodoptera
8.
PLoS Pathog ; 16(10): e1008948, 2020 10.
Article in English | MEDLINE | ID: mdl-33045019

ABSTRACT

Pathogenicity often differs dramatically among even closely related arenavirus species. For instance, Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever (AHF), is closely related to Tacaribe virus (TCRV), which is normally avirulent in humans. While little is known about how host cell pathways are regulated in response to arenavirus infection, or how this contributes to virulence, these two viruses have been found to differ markedly in their ability to induce apoptosis. However, details of the mechanism(s) governing the apoptotic response to arenavirus infections are unknown. Here we confirm that TCRV-induced apoptosis is mitochondria-regulated, with associated canonical hallmarks of the intrinsic apoptotic pathway, and go on to identify the pro- and anti-apoptotic Bcl-2 factors responsible for regulating this process. In particular, levels of the pro-apoptotic BH3-only proteins Noxa and Puma, as well as their canonical transcription factor p53, were strongly increased. Interestingly, TCRV infection also led to the accumulation of the inactive phosphorylated form of another pro-apoptotic BH3-only protein, Bad (i.e. as phospho-Bad). Knockout of Noxa or Puma suppressed apoptosis in response to TCRV infection, whereas silencing of Bad increased apoptosis, confirming that these factors are key regulators of apoptosis induction in response to TCRV infection. Further, we found that while the highly pathogenic JUNV does not induce caspase activation, it still activated upstream pro-apoptotic factors, consistent with current models suggesting that JUNV evades apoptosis by interfering with caspase activation through a nucleoprotein-mediated decoy function. This new mechanistic insight into the role that individual BH3-only proteins and their regulation play in controlling apoptotic fate in arenavirus-infected cells provides an important experimental framework for future studies aimed at dissecting differences in the apoptotic responses between arenaviruses, their connection to other cell signaling events and ultimately the relationship of these processes to pathogenesis.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis , Arenaviridae Infections/pathology , Arenaviruses, New World/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins/metabolism , Virus Replication , bcl-Associated Death Protein/metabolism , Apoptosis Regulatory Proteins/genetics , Arenaviridae Infections/genetics , Arenaviridae Infections/metabolism , Arenaviridae Infections/virology , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Protein Domains , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-Associated Death Protein/genetics
9.
Article in English | MEDLINE | ID: mdl-33468464

ABSTRACT

Neglected diseases caused by arenaviruses such as Lassa virus (LASV) and filoviruses like Ebola virus (EBOV) primarily afflict resource-limited countries, where antiviral drug development is often minimal. Previous studies have shown that many approved drugs developed for other clinical indications inhibit EBOV and LASV and that combinations of these drugs provide synergistic suppression of EBOV, often by blocking discrete steps in virus entry. We hypothesize that repurposing of combinations of orally administered approved drugs provides effective suppression of arenaviruses. In this report, we demonstrate that arbidol, an approved influenza antiviral previously shown to inhibit EBOV, LASV, and many other viruses, inhibits murine leukemia virus (MLV) reporter viruses pseudotyped with the fusion glycoproteins (GPs) of other arenaviruses (Junin virus [JUNV], lymphocytic choriomeningitis virus [LCMV], and Pichinde virus [PICV]). Arbidol and other approved drugs, including aripiprazole, amodiaquine, sertraline, and niclosamide, also inhibit infection of cells by infectious PICV, and arbidol, sertraline, and niclosamide inhibit infectious LASV. Combining arbidol with aripiprazole or sertraline results in the synergistic suppression of LASV and JUNV GP-bearing pseudoviruses. This proof-of-concept study shows that arenavirus infection in vitro can be synergistically inhibited by combinations of approved drugs. This approach may lead to a proactive strategy with which to prepare for and control known and new arenavirus outbreaks.


Subject(s)
Antiviral Agents/therapeutic use , Arenaviridae Infections/drug therapy , Arenavirus/drug effects , Administration, Oral , Animals , Arenaviridae Infections/virology , Cell Line , Chlorocebus aethiops , Drug Synergism , Drug Therapy, Combination/methods , HEK293 Cells , Humans , Mice , Proof of Concept Study , Vero Cells
10.
J Virol ; 94(9)2020 04 16.
Article in English | MEDLINE | ID: mdl-32051278

ABSTRACT

The arenaviruses Lassa virus (LASV), Junín virus (JUNV), and Machupo virus (MACV) can cause severe and fatal diseases in humans. Although these pathogens are closely related, the host immune responses to these virus infections differ remarkably, with direct implications for viral pathogenesis. LASV infection is immunosuppressive, with a very low-level interferon response. In contrast, JUNV and MACV infections stimulate a robust interferon (IFN) response in a retinoic acid-inducible gene I (RIG-I)-dependent manner and readily activate protein kinase R (PKR), a known host double-stranded RNA (dsRNA) sensor. In response to infection with RNA viruses, host nonself RNA sensors recognize virus-derived dsRNA as danger signals and initiate innate immune responses. Arenavirus nucleoproteins (NPs) contain a highly conserved exoribonuclease (ExoN) motif, through which LASV NP has been shown to degrade virus-derived immunostimulatory dsRNA in biochemical assays. In this study, we for the first time present evidence that LASV restricts dsRNA accumulation during infection. Although JUNV and MACV NPs also have the ExoN motif, dsRNA readily accumulated in infected cells and often colocalized with dsRNA sensors. Moreover, LASV coinfection diminished the accumulation of dsRNA and the IFN response in JUNV-infected cells. The disruption of LASV NP ExoN with a mutation led to dsRNA accumulation and impaired LASV replication in minigenome systems. Importantly, both LASV NP and RNA polymerase L protein were required to diminish the accumulation of dsRNA and the IFN response in JUNV infection. For the first time, we discovered a collaboration between LASV NP ExoN and L protein in limiting dsRNA accumulation. Our new findings provide mechanistic insights into the differential host innate immune responses to highly pathogenic arenavirus infections.IMPORTANCE Arenavirus NPs contain a highly conserved DEDDh ExoN motif, through which LASV NP degrades virus-derived, immunostimulatory dsRNA in biochemical assays to eliminate the danger signal and inhibit the innate immune response. Nevertheless, the function of NP ExoN in arenavirus infection remains to be defined. In this study, we discovered that LASV potently restricts dsRNA accumulation during infection and minigenome replication. In contrast, although the NPs of JUNV and MACV also harbor the ExoN motif, dsRNA readily formed during JUNV and MACV infections, accompanied by IFN and PKR responses. Interestingly, LASV NP alone was not sufficient to limit dsRNA accumulation. Instead, both LASV NP and L protein were required to restrict immunostimulatory dsRNA accumulation. Our findings provide novel and important insights into the mechanism for the distinct innate immune response to these highly pathogenic arenaviruses and open new directions for future studies.


Subject(s)
Arenaviruses, New World/immunology , Junin virus/immunology , Lassa virus/immunology , Arenaviridae Infections/virology , Arenavirus/genetics , Arenavirus/immunology , Cell Line , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferon Type I/metabolism , Lassa Fever/immunology , Lassa virus/metabolism , Nucleoproteins/metabolism , RNA, Double-Stranded/immunology , Virus Replication , eIF-2 Kinase/metabolism
11.
PLoS Pathog ; 15(11): e1008144, 2019 11.
Article in English | MEDLINE | ID: mdl-31697793

ABSTRACT

The determinants of protective CD8+ memory T cell (CD8+TM) immunity remain incompletely defined and may in fact constitute an evolving agency as aging CD8+TM progressively acquire enhanced rather than impaired recall capacities. Here, we show that old as compared to young antiviral CD8+TM more effectively harness disparate molecular processes (cytokine signaling, trafficking, effector functions, and co-stimulation/inhibition) that in concert confer greater secondary reactivity. The relative reliance on these pathways is contingent on the nature of the secondary challenge (greater for chronic than acute viral infections) and over time, aging CD8+TM re-establish a dependence on the same accessory signals required for effective priming of naïve CD8+T cells in the first place. Thus, our findings reveal a temporal regulation of complementary recall response determinants that is consistent with the recently proposed "rebound model" according to which aging CD8+TM properties are gradually aligned with those of naïve CD8+T cells; our identification of a broadly diversified collection of immunomodulatory targets may further provide a foundation for the potential therapeutic "tuning" of CD8+TM immunity.


Subject(s)
Aging/immunology , Arenaviridae Infections/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Immunologic Memory/immunology , Lymphocytic choriomeningitis virus/immunology , Mental Recall/physiology , Animals , Arenaviridae Infections/virology , Cytokines/metabolism , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis
12.
Nat Immunol ; 10(7): 761-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19525969

ABSTRACT

Granule-mediated cytotoxicity is the main effector mechanism of cytotoxic CD8+ T cells. We report that CD8+ T cells from acid sphingomyelinase (ASMase)-deficient (ASMase-KO) mice are defective in exocytosis of cytolytic effector molecules; this defect resulted in attenuated cytotoxic activity of ASMase-KO CD8+ T cells and delayed elimination of lymphocytic choriomeningitis virus from ASMase-KO mice. Cytolytic granules of ASMase-KO and wild-type CD8+ T cells were equally loaded with granzymes and perforin, and correctly directed to the immunological synapse. In wild-type CD8+ T cells, secretory granules underwent shrinkage by 82% after fusion with the plasma membrane. In ASMase-KO CD8+ T cells, the contraction of secretory granules was markedly impaired. Thus, ASMase is required for contraction of secretory granules and expulsion of cytotoxic effector molecules.


Subject(s)
Cytotoxicity, Immunologic/immunology , Secretory Vesicles/metabolism , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes/immunology , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/metabolism , Arenaviridae Infections/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chemokine CCL5/metabolism , Female , Granzymes/genetics , Granzymes/metabolism , Immunoblotting , Immunological Synapses/immunology , Lymphocytic choriomeningitis virus/physiology , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Perforin/genetics , Perforin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Secretory Vesicles/enzymology , Sphingomyelin Phosphodiesterase/genetics , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
13.
PLoS Pathog ; 14(11): e1007415, 2018 11.
Article in English | MEDLINE | ID: mdl-30427944

ABSTRACT

The family Arenaviridae comprises three genera, Mammarenavirus, Reptarenavirus and the most recently added Hartmanivirus. Arenaviruses have a bisegmented genome with ambisense coding strategy. For mammarenaviruses and reptarenaviruses the L segment encodes the Z protein (ZP) and the RNA-dependent RNA polymerase, and the S segment encodes the glycoprotein precursor and the nucleoprotein. Herein we report the full length genome and characterization of Haartman Institute snake virus-1 (HISV-1), the putative type species of hartmaniviruses. The L segment of HISV-1 lacks an open-reading frame for ZP, and our analysis of purified HISV-1 particles by SDS-PAGE and electron microscopy further support the lack of ZP. Since we originally identified HISV-1 in co-infection with a reptarenavirus, one could hypothesize that co-infecting reptarenavirus provides the ZP to complement HISV-1. However, we observed that co-infection does not markedly affect the amount of hartmanivirus or reptarenavirus RNA released from infected cells in vitro, indicating that HISV-1 does not benefit from reptarenavirus ZP. Furthermore, we succeeded in generating a pure HISV-1 isolate showing the virus to replicate without ZP. Immunofluorescence and ultrastructural studies demonstrate that, unlike reptarenaviruses, HISV-1 does not produce the intracellular inclusion bodies typical for the reptarenavirus-induced boid inclusion body disease (BIBD). While we observed HISV-1 to be slightly cytopathic for cultured boid cells, the histological and immunohistological investigation of HISV-positive snakes showed no evidence of a pathological effect. The histological analyses also revealed that hartmaniviruses, unlike reptarenaviruses, have a limited tissue tropism. By nucleic acid sequencing, de novo genome assembly, and phylogenetic analyses we identified additional four hartmanivirus species. Finally, we screened 71 individuals from a collection of snakes with BIBD by RT-PCR and found 44 to carry hartmaniviruses. These findings suggest that harmaniviruses are common in captive snake populations, but their relevance and pathogenic potential needs yet to be revealed.


Subject(s)
Arenavirus/classification , Arenavirus/genetics , Animals , Arenaviridae/genetics , Arenaviridae Infections/virology , Base Sequence , Boidae/virology , Cell Line , Inclusion Bodies, Viral/pathology , Phylogeny , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics
14.
PLoS Pathog ; 14(4): e1006985, 2018 04.
Article in English | MEDLINE | ID: mdl-29672594

ABSTRACT

Regulatory T cells (Tregs) play a cardinal role in the immune system by suppressing detrimental autoimmune responses, but their role in acute, chronic infectious diseases and tumor microenvironment remains unclear. We recently demonstrated that IFN-α/ß receptor (IFNAR) signaling promotes Treg function in autoimmunity. Here we dissected the functional role of IFNAR-signaling in Tregs using Treg-specific IFNAR deficient (IFNARfl/flxFoxp3YFP-Cre) mice in acute LCMV Armstrong, chronic Clone-13 viral infection, and in tumor models. In both viral infection and tumor models, IFNARfl/flxFoxp3YFP-Cre mice Tregs expressed enhanced Treg associated activation antigens. LCMV-specific CD8+ T cells and tumor infiltrating lymphocytes from IFNARfl/flxFoxp3YFP-Cre mice produced less antiviral and antitumor IFN-γ and TNF-α. In chronic viral model, the numbers of antiviral effector and memory CD8+ T cells were decreased in IFNARfl/flxFoxp3YFP-Cre mice and the effector CD4+ and CD8+ T cells exhibited a phenotype compatible with enhanced exhaustion. IFNARfl/flxFoxp3YFP-Cre mice cleared Armstrong infection normally, but had higher viral titers in sera, kidneys and lungs during chronic infection, and higher tumor burden than the WT controls. The enhanced activated phenotype was evident through transcriptome analysis of IFNARfl/flxFoxp3YFP-Cre mice Tregs during infection demonstrated differential expression of a unique gene signature characterized by elevated levels of genes involved in suppression and decreased levels of genes mediating apoptosis. Thus, IFN signaling in Tregs is beneficial to host resulting in a more effective antiviral response and augmented antitumor immunity.


Subject(s)
Arenaviridae Infections/immunology , Colonic Neoplasms/immunology , Interferon Type I/pharmacology , Lymphocytic Choriomeningitis/immunology , Melanoma, Experimental/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , Antiviral Agents/pharmacology , Arenaviridae Infections/drug therapy , Arenaviridae Infections/metabolism , Arenaviridae Infections/virology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/virology , Immunity, Innate/drug effects , Immunity, Innate/immunology , Interferon-gamma/metabolism , Lymphocytic Choriomeningitis/drug therapy , Lymphocytic Choriomeningitis/metabolism , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/drug effects , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/physiology , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/virology , Tumor Microenvironment/drug effects
15.
Nat Immunol ; 9(6): 667-75, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18425132

ABSTRACT

The generation of lymphoid microenvironments in early life depends on the interaction of lymphoid tissue-inducer cells with stromal lymphoid tissue-organizer cells. Whether this cellular interface stays operational in adult secondary lymphoid organs has remained elusive. We show here that during acute infection with lymphocytic choriomeningitis virus, antiviral cytotoxic T cells destroyed infected T cell zone stromal cells, which led to profound disruption of secondary lymphoid organ integrity. Furthermore, the ability of the host to respond to secondary antigens was lost. Restoration of the lymphoid microanatomy was dependent on the proliferative accumulation of lymphoid tissue-inducer cells in secondary lymphoid organs during the acute phase of infection and lymphotoxin alpha(1)beta(2) signaling. Thus, crosstalk between lymphoid tissue-inducer cells and stromal cells is reactivated in adults to maintain secondary lymphoid organ integrity and thereby contributes to the preservation of immunocompetence.


Subject(s)
Arenaviridae Infections/immunology , Lymphatic System/physiology , Lymphocytic choriomeningitis virus/immunology , Stromal Cells/metabolism , T-Lymphocytes, Cytotoxic/immunology , Animals , Arenaviridae Infections/blood , Arenaviridae Infections/virology , Lymphocyte Activation/immunology , Lymphoid Tissue/immunology , Organ Specificity , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Helper-Inducer
16.
Blood ; 142(24): 2042-2043, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38095923
17.
Immunity ; 35(2): 285-98, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21856186

ABSTRACT

To design successful vaccines for chronic diseases, an understanding of memory CD8(+) T cell responses to persistent antigen restimulation is critical. However, most studies comparing memory and naive cell responses have been performed only in rapidly cleared acute infections. Herein, by comparing the responses of memory and naive CD8(+) T cells to acute and chronic lymphocytic choriomeningitis virus infection, we show that memory cells dominated over naive cells and were protective when present in sufficient numbers to quickly reduce infection. In contrast, when infection was not rapidly reduced, because of high antigen load or persistence, memory cells were quickly lost, unlike naive cells. This loss of memory cells was due to a block in sustaining cell proliferation, selective regulation by the inhibitory receptor 2B4, and increased reliance on CD4(+) T cell help. Thus, emphasizing the importance of designing vaccines that elicit effective CD4(+) T cell help and rapidly control infection.


Subject(s)
Antigens, CD/metabolism , Arenaviridae Infections/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocytic choriomeningitis virus/physiology , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/metabolism , Acute Disease , Adoptive Transfer , Animals , Antigens, CD/immunology , Arenaviridae Infections/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Cell Proliferation , Cells, Cultured , Chronic Disease , Cytokines/immunology , Cytokines/metabolism , Immunologic Memory , Lymphocytic choriomeningitis virus/pathogenicity , Mice , Mice, Inbred C57BL , Mice, Transgenic , Paracrine Communication , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Immunologic/immunology , Signaling Lymphocytic Activation Molecule Family , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocyte Subsets/virology , Viral Load , Viral Vaccines
18.
J Zoo Wildl Med ; 51(2): 350-356, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549564

ABSTRACT

Reptarenaviruses infect a variety of boid and pythonid snake species worldwide and have been shown to be the cause of inclusion body disease (IBD). Little is known about the correlations between virus infection and clinical disease, as well as the effects of viral infection on the immune system and the blood protein fractions. The goal of this study was to examine the differences in the plasma protein fractions in reptarenavirus reverse transcription polymerase chain reaction (RT-PCR)-negative and -positive tested snakes with and without clinical signs of disease. Blood from a total of 111 boa constrictors (Boa constrictor) was evaluated. Reverse transcription PCRs and H&E staining for inclusion bodies were carried out on each sample for the detection of reptarenavirus, and the plasma protein fractions were evaluated by capillary zone electrophoresis (CZE). Thirty four of the 111 evaluated snakes were positive by RT-PCR and 19 of the 34 showed clinical signs of disease. In comparison with IBD-negative healthy boa constrictors, the positive snakes with clinical signs had significantly lower albumin levels (P = 0.0052), lower A: G ratios (P = 0.0037), and lower α-globulin levels (P = 0.0073), while their γ-globulin levels were significantly higher (P = 0.0004). In the same comparison, clinically healthy arenavirus-positive boas showed only significantly lower α-globulin (P = 0.0124) and higher γ-globulin levels (P = 0.0394). The results of the present study indicate that reptarenavirus infection may influence plasma protein fractions in boa constrictors.


Subject(s)
Arenaviridae Infections/virology , Arenaviridae/physiology , Boidae/blood , Electrophoresis, Capillary/veterinary , Animals , Reference Values
19.
J Gen Virol ; 100(8): 1200-1201, 2019 08.
Article in English | MEDLINE | ID: mdl-31192784

ABSTRACT

Members of the family Arenaviridae produce enveloped virions containing genomes consisting of two or three single-stranded RNA segments totalling about 10.5 kb. Arenaviruses can infect mammals, including humans and other primates, snakes, and fish. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arenaviridae, which is available at www.ictv.global/report/arenaviridae.


Subject(s)
Arenaviridae Infections/veterinary , Arenaviridae Infections/virology , Arenaviridae/classification , Arenaviridae/genetics , Animals , Arenaviridae/isolation & purification , Arenaviridae/ultrastructure , Fishes , Genome, Viral , Humans , Phylogeny , RNA, Viral/genetics , Reptiles , Viral Proteins/genetics
20.
J Virol ; 92(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29669840

ABSTRACT

RIG-I is a major cytoplasmic sensor of viral pathogen-associated molecular pattern (PAMP) RNA and induces type I interferon (IFN) production upon viral infection. A double-stranded RNA (dsRNA)-binding protein, PACT, plays an important role in potentiating RIG-I function. We have shown previously that arenaviral nucleoproteins (NPs) suppress type I IFN production via their RNase activity to degrade PAMP RNA. We report here that NPs of arenaviruses block the PACT-induced enhancement of RIG-I function to mediate type I IFN production and that this inhibition is dependent on the RNase function of NPs, which is different from that of a known mechanism of other viral proteins to abolish the interaction between PACT and RIG-I. To understand the biological roles of PACT and RIG-I in authentic arenavirus infection, we analyze growth kinetics of recombinant Pichinde virus (PICV), a prototypical arenavirus, in RIG-I knockout (KO) and PACT KO mouse embryonic fibroblast (MEF) cells. Wild-type (WT) PICV grew at higher titers in both KO MEF lines than in normal MEFs, suggesting the important roles of these cellular proteins in restricting virus replication. PICV carrying the NP RNase catalytically inactive mutation could not grow in normal MEFs but could replicate to some extent in both KO MEF lines. The level of virus growth was inversely correlated with the amount of type I IFNs produced. These results suggest that PACT plays an important role in potentiating RIG-I function to produce type I IFNs in order to restrict arenavirus replication and that viral NP RNase activity is essential for optimal viral replication by suppressing PACT-induced RIG-I activation.IMPORTANCE We report here a new role of the nucleoproteins of arenaviruses that can block type I IFN production via their specific inhibition of the cellular protein sensors of virus infection (RIG-I and PACT). Our results suggest that PACT plays an important role in potentiating RIG-I function to produce type I IFNs in order to restrict arenavirus replication. This new knowledge can be exploited for the development of novel antiviral treatments and/or vaccines against some arenaviruses that can cause severe and lethal hemorrhagic fever diseases in humans.


Subject(s)
Arenavirus/pathogenicity , Host-Pathogen Interactions , Interferon Type I/metabolism , Nucleoproteins/metabolism , RNA-Binding Proteins/metabolism , Receptors, Retinoic Acid/metabolism , Viral Proteins/metabolism , Arenaviridae Infections/genetics , Arenaviridae Infections/metabolism , Arenaviridae Infections/virology , HEK293 Cells , Humans , Nucleoproteins/genetics , Pichinde virus/physiology , RNA-Binding Proteins/genetics , Receptors, Retinoic Acid/genetics , Viral Proteins/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL