Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 16(6): e1008559, 2020 06.
Article in English | MEDLINE | ID: mdl-32497109

ABSTRACT

Antibiotics continue to be the standard-of-care for bacterial vaginosis (BV), although recurrence rates are high. Vaginal probiotics may improve durability of BV treatment, although few probiotics for vaginal health contain Lactobacillus spp. that commonly colonize the lower female genital tract. Characteristics of vaginal Lactobacillus strains from South African women were evaluated for their probiotic potential in vitro compared to strains from commercial vaginal products, including growth at varying pHs, ability to lower pH, produce D-/L-lactate and H2O2, influence growth of BV-associated Gardnerella vaginalis and Prevotella bivia, adherence to cervical cells and susceptibility to antibiotics. Fifty-seven Lactobacillus strains were purified from cervico-vaginal fluid, including L. crispatus, L. jensenii, L. gasseri, L. mucosae, and L. vaginalis. L crispatus strains grew better at pHs below 4.5 and lowered pH more effectively than other strains. Production of D-/L-lactate and H2O2 varied between Lactobacillus species and strains. Lactobacillus strains generally inhibited P. bivia more uniformly than G. vaginalis isolates. All vaginal Lactobacillus isolates were resistant to metronidazole while susceptibility to clindamycin varied. Furthermore, vaginal Lactobacillus strains tended to be broadly susceptible to penicillin, amoxicillin, rifampicin and rifabutin. Whole-genome-sequencing of five of the best-performing vaginal Lactobacillus strains confirmed their likely safety, due to antimicrobial resistance elements being largely absent, while putative intact prophages were present in the genomes of two of the five strains. Overall, vaginal Lactobacillus strains largely performed better in these in vitro assays than probiotic strains currently used in probiotics for vaginal health. Including the best-performing vaginal Lactobacillus isolates in a region-specific probiotic for vaginal health may result in improved BV treatment options.


Subject(s)
Bacteroidaceae Infections/microbiology , Gardnerella vaginalis , Gram-Positive Bacterial Infections/microbiology , Lactobacillus , Prevotella , Vaginosis, Bacterial/microbiology , Adolescent , Adult , Bacteroidaceae Infections/drug therapy , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/metabolism , Clindamycin/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Female , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/genetics , Gram-Positive Bacterial Infections/metabolism , Humans , Hydrogen Peroxide/metabolism , Lactic Acid/metabolism , Lactobacillus/genetics , Lactobacillus/isolation & purification , Lactobacillus/metabolism , Metronidazole/pharmacology , South Africa , Species Specificity , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/genetics
2.
Lupus ; 30(1): 80-85, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33115372

ABSTRACT

OBJECTIVE: The objective of this study was to determine and compare the distribution of fimA genotypes of Porphyromonas gingivalis (P. gingivalis) in systemic lupus erythematosus (SLE) patients compared with control subjects. MATERIAL AND METHODS: This observational cross-sectional study included 281 patients divided into two groups. Group 1 (G1) consisted of 162 control subjects (30-54 years old) and, group 2 (G2) included 119 subjects (10-69 years old) diagnosed with SLE. The presence of P. gingivalis was detected by PCR. DNA sequences in acquired plaque samples were identified using P. gingivalis specific sequences and further analyzed to differentiate their fimA genotypes using six sets of fimA genotype-specific primers. RESULTS: The presence of periodontitis (PE) was similar in both groups; similar measurements were obtained regarding clinical attachment loss (CAL) (G1 1.76 ± 0.72 vs. G2 1.95 ± 0.76). G2 showed the highest frequency of P. gingivalis (94.95%). FimA genotype II is considered the most virulent and, was the most frequently found in the SLE group (53.09%). CONCLUSION: The genotypes associated with PE are more frequently detected in SLE, which could make them susceptible to develop PE.


Subject(s)
Bacteroidaceae Infections/genetics , Genotype , Lupus Erythematosus, Systemic/genetics , Periodontitis/microbiology , Porphyromonas gingivalis/genetics , Adolescent , Adult , Aged , Bacteroidaceae Infections/microbiology , Child , Cross-Sectional Studies , Female , Humans , Lupus Erythematosus, Systemic/microbiology , Male , Middle Aged , Polymerase Chain Reaction , Porphyromonas gingivalis/isolation & purification , Young Adult
3.
J Neuroinflammation ; 17(1): 347, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33213462

ABSTRACT

BACKGROUND: The R1441G mutation in the leucine-rich repeat kinase 2 (LRRK2) gene results in late-onset Parkinson's disease (PD). Peripheral inflammation and gut microbiota are closely associated with the pathogenesis of PD. Chronic periodontitis is a common type of peripheral inflammation, which is associated with PD. Porphyromonas gingivalis (Pg), the most common bacterium causing chronic periodontitis, can cause alteration of gut microbiota. It is not known whether Pg-induced dysbiosis plays a role in the pathophysiology of PD. METHODS: In this study, live Pg were orally administrated to animals, three times a week for 1 month. Pg-derived lipopolysaccharide (LPS) was used to stimulate mononuclear cells in vitro. The effects of oral Pg administration on the gut and brain were evaluated through behaviors, morphology, and cytokine expression. RESULTS: Dopaminergic neurons in the substantia nigra were reduced, and activated microglial cells were increased in R1441G mice given oral Pg. In addition, an increase in mRNA expression of tumor necrosis factor (TNF-α) and interleukin-1ß (IL-1ß) as well as protein level of α-synuclein together with a decrease in zonula occludens-1 (Zo-1) was detected in the colon in Pg-treated R1441G mice. Furthermore, serum interleukin-17A (IL-17A) and brain IL-17 receptor A (IL-17RA) were increased in Pg-treated R1441G mice. CONCLUSIONS: These findings suggest that oral Pg-induced inflammation may play an important role in the pathophysiology of LRRK2-associated PD.


Subject(s)
Gastrointestinal Microbiome/physiology , Immunity/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/immunology , Microglia/immunology , Neurodegenerative Diseases/immunology , Porphyromonas gingivalis/immunology , Administration, Oral , Animals , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/immunology , Cells, Cultured , Dopaminergic Neurons/immunology , Dopaminergic Neurons/microbiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mice, Transgenic , Microglia/microbiology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/microbiology , Permeability , Substantia Nigra/immunology , Substantia Nigra/microbiology
4.
Crit Rev Microbiol ; 46(2): 213-236, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32267781

ABSTRACT

Porphyromonas gingivalis (P. gingivalis), a Gram-negative facultative anaerobe of the oral cavity, is associated with the onset of various adverse pregnancy outcomes. P. gingivalis is linked with the development of preeclampsia, preterm labour, spontaneous abortion, gestational diabetes, foetal growth restriction, and misconception. The unique virulence factors, surface adhesions, enzymes of P. gingivalis can directly injure and alter the morphology, microbiome the foetal and maternal tissues. P. gingivalis can even exaggerate the production of cytokines, free radicals and acute-phase proteins in the uterine compartment that increases the risk of myometrial contraction and onset of preterm labour. Although evidence confirms the presence of P. gingivalis in the amniotic fluid and placenta of women with poor pregnancy outcomes, the intricate molecular mechanisms by which P. gingivalis initiates various antenatal and postnatal maternal and foetal complications are not well explained in the literature. Therefore, the present review aims to comprehensively summarise and highlight the recent and unique molecular pathogenic mechanisms of P. gingivalis associated with adverse pregnancy outcomes.


Subject(s)
Bacteroidaceae Infections/physiopathology , Porphyromonas gingivalis/physiology , Pregnancy Complications/physiopathology , Pregnancy Outcome , Animals , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/microbiology , Cytokines/genetics , Cytokines/metabolism , Female , Humans , Mouth/microbiology , Porphyromonas gingivalis/genetics , Porphyromonas gingivalis/isolation & purification , Pregnancy , Pregnancy Complications/genetics , Pregnancy Complications/metabolism , Pregnancy Complications/microbiology
5.
J Immunol ; 201(5): 1491-1499, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30037847

ABSTRACT

A link between obesity and periodontitis has been suggested because of compromised immune response and chronic inflammation in obese patients. In this study, we evaluated the anti-inflammatory properties of Kavain, an extract from Piper methysticum, on Porphyromonas gingivalis-induced inflammation in adipocytes with special focus on peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) and related pathways. The 3T3-L1 mouse preadipocytes and primary adipocytes harvested from mouse adipose tissue were infected with P. gingivalis, and inflammation (TNF-α; adiponectin/adipokines), oxidative stress, and adipogenic marker (FAS, CEBPα, and PPAR-γ) expression were measured. Furthermore, effect of PGC-1α knockdown on Kavain action was evaluated. Results showed that P. gingivalis worsens adipocyte dysfunction through increase of TNF-α, IL-6, and iNOS and decrease of PGC-1α and adiponectin. Interestingly, although Kavain obliterated P. gingivalis-induced proinflammatory effects in wild-type cells, Kavain did not affect PGC-1α-deficient cells, strongly advocating for Kavain effects being mediated by PGC-1α. In vivo adipocytes challenged with i.p. injection of P. gingivalis alone or P. gingivalis and Kavain displayed the same phenotype as in vitro adipocytes. Altogether, our findings established anti-inflammatory and antioxidant effects of Kavain on adipocytes and emphasized protective action against P. gingivalis-induced adipogenesis. The use of compounds such as Kavain offer a portal to potential therapeutic approaches to counter chronic inflammation in obesity-related diseases.


Subject(s)
Adipocytes/immunology , Bacteroidaceae Infections/drug therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/immunology , Porphyromonas gingivalis/immunology , Pyrones/pharmacology , Signal Transduction/drug effects , 3T3-L1 Cells , Adipocytes/microbiology , Adipocytes/pathology , Animals , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/pathology , Cytokines/genetics , Cytokines/immunology , Gene Knockdown Techniques , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Porphyromonas gingivalis/pathogenicity , Signal Transduction/genetics , Signal Transduction/immunology
6.
Cell Microbiol ; 20(5): e12825, 2018 05.
Article in English | MEDLINE | ID: mdl-29359393

ABSTRACT

We have previously shown that a homologue of a conserved nucleoside-diphosphate-kinase (Ndk) family of multifunctional enzymes and secreted molecule in Porphyromonas gingivalis can modulate select host molecular pathways including downregulation of reactive-oxygen-species generation to promote bacterial survival in human gingival epithelial cells (GECs). In this study, we describe a novel kinase function for bacterial effector, P. gingivalis-Ndk, in abrogating epithelial cell death by phosphorylating heat-shock protein 27 (HSP27) in GECs. Infection by P. gingivalis was recently suggested to increase phosphorylation of HSP27 in cancer-epithelial cells; however, the mechanism and biological significance of antiapoptotic phospho-HSP27 during infection has never been characterised. Interestingly, using glutathione S-transferase-rNdk pull-down analysed by mass spectrometry, we identified HSP27 in GECs as a strong binder of P. gingivalis-Ndk and further verified using confocal microscopy and ELISA. Therefore, we hypothesised P. gingivalis-Ndk can phosphorylate HSP27 for inhibition of apoptosis in GECs. We further employed P. gingivalis-Ndk protein constructs and an isogenic P. gingivalis-ndk-deficient-mutant strain for functional examination. P. gingivalis-infected GECs displayed significantly increased phospho-HSP27 compared with ndk-deficient-strain during 24 hr infection. Phospho-HSP27 was significantly increased by transfection of GFP-tagged-Ndk into uninfected-GECs, and in vitro phosphorylation assays revealed direct phosphorylation of HSP27 at serines 78 and 82 by P. gingivalis-Ndk. Depletion of HSP27 via siRNA significantly reversed resistance against staurosporine-mediated-apoptosis during infection. Transfection of recombinant P. gingivalis-Ndk protein into GECs substantially decreased staurosporine-induced-apoptosis. Finally, ndk-deficient-mutant strain was unable to inhibit staurosporine-induced Cytochrome C release/Caspase-9 activation. Thus, we show for the first time the phosphorylation of HSP27 by a bacterial effector-P. gingivalis-Ndk-and a novel function of Ndks that is directly involved in inhibition of host cell apoptosis and the subsequent bacterial survival.


Subject(s)
Bacteroidaceae Infections/enzymology , HSP27 Heat-Shock Proteins/genetics , Nucleoside-Diphosphate Kinase/genetics , Porphyromonas gingivalis/genetics , Apoptosis/genetics , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/microbiology , Epithelial Cells/metabolism , Host-Pathogen Interactions/genetics , Humans , Mitochondria/enzymology , Mitochondria/genetics , Phosphorylation , Porphyromonas gingivalis/enzymology , Reactive Oxygen Species/chemistry , Signal Transduction
7.
Int J Med Sci ; 16(10): 1320-1327, 2019.
Article in English | MEDLINE | ID: mdl-31692996

ABSTRACT

Porphyromonas gingivalis is a pivotal periodontal pathogen, and the epithelial cells serve as the first physical barrier to defend the host from bacterial attack. Within this host-bacteria interaction, P. gingivalis can modify the host immune reaction and adjust the gene expression, which is associated with periodontitis pathogenesis and developing strategies. Herein, a meta-analysis was made to get the differential gene expression profiles in epithelial cells with or without P. gingivalis infection. The network-based meta-analysis program for gene expression profiling was used. Both the gene ontology analysis and the pathway enrichment analysis of the differentially expressed genes were conducted. Our results determined that 290 genes were consistently up-regulated in P. gingivalis infected epithelial cells. 229 gene ontology biological process terms of up-regulated genes were discovered, including "negative regulation of apoptotic process" and "positive regulation of cell proliferation/migration/angiogenesis". In addition to the well-known inflammatory signaling pathways, the pathway associated with a transcriptional misregulation in cancer has also been increased. Our findings indicated that P. gingivalis benefited from the survival of epithelial cells, and got its success as a colonizer in oral epithelium. The results also suggested that infection of P. gingivalis might contribute to oral cancer through chronic inflammation. Negative regulation of the apoptotic process and transcriptional misregulation in cancer pathway are important contributors to the cellular physiology changes during infection development, which have particular relevance to the pathogenesis and progressions of periodontitis, even to the occurrence of oral cancer.


Subject(s)
Bacteroidaceae Infections/immunology , Host-Pathogen Interactions/genetics , Mouth Neoplasms/pathology , Periodontitis/immunology , Porphyromonas gingivalis/immunology , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/pathology , Cell Survival/genetics , Cell Survival/immunology , Disease Progression , Epithelial Cells/immunology , Epithelial Cells/microbiology , Gene Expression Profiling , Gene Ontology , Gingiva/cytology , Gingiva/immunology , Gingiva/microbiology , Host-Pathogen Interactions/immunology , Humans , Mouth Mucosa/cytology , Mouth Mucosa/immunology , Mouth Mucosa/microbiology , Mouth Neoplasms/genetics , Mouth Neoplasms/immunology , Mouth Neoplasms/microbiology , Periodontitis/genetics , Periodontitis/microbiology , Periodontitis/pathology , Porphyromonas gingivalis/isolation & purification , Porphyromonas gingivalis/pathogenicity , Signal Transduction/genetics , Signal Transduction/immunology , Up-Regulation
8.
J Biol Chem ; 292(14): 5724-5735, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28196869

ABSTRACT

Skewing of the human oral microbiome causes dysbiosis and preponderance of bacteria such as Porphyromonas gingivalis, the main etiological agent of periodontitis. P. gingivalis secretes proteolytic gingipains (Kgp and RgpA/B) as zymogens inhibited by a pro-domain that is removed during extracellular activation. Unraveling the molecular mechanism of Kgp zymogenicity is essential to design inhibitors blocking its activity. Here, we found that the isolated 209-residue Kgp pro-domain is a boomerang-shaped all-ß protein similar to the RgpB pro-domain. Using composite structural information of Kgp and RgpB, we derived a plausible homology model and mechanism of Kgp-regulating zymogenicity. Accordingly, the pro-domain would laterally attach to the catalytic moiety in Kgp and block the active site through an exposed inhibitory loop. This loop features a lysine (Lys129) likely occupying the S1 specificity pocket and exerting latency. Lys129 mutation to glutamate or arginine led to misfolded protein that was degraded in vivo Mutation to alanine gave milder effects but still strongly diminished proteolytic activity, without affecting the subcellular location of the enzyme. Accordingly, the interactions of Lys129 within the S1 pocket are also essential for correct folding. Uniquely for gingipains, the isolated Kgp pro-domain dimerized through an interface, which partially overlapped with that between the catalytic moiety and the pro-domain within the zymogen, i.e. both complexes are mutually exclusive. Thus, pro-domain dimerization, together with partial rearrangement of the active site upon activation, explains the lack of inhibition of the pro-domain in trans. Our results reveal that the specific latency mechanism of Kgp differs from those of Rgps.


Subject(s)
Adhesins, Bacterial/chemistry , Cysteine Endopeptidases/chemistry , Enzyme Precursors/chemistry , Porphyromonas gingivalis/enzymology , Porphyromonas gingivalis/pathogenicity , Virulence Factors/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Bacteroidaceae Infections/enzymology , Bacteroidaceae Infections/genetics , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Gingipain Cysteine Endopeptidases , Gingivitis/enzymology , Gingivitis/genetics , Humans , Microbiota , Mouth/microbiology , Porphyromonas gingivalis/genetics , Protein Domains , Protein Multimerization , Structure-Activity Relationship , Virulence Factors/metabolism
9.
J Immunol ; 196(5): 2230-8, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26819203

ABSTRACT

IFN regulatory factors (IRFs) help to shape the immune response to pathogens by imparting signaling specificity to individual TLRs. We recently demonstrated that IRF6 provides specificity to TLR2 signaling in oral epithelial cells. TLR2 plays an important role in eliciting inflammation to Porphyromonas gingivalis, a keystone pathogen in periodontitis. Therefore, we investigated a role for IRF6 in mediating the inflammatory cytokine response of oral epithelial cells to P. gingivalis. IRF6 expression was strongly upregulated when human oral epithelial cells were challenged with P. gingivalis. Moreover, gene silencing and gene promoter experiments indicated that IRF6 acts downstream of IL-1R-associated kinase 1 to stimulate the expression of the IL-1 family cytokine IL-36γ in response to P. gingivalis. IRF6 and IL-1R-associated kinase 1 also regulated the stimulation of IL-36γ expression by a TLR2 agonist. IL-36γ was shown to elicit inflammatory responses by human monocyte-derived dendritic cells and macrophages, including the expression of the neutrophil chemokines IL-8 and CXCL1, as well as the Th17 chemokine CCL20. IL-36γ similarly stimulated their expression by human oral epithelial cells. Significantly, the Th17 cytokine IL-17 not only stimulated the expression of important regulators of neutrophil recruitment and survival by oral epithelial cells, but IL-17 also stimulated them to express IL-36γ. Thus, our findings suggest that IRF6 is likely to promote inflammation to P. gingivalis through its regulation of IL-36γ.


Subject(s)
Gene Expression Regulation , Interferon Regulatory Factors/metabolism , Interleukin-1/genetics , Mouth Mucosa/metabolism , Mouth Mucosa/virology , Porphyromonas gingivalis/immunology , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epithelial Cells , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-17/metabolism , Macrophages/immunology , Macrophages/metabolism , Models, Biological , Mouth Mucosa/immunology , Toll-Like Receptor 2/metabolism , Up-Regulation
10.
Anaerobe ; 54: 128-135, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30189320

ABSTRACT

Quorum sensing (QS) signaling regulates the motility, adhesion, and biofilm formation of bacteria, and at the same time activates immune response in eukaryotic organisms. We recently demonstrated that the QS molecule, dihydroxy-2, 3-pentanedione (DPD), and its analogs significantly inhibit estradiol-regulated virulence of Prevotella aurantiaca, one of the four species in the Prevotella intermedia group. Here, we examined the combined effects of estradiol and QS signaling on 1) cytokine response of human gingival keratinocytes (HMK) against whole cell extract (WCE) of P. intermedia, Prevotella nigrescens, and Prevotella pallens, and 2) biofilm formation of these three Prevotella species. All experiments were performed in the presence or absence of estradiol, and with different QS molecules: DPD and its analogs (ethyl-DPD, butyl-DPD, and isobutyl-DPD). Concentrations of interleukin (IL)-1ß, -6, and -8 were determined by the Luminex multiplex immunoassay, biofilm mass was quantitatively evaluated by measuring protein concentration via the Bradford method, and the microtopography of biofilms was assessed by scanning electron microscopy (SEM) imaging. Concentrations of IL-6 and IL-8 were elevated when HMK cells were incubated with estradiol and WCE of P. intermedia and P. nigrescens, but decreased when incubated with estradiol and WCE of P. pallens. Butyl-DPD neutralized the estradiol- and WCE-induced regulation of HMK interleukin expression and, at the same time, inhibited the biofilm formation of P. intermedia and P. nigrescens. SEM micrographs revealed a decrease in biofilm mass after application of butyl-DPD, which was most detectable among the P. intermedia ATCC 25611 and P. nigrescens ATCC 33563 and AHN 8293 strains. In conclusion, butyl-DPD analog is able to neutralize the WCE-induced epithelial cytokine response and, at the same time, to inhibit the biofilm formation of P. intermedia and P. nigrescens.


Subject(s)
Bacteroidaceae Infections/immunology , Epithelial Cells/immunology , Gingiva/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Prevotella/physiology , Quorum Sensing , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/microbiology , Biofilms , Epithelial Cells/microbiology , Gingiva/microbiology , Humans , Interleukin-1beta/genetics , Interleukin-6/genetics , Interleukin-8/genetics , Keratinocytes/immunology , Keratinocytes/microbiology , Prevotella/classification , Prevotella/genetics , Prevotella/pathogenicity , Prevotella intermedia/genetics , Prevotella intermedia/pathogenicity , Prevotella intermedia/physiology , Prevotella nigrescens/genetics , Prevotella nigrescens/pathogenicity , Prevotella nigrescens/physiology
11.
Acta Odontol Scand ; 76(7): 520-524, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29726309

ABSTRACT

OBJECTIVE: To determine and compare the distribution of Porphyromonas gingivalis fimA genotypes in patients affected by Rheumatoid arthritis (RA) and periodontitis (PE). MATERIALS AND METHODS: This study involved 394 subjects divided into four groups, RA, PE, RA and PE and healthy subjects. PE was diagnosed by using clinical attachment loss (CAL) and probing depth (PD) indexes. Presence of P. gingivalis and its genotypes was identified by polymerase chain reaction in subgingival biofilm. RESULTS: P. gingivalis was more frequent in patients with RA (82.69%), and fimA II genotype was the most frequent in all groups, especially in PE/RA (76.71%). There was statistical difference (p < .05) regarding the frequency of P. gingivalis genotypes such as fimA Ib, II and III. CONCLUSIONS: Distribution of P. gingivalis fimA II genotypes was different among groups, it could play a critical role in the presence of PE in RA patients.


Subject(s)
Arthritis, Rheumatoid/genetics , Bacteroidaceae Infections/genetics , Genotype , Periodontitis/microbiology , Porphyromonas gingivalis/genetics , Adult , Arthritis, Rheumatoid/microbiology , Bacteroidaceae Infections/microbiology , Female , Humans , Male , Middle Aged , Polymerase Chain Reaction , Porphyromonas gingivalis/isolation & purification
12.
Infect Immun ; 85(3)2017 03.
Article in English | MEDLINE | ID: mdl-28069815

ABSTRACT

MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-α] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-α secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-α secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P. gingivalis infection.


Subject(s)
Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/microbiology , Gene Expression Regulation , Macrophages/metabolism , Macrophages/microbiology , MicroRNAs/genetics , Porphyromonas gingivalis/physiology , Animals , Bacteroidaceae Infections/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate , Interleukin-10/biosynthesis , Macrophages/immunology , Mice , RNA Interference , RNA, Messenger/genetics , Tumor Necrosis Factor-alpha/biosynthesis
13.
J Biol Chem ; 290(8): 5190-5202, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25564612

ABSTRACT

Porphyromonas gingivalis is a major pathogen of periodontal diseases, including periodontitis. We have investigated the effect of P. gingivalis infection on the PI3K/Akt (protein kinase B) signaling pathway in gingival epithelial cells. Here, we found that live P. gingivalis, but not heat-killed P. gingivalis, reduced Akt phosphorylation at both Thr-308 and Ser-473, which implies a decrease in Akt activity. Actually, PI3K, which is upstream of Akt, was also inactivated by P. gingivalis. Furthermore, glycogen synthase kinase 3α/ß, mammalian target of rapamycin, and Bad, which are downstream proteins in the PI3K/Akt cascade, were also dephosphorylated, a phenomenon consistent with Akt inactivation by P. gingivalis. However, these events did not require direct interaction between bacteria and host cells and were independent of P. gingivalis invasion into the cells. The use of gingipain-specific inhibitors and a gingipain-deficient P. gingivalis mutant KDP136 revealed that the gingipains and their protease activities were essential for the inactivation of PI3K and Akt. The associations between the PI3K regulatory subunit p85α and membrane proteins were disrupted by wild-type P. gingivalis. Moreover, PDK1 translocation to the plasma membrane was reduced by wild-type P. gingivalis, but not KDP136, indicating little production of phosphatidylinositol 3,4,5-triphosphate by PI3K. Therefore, it is likely that PI3K failed to transmit homeostatic extracellular stimuli to intracellular signaling pathways by gingipains. Taken together, our findings indicate that P. gingivalis attenuates the PI3K/Akt signaling pathway via the proteolytic effects of gingipains, resulting in the dysregulation of PI3K/Akt-dependent cellular functions and the destruction of epithelial barriers.


Subject(s)
Adhesins, Bacterial/metabolism , Cysteine Endopeptidases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Porphyromonas gingivalis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Adhesins, Bacterial/genetics , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/metabolism , Cell Line , Cysteine Endopeptidases/genetics , Gingipain Cysteine Endopeptidases , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Mutation , Periodontitis/genetics , Periodontitis/metabolism , Phosphatidylinositol 3-Kinases/genetics , Porphyromonas gingivalis/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism
14.
Genome Res ; 23(5): 867-77, 2013 May.
Article in English | MEDLINE | ID: mdl-23564253

ABSTRACT

Although biofilms have been shown to be reservoirs of pathogens, our knowledge of the microbial diversity in biofilms within critical areas, such as health care facilities, is limited. Available methods for pathogen identification and strain typing have some inherent restrictions. In particular, culturing will yield only a fraction of the species present, PCR of virulence or marker genes is mainly focused on a handful of known species, and shotgun metagenomics is limited in the ability to detect strain variations. In this study, we present a single-cell genome sequencing approach to address these limitations and demonstrate it by specifically targeting bacterial cells within a complex biofilm from a hospital bathroom sink drain. A newly developed, automated platform was used to generate genomic DNA by the multiple displacement amplification (MDA) technique from hundreds of single cells in parallel. MDA reactions were screened and classified by 16S rRNA gene PCR sequence, which revealed a broad range of bacteria covering 25 different genera representing environmental species, human commensals, and opportunistic human pathogens. Here we focus on the recovery of a nearly complete genome representing a novel strain of the periodontal pathogen Porphyromonas gingivalis (P. gingivalis JCVI SC001) using the single-cell assembly tool SPAdes. Single-cell genomics is becoming an accepted method to capture novel genomes, primarily in the marine and soil environments. Here we show for the first time that it also enables comparative genomic analysis of strain variation in a pathogen captured from complex biofilm samples in a healthcare facility.


Subject(s)
Biofilms , High-Throughput Nucleotide Sequencing , Porphyromonas gingivalis/genetics , Single-Cell Analysis , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/microbiology , Cross Infection/genetics , Cross Infection/microbiology , Genome, Bacterial , Humans , Porphyromonas gingivalis/pathogenicity
15.
PLoS Pathog ; 10(7): e1004215, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25010102

ABSTRACT

Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS) structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4) agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE(-/-) mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE(-/-) mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune detection at TLR4 facilitating chronic inflammation in the vasculature. These studies support the emerging concept that pathogen-mediated chronic inflammatory disorders result from specific pathogen-mediated evasion strategies resulting in low-grade chronic inflammation.


Subject(s)
Bacteroidaceae Infections/immunology , Lipid A/immunology , Porphyromonas gingivalis/immunology , Vasculitis/immunology , Animals , Apolipoproteins E/genetics , Apolipoproteins E/immunology , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/microbiology , Atherosclerosis/pathology , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/pathology , Disease Models, Animal , HEK293 Cells , Humans , Macrophages/immunology , Macrophages/microbiology , Macrophages/pathology , Mice , Osteoporosis/genetics , Osteoporosis/immunology , Osteoporosis/microbiology , Osteoporosis/pathology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Vasculitis/genetics , Vasculitis/microbiology , Vasculitis/pathology
16.
J Immunol ; 192(12): 6020-7, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24808362

ABSTRACT

Chronic periodontitis is induced by a dysbiotic microbiota and leads to inflammatory destruction of tooth-supporting connective tissue and bone. The third component of complement, C3, is a point of convergence of distinct complement activation mechanisms, but its involvement in periodontitis was not previously addressed. We investigated this question using two animal species models, namely, C3-deficient or wild-type mice and nonhuman primates (NHPs) locally treated with a potent C3 inhibitor (the compstatin analog Cp40) or an inactive peptide control. In mice, C3 was required for maximal periodontal inflammation and bone loss, and for the sustenance of the dysbiotic microbiota. The effect of C3 on the microbiota was therefore different from that reported for the C5a receptor, which is required for the initial induction of dysbiosis. C3-dependent bone loss was demonstrated in distinct models, including Porphyromonas gingivalis-induced periodontitis, ligature-induced periodontitis, and aging-associated periodontitis. Importantly, local treatment of NHPs with Cp40 inhibited ligature-induced periodontal inflammation and bone loss, which correlated with lower gingival crevicular fluid levels of proinflammatory mediators (e.g., IL-17 and RANKL) and decreased osteoclastogenesis in bone biopsy specimens, as compared with control treatment. To our knowledge, this is the first time, for any disease, that complement inhibition in NHPs was shown to inhibit inflammatory processes that lead to osteoclastogenesis and bone loss. These data strongly support the feasibility of C3-targeted intervention for the treatment of human periodontitis.


Subject(s)
Bacteroidaceae Infections , Bone Resorption , Complement C3 , Periodontitis , Porphyromonas gingivalis/immunology , Pyridones/pharmacology , Animals , Bacteroidaceae Infections/drug therapy , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/pathology , Bone Resorption/drug therapy , Bone Resorption/genetics , Bone Resorption/immunology , Bone Resorption/pathology , Complement C3/antagonists & inhibitors , Complement C3/genetics , Complement C3/immunology , Disease Models, Animal , Female , Humans , Inflammation Mediators/immunology , Macaca fascicularis , Male , Mice , Osteoclasts/immunology , Osteoclasts/pathology , Peptides, Cyclic/pharmacology , Periodontitis/drug therapy , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/pathology
17.
Infect Immun ; 83(11): 4256-65, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26283334

ABSTRACT

Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease.


Subject(s)
Adhesins, Bacterial/metabolism , Angiopoietin-1/genetics , Angiopoietin-2/genetics , Aorta/cytology , Bacteroidaceae Infections/genetics , Cysteine Endopeptidases/metabolism , Myocytes, Smooth Muscle/metabolism , Periodontitis/microbiology , Porphyromonas gingivalis/enzymology , Adhesins, Bacterial/genetics , Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Aorta/metabolism , Aorta/microbiology , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/microbiology , Cells, Cultured , Cysteine Endopeptidases/genetics , Gingipain Cysteine Endopeptidases , Humans , Myocytes, Smooth Muscle/microbiology , Periodontitis/genetics , Periodontitis/metabolism , Porphyromonas gingivalis/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
18.
Infect Immun ; 83(8): 3195-203, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26034209

ABSTRACT

Porphyromonas gingivalis is an established pathogen in periodontal disease and an emerging pathogen in serious systemic conditions, including some forms of cancer. We investigated the effect of P. gingivalis on ß-catenin signaling, a major pathway in the control of cell proliferation and tumorigenesis. Infection of gingival epithelial cells with P. gingivalis did not influence the phosphorylation status of ß-catenin but resulted in proteolytic processing. The use of mutants deficient in gingipain production, along with gingipain-specific inhibitors, revealed that gingipain proteolytic activity was required for ß-catenin processing. The ß-catenin destruction complex components Axin1, adenomatous polyposis coli (APC), and GSK3ß were also proteolytically processed by P. gingivalis gingipains. Cell fractionation and Western blotting demonstrated that ß-catenin fragments were translocated to the nucleus. The accumulation of ß-catenin in the nucleus following P. gingivalis infection was confirmed by immunofluorescence microscopy. A luciferase reporter assay showed that P. gingivalis increased the activity of the ß-catenin-dependent TCF/LEF promoter. P. gingivalis did not increase Wnt3a mRNA levels, a finding consistent with P. gingivalis-induced proteolytic processing causing the increase in TCF/LEF promoter activity. Thus, our data indicate that P. gingivalis can induce the noncanonical activation of ß-catenin and disassociation of the ß-catenin destruction complex by gingipain-dependent proteolytic processing. ß-Catenin activation in epithelial cells by P. gingivalis may contribute to a proliferative phenotype.


Subject(s)
Adhesins, Bacterial/metabolism , Bacteroidaceae Infections/metabolism , Cysteine Endopeptidases/metabolism , Porphyromonas gingivalis/enzymology , Adhesins, Bacterial/genetics , Bacteroidaceae Infections/enzymology , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/microbiology , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cysteine Endopeptidases/genetics , Epithelial Cells/enzymology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gingipain Cysteine Endopeptidases , Gingiva/enzymology , Gingiva/metabolism , Gingiva/microbiology , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Porphyromonas gingivalis/genetics , Protein Processing, Post-Translational , Protein Transport , beta Catenin/metabolism
19.
BMC Microbiol ; 15: 111, 2015 May 24.
Article in English | MEDLINE | ID: mdl-26001932

ABSTRACT

BACKGROUND: The development of chronic periodontitis was due to not only periodontal pathogens, but also the interaction between periodontal pathogens and host. The aim of this study is to investigate the alterations in gene expression in Porphyromonas gingivalis (P.gingivalis) W83 after inoculation in rat oral cavity. RESULTS: P.gingivalis W83 inoculation in rat oral cavity caused inflammatory responses in gingival tissues and destroyed host alveolar bone. Microarray analysis revealed that 42 genes were upregulated, and 22 genes were downregulated in the detected 1786 genes in the inoculated P.gingivalis W83. Real-time quantitative PCR detection confirmed the expression alterations in some selected genes. Products of these upregulated and downregulated genes are mainly related to transposon functions, cell transmembrane transportation, protein and nucleic acid metabolism, energy metabolism, cell division and bacterial pathogenicity. CONCLUSIONS: P.gingivalis W83 has a pathogenic effect on host oral cavity. Meanwhile, inflammatory oral environment alters P.gingivalis W83 gene expression profile. These changes in gene expression may limit the proliferation and weaken the pathogenicity of P.gingivalis W83, and favor themselves to adapt local environment for survival.


Subject(s)
Bacterial Proteins/genetics , Bacteroidaceae Infections/microbiology , Chronic Periodontitis/microbiology , Mouth/microbiology , Porphyromonas gingivalis/genetics , Animals , Bacteroidaceae Infections/genetics , Chronic Periodontitis/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Oligonucleotide Array Sequence Analysis , Rats , Specific Pathogen-Free Organisms
20.
Anaerobe ; 35(Pt A): 3-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25434960

ABSTRACT

Dental plaque is a multispecies biofilm in the oral cavity that significantly influences oral health. The presence of the oral anaerobic pathogen Porphyromonas gingivalis is an important determinant in the development of periodontitis. Direct and indirect interactions between P. gingivalis and the host play a major role in disease development. Transcriptome analysis recently revealed that P. gingivalis gene-expression is regulated by LuxS in both an AI-2-dependent and an AI-2 independent manner. However, little is known about the role of LuxS-signaling in P. gingivalis-host interactions. Here, we investigated the effect of a luxS mutation on the ability of P. gingivalis to induce an inflammatory response in human oral cells in vitro. Primary periodontal ligament (PDL) fibroblasts were challenged with P. gingivalis ΔluxS or the wild-type parental strain and gene-expression of pro-inflammatory mediators IL-1ß, IL-6 and MCP-1 was determined by real-time PCR. The ability of P. gingivalis ΔluxS to induce an inflammatory response was severely impaired in PDL-fibroblasts. This phenotype could be restored by providing of LuxS in trans, but not by addition of the AI-2 precursor DPD. A similar phenomenon was observed in a previous transcriptome study showing that expression of PGN_0482 was reduced in the luxS mutant independently of AI-2. We therefore also analyzed the effect of a mutation in PGN_0482, which encodes an immuno-reactive, putative outer-membrane protein. Similar to P. gingivalis ΔluxS, the P. gingivalis Δ0482 mutant had an impaired ability to induce an inflammatory response in PDL fibroblasts. LuxS thus appears to influence the pro-inflammatory responses of host cells to P. gingivalis, likely through regulation of PGN_0482.


Subject(s)
Bacterial Proteins/metabolism , Bacteroidaceae Infections/microbiology , Carbon-Sulfur Lyases/metabolism , Gingivitis/microbiology , Porphyromonas gingivalis/metabolism , Adolescent , Adult , Bacterial Proteins/genetics , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/immunology , Carbon-Sulfur Lyases/genetics , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Female , Fibroblasts/immunology , Fibroblasts/microbiology , Gene Expression Regulation, Bacterial , Gingivitis/genetics , Gingivitis/immunology , Host-Pathogen Interactions , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Male , Porphyromonas gingivalis/genetics , Porphyromonas gingivalis/immunology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL