Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.770
Filter
Add more filters

Publication year range
1.
J Am Chem Soc ; 146(30): 20845-20856, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39041457

ABSTRACT

We recently reported on small-molecule inhibitors of the GroES/GroEL chaperone system as potential antibiotics against Escherichia coli and the ESKAPE pathogens but were unable to establish GroES/GroEL as the cellular target, leading to cell death. In this study, using two of our most potent bis-sulfonamido-2-phenylbenzoxazoles (PBZs), we established the binding site of the PBZ molecules using cryo-EM and found that GroEL was the cellular target responsible for the mode of action. Cryo-EM revealed that PBZ1587 binds at the GroEL ring-ring interface (RRI). A cellular reporter assay confirmed that PBZ1587 engaged GroEL in cells, but cellular rescue experiments showed potential off-target effects. This prompted us to explore a closely related analogue, PBZ1038, which is also bound to the RRI. Biochemical characterization showed potent inhibition of Gram-negative chaperonins but much lower potency of chaperonin from a Gram-positive organism, Enterococcus faecium. A cellular reporter assay showed that PBZ1038 also engaged GroEL in cells and that the cytotoxic phenotype could be rescued by a chromosomal copy of E. faecium GroEL/GroES or by expressing a recalcitrant RRI mutant. These data argue that PBZ1038's antimicrobial action is exerted through inhibition of GroES/GroEL, validating this chaperone system as an antibiotic target.


Subject(s)
Anti-Bacterial Agents , Chaperonin 10 , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Chaperonin 10/metabolism , Chaperonin 10/antagonists & inhibitors , Chaperonin 10/chemistry , Escherichia coli/drug effects , Chaperonin 60/metabolism , Chaperonin 60/antagonists & inhibitors , Chaperonin 60/chemistry , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Benzoxazoles/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/chemistry
2.
Cancer Sci ; 115(3): 937-953, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38186218

ABSTRACT

L-type amino acid transporter 1 (LAT1, SLC7A5) is an amino acid transporter expressed in various carcinomas, and it is postulated to play an important role in the proliferation of cancer cells through the uptake of essential amino acids. Cabazitaxel is a widely used anticancer drug for treating castration-resistant prostate cancer (CRPC); however, its effectiveness is lost when cancer cells acquire drug resistance. In this study, we investigated the expression of LAT1 and the effects of a LAT1-specific inhibitor, JPH203, in cabazitaxel-resistant prostate cancer cells. LAT1 was more highly expressed in the cabazitaxel-resistant strains than in the normal strains. Administration of JPH203 inhibited the growth, migration, and invasive ability of cabazitaxel-resistant strains in vitro. Phosphoproteomics using liquid chromatography-mass spectrometry to comprehensively investigate changes in phosphorylation due to JPH203 administration revealed that cell cycle-related pathways were affected by JPH203, and that JPH203 significantly reduced the kinase activity of cyclin-dependent kinases 1 and 2. Moreover, JPH203 inhibited the proliferation of cabazitaxel-resistant cells in vivo. Taken together, the present study results suggest that LAT1 might be a valuable therapeutic target in cabazitaxel-resistant prostate cancer.


Subject(s)
Benzoxazoles , Large Neutral Amino Acid-Transporter 1 , Prostatic Neoplasms , Taxoids , Tyrosine/analogs & derivatives , Male , Humans , Phosphorylation , Large Neutral Amino Acid-Transporter 1/metabolism , Prostatic Neoplasms/drug therapy , Cyclin-Dependent Kinases/metabolism , Cell Line, Tumor
3.
Cancer Sci ; 115(7): 2461-2472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655663

ABSTRACT

L-type amino acid transporter 1 (LAT1) is specifically expressed in many malignancies, contributes to the transport of essential amino acids, such as leucine, and regulates the mammalian target of rapamycin (mTOR) signaling pathway. We investigated the expression profile and functional role of LAT1 in prostate cancer using JPH203, a specific inhibitor of LAT1. LAT1 was highly expressed in castration-resistant prostate cancer (CRPC) cells, including C4-2 and PC-3 cells, but its expression level was low in castration-sensitive LNCaP cells. JPH203 significantly inhibited [14C] leucine uptake in CRPC cells but had no effect in LNCaP cells. JPH203 inhibited the proliferation, migration, and invasion of CRPC cells but not of LNCaP cells. In C4-2 cells, Cluster of differentiation (CD) 24 was identified by RNA sequencing as a novel downstream target of JPH203. CD24 was downregulated in a JPH203 concentration-dependent manner and suppressed activation of the Wnt/ß-catenin signaling pathway. Furthermore, an in vivo study showed that JPH203 inhibited the proliferation of C4-2 cells in a castration environment. The results of this study indicate that JPH203 may exert its antitumor effect in CRPC cells via mTOR and CD24.


Subject(s)
CD24 Antigen , Cell Movement , Cell Proliferation , Large Neutral Amino Acid-Transporter 1 , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Large Neutral Amino Acid-Transporter 1/metabolism , Cell Line, Tumor , Animals , Cell Proliferation/drug effects , CD24 Antigen/metabolism , Mice , Cell Movement/drug effects , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Benzoxazoles/pharmacology , Leucine/pharmacology , Leucine/analogs & derivatives , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Tyrosine/analogs & derivatives
4.
Chembiochem ; 25(1): e202300609, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37877236

ABSTRACT

We report an efficient and eco-friendly method for the Vitreoscilla hemoglobin (VHb)-catalyzed synthesis of benzoxazoles in water at room temperature. tert-Butyl hydroperoxide and 2,2,6,6-tetramethyl-1-piperidinyloxy were used as oxidant and radical scavenger, respectively. A total of 27 functionally diverse benzoxazoles were prepared in moderate to high yields (62 %-94 %) by the annulation reaction of phenols with amines in the presence of VHb in 1 h. Thus, this method is highly viable for practical applications. This work broadens the application of hemoglobin to organic synthesis.


Subject(s)
Benzoxazoles , Water , Truncated Hemoglobins , Bacterial Proteins
5.
Am J Kidney Dis ; 84(2): 224-231, 2024 08.
Article in English | MEDLINE | ID: mdl-38484868

ABSTRACT

Hereditary transthyretin amyloidosis (ATTRv) is a rare, progressive, and life-threatening disease caused by misfolded transthyretin (TTR) proteins that aggregate as abnormal amyloid fibrils and accumulate throughout the body. The kidney is one of the main organs affected in amyloid light chain (AL) amyloidosis and ATTRv amyloidosis. The most common clinical presentation is proteinuria, which consists mainly of albumin; this is the first step in the natural history of ATTRv nephropathy. Not all TTR mutations are equal in terms of ATTRv kidney involvement. Kidney involvement in ATTRv itself is difficult to define, given the numerous associated confounding factors. There are several treatments available to treat ATTRv, including orthotopic liver transplant (OLT), which is the classic treatment for ATTRv. However, we should be careful regarding the use of calcineurin inhibitors in the setting of OLT because these can be nephrotoxic. New treatments for amyloidosis may have an impact on kidney function, including drugs that target specific pathways involved in the disease. Tafamidis and diflunisal, which are TTR stabilizers, patisiran (RNA interference agent), and inotersen (antisense oligonucleotide inhibitor) have been shown to reduce TTR amyloid. Tafamidis and patisiran are medications that have reduced the progression of kidney disease in amyloidosis, but inotersen and diflunisal may damage kidney function.


Subject(s)
Amyloid Neuropathies, Familial , Benzoxazoles , Humans , Amyloid Neuropathies, Familial/therapy , Amyloid Neuropathies, Familial/complications , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/diagnosis , Benzoxazoles/therapeutic use , Liver Transplantation , Diflunisal/therapeutic use , Prealbumin/genetics , Prealbumin/metabolism , Oligonucleotides/therapeutic use , RNA, Small Interfering
6.
Cardiovasc Diabetol ; 23(1): 279, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39080716

ABSTRACT

The neutral result of the PROMINENT trial has led to questions about the future for pemafibrate. This commentary discusses possible reasons for the lack of benefit observed in the trial. There were, however, indicators suggesting therapeutic potential in microvascular ischaemic complications associated with peripheral artery disease, with subsequent analysis showing reduction in the incidence of lower extremity ischaemic ulceration or gangrene. Reassurance about the safety of pemafibrate, together with emerging data from PROMINENT and experimental studies, also suggest benefit with pemafibrate in non-alcoholic fatty liver disease (alternatively referred to as metabolic dysfunction-associated steatotic liver disease) and microangiopathy associated with diabetes, which merit further study.


Subject(s)
Benzoxazoles , Butyrates , Animals , Humans , Benzoxazoles/therapeutic use , Benzoxazoles/adverse effects , Butyrates/therapeutic use , Butyrates/adverse effects , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/adverse effects , Ischemia/drug therapy , Ischemia/physiopathology , Non-alcoholic Fatty Liver Disease/drug therapy , Peripheral Arterial Disease/drug therapy , Risk Factors , Treatment Outcome
7.
Eur J Clin Invest ; 54(9): e14227, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38662591

ABSTRACT

BACKGROUND: Numerous epidemiological studies have shown that hypertriglyceridemia is a significant risk factor for cardiovascular diseases (CVD). However, large clinical studies on triglyceride-lowering therapy have yielded inconsistent results. In the current review, we reassess the importance of triglyceride-lowering therapy in preventing CVD based on previous literature and the recently published findings of the PROMINENT trial. METHODS: This narrative review is based on literature and public documents published up to November 2023. RESULTS: Meta-analyses of trials on peroxisome proliferator-activated receptor α agonists and triglyceride-lowering therapy, including the PROMINENT trial, have indicated that triglyceride-lowering therapy can reduce CVD events. Mendelian randomization studies have also indicated that triglyceride is indeed a true risk factor for coronary artery disease, leaving no doubt about its relationship to CVD. Meanwhile, the negative results from the PROMINENT trial were likely due to the insufficient triglyceride-lowering effect, slight increases in low-density lipoprotein cholesterol and apolipoprotein B, and the inclusion of mostly high-intensity statin users as target patients. It is unlikely that adverse events counteracted the effectiveness of pemafibrate on outcomes. Additionally, pemafibrate has shown positive effects on non-alcoholic fatty liver disease and peripheral artery disease. CONCLUSION: Although the PROMINENT trial did not demonstrate the significance of pemafibrate as a triglyceride-lowering therapy in a specific population, it does not necessarily negate the potential benefits of treating hypertriglyceridemia in reducing CVD events. It is necessary to explore appropriate populations that could benefit from this therapy, utilize data from the PROMINENT trial and other databases, and validate findings in real-world settings.


Subject(s)
Cardiovascular Diseases , Hypertriglyceridemia , Humans , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/complications , Cardiovascular Diseases/prevention & control , Hypolipidemic Agents/therapeutic use , Triglycerides/blood , Triglycerides/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Benzoxazoles/therapeutic use , Non-alcoholic Fatty Liver Disease/complications , Coronary Artery Disease/prevention & control , Cholesterol, LDL , Randomized Controlled Trials as Topic , Butyrates
8.
Curr Opin Cardiol ; 39(4): 286-291, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38482842

ABSTRACT

PURPOSE OF REVIEW: Although high triglycerides are consistently associated with elevated risk of cardiovascular disease (CVD), therapies that reduce triglyceride levels have inconsistently translated into reduced CVD risk. RECENT FINDINGS: To date, three clinical trials have tested triglyceride-lowering therapies in patients with hypertriglyceridemia (HTG) and elevated risk of incident/recurrent CVD. In REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial), assignment to IPE, a highly purified eicosapentanoic acid (EPA), resulted in a 25% reduction in nonfatal myocardial infarction), nonfatal stroke, cardiovascular death, coronary revascularization and hospitalization for unstable angina. By contrast, the combination of EPA and docosahexanoic acid (DHA) carboxylic fatty acids used in the STRENGTH trial (Statin Residual Risk With Epanova in High Cardiovascular Risk Patients With Hypertriglyceridemia) failed to reduce CVD risk. Most recently, PROMINENT (Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes) also failed to demonstrate reduction in CVD events despite use of a potent triglyceride-lowering, fibric-acid derivative. However, improvement in HTG-associated metabolic complications (e.g. nonalcoholic fatty liver disease) was observed with pemafibrate as well as with another potent triglyceride-lowering therapy (i.e. pegozafermin). Moreover, trials are underway evaluating whether the most fatal metabolic complication of HTG, pancreatitis, may be reduced with highly potent triglyceride-lowering therapies (e.g. apolipoprotein C3 inhibitors). SUMMARY: Taken together, HTG is associated with increased risk of CVD and attendant adverse metabolic sequalae. To this end, a potentially promising and evidence-based landscape is emerging for treating a clinical phenotype that in the past has been insufficiently addressed.


Subject(s)
Benzoxazoles , Butyrates , Cardiovascular Diseases , Hypertriglyceridemia , Hypolipidemic Agents , Humans , Cardiovascular Diseases/prevention & control , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/complications , Hypolipidemic Agents/therapeutic use , Benzoxazoles/therapeutic use , Butyrates/therapeutic use , Butyrates/pharmacology , Triglycerides/blood , Metabolic Diseases/prevention & control
9.
Chemistry ; 30(38): e202400834, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38716700

ABSTRACT

Ruthenium(II) polypyridyl complexes continue to raise increasing interest for the encouraging results in several biomedical areas. Considering their vast chemical-physical repertoire, in particular the possibility to switch from the sensitization of reactive oxygen species (ROS) to ROS-scavenging abilities by tuning the nature of their ligands, it is therefore surprising that their potential as antioxidants has not been largely investigated so far. Herein, we explored the antioxidant behaviour of the novel ruthenium compound [Ru(dbpy)(2,3-DAN)Cl]PF6 (Ru1), featuring a benzoxazole derivative (dpby=2,6-bis(4-methyl-2-benzoxazolyl)pyridine) and the non-innocent 2,3-diamminonaftalene (2,3-DAN) ligand, along with the reference tpy-containing analogue [Ru(tpy)(2,3-DAN)Cl]PF6 (Ru2) (tpy=2,2':6',2''-terpyridine). Following the synthesis and the electrochemical characterization, chemical antioxidant assays highlighted the beneficial role of dpby for the ROS-scavenging properties of Ru1. These data have been corroborated by the highest protective effect of Ru1 against the oxidative stress induced in SH-SY5Y human neuroblastoma, which exerts pro-survival and anti-inflammatory actions. The results herein reported highlight the potential of Ru1 as pharmacological tool in neurodegenerative diseases and specially prove that the antioxidant properties of such compounds are likely the result of a non-trivial synergetic action involving the bioactive ligands in their chemical architectures.


Subject(s)
Antioxidants , Benzoxazoles , Coordination Complexes , Pyridines , Reactive Oxygen Species , Ruthenium , Humans , Ruthenium/chemistry , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Ligands , Antioxidants/chemistry , Antioxidants/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Reactive Oxygen Species/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Oxidative Stress/drug effects , Cell Line, Tumor , Cell Survival/drug effects
10.
Curr Opin Cardiol ; 39(5): 407-416, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38652263

ABSTRACT

PURPOSE OF REVIEW: Tafamidis is currently the only approved disease-modifying treatment for ATTR-CM. However, there have been important developments in the treatment of ATTR-CM, as the results of two phase 3 trials were published and several other trials are in their final stages. In this review, we summarize current and future therapies for ATTR-CM. RECENT FINDINGS: Recently, acoramidis, a TTR stabilizer has been proven to be effective in reducing mortality and morbidity compared to placebo in the ATTRibute-CM trial. Additionally, patisiran, an RNA silencer, preserved functional capacity and quality of life compared to placebo in the APOLLO-B trial. However, the FDA declined to approve patisiran for ATTR-CM. The results of phase 1 trial of ALXN2220, an antiamyloid antibody raise hope for reversal of myocardial damage by amyloid depletion. Phase 3 trials evaluating the efficacy of different RNA silencers, gene editing with CRISPR-Cas9, and other anti-amyloid antibodies are ongoing. SUMMARY: Therapies targeting different mechanism in the pathophysiology of ATTR-CM provide new alternatives for treating patients with ATTR-CM. Future research should focus on comparing their effectiveness, the potential of combined treatment with agents from different classes and on identifying the patients who will benefit most from each class of medication.


Subject(s)
Amyloid Neuropathies, Familial , Cardiomyopathies , Humans , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/therapy , Cardiomyopathies/drug therapy , Cardiomyopathies/therapy , Benzoxazoles/therapeutic use , RNA, Small Interfering
11.
Exp Eye Res ; 244: 109943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797259

ABSTRACT

Orexin A and B (OXA and OXB) and their receptors are expressed in the majority of retinal neurons in humans, rats, and mice. Orexins modulate signal transmission between the different layers of the retina. The suprachiasmatic nucleus (SCN) and the retina are central and peripheral components of the body's biological clocks; respectively. The SCN receives photic information from the retina through the retinohypothalamic tract (RHT) to synchronize bodily functions with environmental changes. In present study, we aimed to investigate the impact of inhibiting retinal orexin receptors on the expression of retinal Bmal1 and c-fos, as well as hypothalamic c-fos, Bmal1, Vip, and PACAP at four different time-points (Zeitgeber time; ZT 3, 6, 11, and ZT-0). The intravitreal injection (IVI) of OX1R antagonist (SB-334867) and OX2R antagonist (JNJ-10397049) significantly up-regulated c-fos expression in the retina. Additionally, compared to the control group, the combined injection of SB-334867 and JNJ-10397049 showed a greater increase in retinal expression of this gene. Moreover, the expression of hypothalamic Vip and PACAP was significantly up-regulated in both the SB-334867 and JNJ-10397049 groups. In contrast, the expression of Bmal1 was down-regulated. Furthermore, the expression of hypothalamic c-fos was down-regulated in all groups treated with SB-334867 and JNJ-10397049. Additionally, the study demonstrated that blocking these receptors in the retina resulted in alterations in circadian rhythm parameters such as mesor, amplitude, and acrophase. Finally, it affected the phase of gene expression rhythms in both the retina and hypothalamus, as identified through cosinor analysis and the zero-amplitude test. This study represents the initial exploration of how retinal orexin receptors influence expression of rhythmic genes in the retina and hypothalamus. These findings could provide new insights into how the retina regulates the circadian rhythm in both regions and illuminate the role of the orexinergic system expression within the retina.


Subject(s)
Hypothalamus , Orexin Receptors , Pituitary Adenylate Cyclase-Activating Polypeptide , Proto-Oncogene Proteins c-fos , Retina , Vasoactive Intestinal Peptide , Animals , Male , Rats , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Benzoxazoles/pharmacology , Circadian Rhythm/physiology , Dioxanes , Gene Expression Regulation , Hypothalamus/metabolism , Isoquinolines , Naphthyridines , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Orexin Receptors/genetics , Phenylurea Compounds , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Pyridines , Rats, Wistar , Retina/metabolism , Suprachiasmatic Nucleus/metabolism , Urea/analogs & derivatives , Urea/pharmacology , Vasoactive Intestinal Peptide/metabolism
12.
Eur J Neurol ; 31(9): e16384, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988097

ABSTRACT

BACKGROUND AND PURPOSE: Hereditary transthyretin-mediated amyloidosis with polyneuropathy (ATTRv-PN [v for variant]) is a rare, progressive disease associated with multisystemic impairments. This study assessed the real-world outcomes of patients with ATTRv-PN who switched from tafamidis to patisiran, as well as the reasons for the treatment switch. METHODS: This was a retrospective chart review study at a large expert referral center. Data were extracted from medical charts of patients with ATTRv-PN who switched from tafamidis to patisiran on or before 30 August 2019. Data elements included demographic and clinical characteristics, rationale for switch, and disease measures evaluated from tafamidis initiation through the 12-month patisiran treatment period. RESULTS: Among the 24 patients with ATTRv-PN included in the study, 50.0% had a V30M variant, and the mean (SD) age was 67.3 (8.0) years. During tafamidis treatment (mean [SD] = 30.1 [17.5] months) before switching to patisiran, patients worsened across multiple polyneuropathy measures, including walking ability, Neuropathy Impairment Score, and autonomic function. Neuropathic disease progression on tafamidis was the principal reason for switching to patisiran. After 12 months on patisiran (mean [SD] = 11.7 [1.4] months), patients experienced attenuated disease progression or improvement in the aforementioned measures of polyneuropathy. CONCLUSIONS: Switching from tafamidis to patisiran attenuated the rate of functional decline, and most patients experienced stabilization or improvement of at least one polyneuropathy measure within 12 months of patisiran treatment. Timely switch from tafamidis to patisiran can be beneficial to avoid rapid disease progression in patients with ATTRv-PN.


Subject(s)
Amyloid Neuropathies, Familial , Benzoxazoles , Polyneuropathies , Humans , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/complications , Male , Female , Aged , Middle Aged , Retrospective Studies , Benzoxazoles/therapeutic use , Polyneuropathies/drug therapy , Drug Substitution , Treatment Outcome , RNA, Small Interfering
13.
J Nucl Cardiol ; 33: 101816, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246259

ABSTRACT

We present a 77-year-old woman with wild-type ATTR cardiac amyloidosis (ATTR-CA) who presented with dyspnea, arrhythmia, and elevated NT-pro BNP. Initial imaging including cardiac MRI, PYP scintigraphy, PiB PET/CT and NaF PET/CT revealed cardiac abnormalities. Tafamidis treatment was initiated. After 14 months, symptomatic improvement and reduced NT-pro BNP were observed. Cardiac MRI and PYP scintigraphy showed no significant change and increased NaF accumulation, while PiB PET/CT showed decreased amyloid deposition, suggesting that it may be superior to NaF PET/CT in assessing the therapeutic effect of tafamidis in ATTR-CA.


Subject(s)
Amyloidosis , Benzoxazoles , Cardiomyopathies , Female , Humans , Aged , Positron Emission Tomography Computed Tomography , Prealbumin , Feasibility Studies , Amyloidosis/diagnostic imaging , Amyloidosis/drug therapy , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/drug therapy
14.
Naturwissenschaften ; 111(5): 45, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141101

ABSTRACT

6-methoxybenzoxazolinone (6-MBOA) is a secondary plant metabolite predominantly found in monocotyledonous plants, especially Gramineae. In damaged tissue, 2-ß-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc) is hydrolyzed to DIMBOA, which spontaneously decomposes into 6-MBOA. It is commonly detected in plants consumed by voles and livestock and can also be present in cereal-based products. Discovered in 1955, this compound is renowned for its ability to trigger animal reproduction. However, there is a lack of research on its functional and mechanistic properties, leaving much of their potential unexplored. This review aimed to comprehensively summarize the effects of 6-MBOA on animal reproduction and human health, as well as its defensive role against herbivores. Studies have shown that 6-MBOA effectively inhibits the digestion, development, growth, and reproduction of insects. 6-MBOA may act as a partial agonist of melatonin and exert a regulatory role in mammalian reproduction, resulting in either promoting or inhibiting effects. 6-MBOA has been theorized to possess anti-tumor, anti-AIDS, anti-anxiety, and weight-loss effects in humans. However, insufficient attention has been paid to its defense properties against mammalian herbivores, and the mechanisms underlying its effects on mammalian reproduction remain unclear. In addition, research on its impact on human health is still in its preliminary stages. The review emphasizes the need for further systematic and comprehensive research on 6-MBOA to fully understand its diverse functions. Elucidating the effects of 6-MBOA on animal reproduction, adaptation, and human health would advance our understanding of plant-herbivore coevolution and the influence of environmental factors on animal population dynamics. Furthermore, this knowledge could potentially promote its application in human health and animal husbandry.


Subject(s)
Reproduction , Animals , Reproduction/drug effects , Reproduction/physiology , Humans , Benzoxazoles
15.
J Peripher Nerv Syst ; 29(2): 221-231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706223

ABSTRACT

BACKGROUND: ATTR (ATTRv) amyloidosis neuropathy is characterized by progressive sensorimotor and autonomic nerve degeneration secondary to amyloid deposition caused by a misfolded transthyretin protein (TTR). Small nerve fiber neuropathy is an early clinical manifestation of this disease resulting from the dysfunction of the Aδ and C small nerve fibers. Tafamidis, a selective TTR stabilizer, has proven its efficacy in the earlier stages of hATTR. OBJECTIVES: To evaluate the clinical course and utility of cutaneous pathological biomarkers in patients with ATTR amyloidosis treated with tafamidis compared to control patients. METHODS: Forty patients diagnosed with early stages of ATTRv amyloidosis (polyneuropathy disability [PND] scores 0-II) underwent small and large nerve fiber neurological evaluations, and annual skin biopsies for intraepidermal nerve fiber density (IENFD) and amyloid deposition index (ADI) estimation. Thirty patients were allocated to receive tafamidis, and 10 patients served as controls. Tafamidis pharmacokinetics analysis was performed in patients who received the treatment. RESULTS: At baseline, 12% of patients in stage PND 0 and 28% in PND I displayed small nerve fiber denervation in the distal thigh, whereas 23% and 38%, respectively, in the distal leg. Similarly, 72% and 84% had amyloid deposition in the distal thigh and 56% and 69% in the distal leg. Following 1 year of treatment, the tafamidis group showed significant clinical improvement compared to the control group, revealed by the following mean differences (1) -9.3 versus -4 points (p = <.00) in the patient's neuropathy total symptom score 6 (NTSS-6) questionnaire, (2) -2.5 versus +2.8 points (p = <.00) in the Utah Early Neuropathy Score (UENS), and (3) +1.2°C versus -0.6 (p = .01) in cold detection thresholds. Among the patients who received tafamidis, 65% had stable or increased IENFD in their distal thigh and 27% in the distal leg. In contrast, all patients in the control group underwent denervation. The ADI either decreased or remained constant in 31% of the biopsies in the distal thigh and in 24% of the biopsies in the distal leg of the tafamidis-treated patients, whereas it rose across all the biopsies in the control group. At the 4-year follow-up, the tafamidis group continued to display less denervation in the distal thigh (mean difference [MD] of -3.0 vs. -9.3 fibers/mm) and the distal leg (mean difference [MD] -4.9 vs. -8.6 fibers/mm). ADI in tafamidis-treated patients was also lower in the distal thigh (10 vs. 30 amyloid/mm2) and the distal leg (23 vs. 40 amyloid/mm2) compared to control patients. Plasma tafamidis concentrations were higher in patients with IENFD improvement and in patients with reduced amyloid deposition. Patients without amyloid deposition in the distal leg at baseline displayed delayed disease progression at 4 years. CONCLUSIONS: Cutaneous IENFD and amyloid deposition assessments in the skin of the distal thigh and distal leg are valuable biomarkers for early diagnosis of ATTR amyloidosis and for measuring the progression of small nerve fiber neuropathy. Early treatment with tafamidis slows the clinical progression of the disease, skin denervation, and amyloid deposition in the skin. Higher plasma concentrations of tafamidis are associated with better disease outcomes, suggesting that increasing the drug dose could achieve better plasma concentrations and response rates. This study describes the longest small nerve fiber neuropathy therapeutic trial with tafamidis and is the first to report small fiber symptoms, function, and structural assessments as outcomes.


Subject(s)
Amyloid Neuropathies, Familial , Benzoxazoles , Skin , Humans , Male , Female , Middle Aged , Amyloid Neuropathies, Familial/drug therapy , Benzoxazoles/pharmacology , Benzoxazoles/administration & dosage , Aged , Skin/pathology , Skin/innervation , Skin/drug effects , Biomarkers/metabolism , Prealbumin , Adult , Treatment Outcome , Nerve Fibers/drug effects , Nerve Fibers/pathology
16.
Bioorg Chem ; 148: 107426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733750

ABSTRACT

Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.


Subject(s)
Enzyme Inhibitors , Heme , Indoleamine-Pyrrole 2,3,-Dioxygenase , Animals , Humans , Mice , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Heme/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Benzoxazoles/pharmacology
17.
Mol Divers ; 28(1): 61-71, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36609739

ABSTRACT

An efficient visible light mediated, eosin Y catalyzed direct C-H oxidative amination of benzoxazoles with secondary amines has been developed, which providing a straightforward, green, and environmentally benign access to a wide variety of substituted benzoxazole-2-amines under mild reaction conditions. The biological studies such as drug-likeness and molecular docking are also carried out on the molecule.


Subject(s)
Amines , Benzoxazoles , Amination , Molecular Docking Simulation , Catalysis , Molecular Structure , Metals , Light
18.
Biol Pharm Bull ; 47(3): 713-722, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38432946

ABSTRACT

Diabetic retinopathy (DR) can cause visual impairment and blindness, and the increasing global prevalence of diabetes underscores the need for effective therapies to prevent and treat DR. Therefore, this study aimed to evaluate the protective effect of pemafibrate treatment against DR, using a Spontaneously Diabetic Torii (SDT) fatty rat model of obese type 2 diabetes. SDT fatty rats were fed either a diet supplemented with pemafibrate (0.3 mg/kg/d) for 16 weeks, starting at 8 weeks of age (Pf SDT fatty: study group), or normal chow (SDT fatty: controls). Normal chow was provided to Sprague-Dawley (SD) rats (SD: normal controls). Electroretinography (ERG) was performed at 8 and 24 weeks of age to evaluate the retinal neural function. After sacrifice, retinal thickness, number of retinal folds, and choroidal thickness were evaluated, and immunostaining was performed for aquaporin-4 (AQP4). No significant differences were noted in food consumption, body weight, or blood glucose level after pemafibrate administration. Triglyceride levels were reduced, and high-density lipoprotein cholesterol levels were increased. Extension of oscillatory potential (OP)1 and OP3 waves on ERG was suppressed in the Pf SDT fatty group. Retinal thickness at 1500 microns from the optic disc improved in the Pf SDT fatty group. No significant improvements were noted in choroidal thickness or number of retinal folds. Quantitative analyses showed that AQP4-positive regions in the retinas were significantly larger in the Pf SDT fatty group than in the SDT fatty group. The findings suggest that pemafibrate treatment can exert protective effects against DR.


Subject(s)
Benzoxazoles , Butyrates , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Rats , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/prevention & control , Rats, Sprague-Dawley , Disease Models, Animal
19.
Heart Vessels ; 39(6): 486-495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393377

ABSTRACT

This study examined the effects of pemafibrate, a selective peroxisome proliferator-activated receptor α agonist, on the serum biochemical parameters of male patients with coronary artery disease and metabolic syndrome (MetS). This was a post hoc analysis of a randomized, crossover study that treated hypertriglyceridemia with pemafibrate or bezafibrate for 24 weeks, followed by a crossover of another 24 weeks. Of the 60 patients enrolled in the study, 55 were male. Forty-one of 55 male patients were found to have MetS. In this sub-analysis, male patients with MetS (MetS group, n = 41) and those without MetS (non-MetS group, n = 14) were compared. The primary endpoint was a change in fasting serum triglyceride (TG) levels during pemafibrate therapy, and the secondary endpoints were changes in insulin resistance-related markers and liver function parameters. Serum TG levels significantly decreased (MetS group, from 266.6 to 148.0 mg/dL, p < 0.001; non-MetS group, from 203.9 to 97.6 mg/dL, p < 0.001); however, a percent change (%Change) was not significantly different between the groups (- 44.1% vs. - 51.6%, p = 0.084). Serum insulin levels and homeostasis model assessment of insulin resistance significantly decreased in the MetS group but not in the non-MetS group. %Change in liver enzyme levels was markedly decreased in the MetS group compared with that in the non-MetS group (alanine aminotransferase, - 25.1% vs. - 11.3%, p = 0.027; gamma-glutamyl transferase, - 45.8% vs. - 36.2%, p = 0.020). In conclusion, pemafibrate can effectively decrease TG levels in patients with MetS, and it may be a more efficient drug for improving insulin resistance and liver function in such patients.


Subject(s)
Benzoxazoles , Butyrates , Coronary Artery Disease , Cross-Over Studies , Hypertriglyceridemia , Insulin Resistance , Metabolic Syndrome , Humans , Male , Metabolic Syndrome/blood , Metabolic Syndrome/drug therapy , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Hypertriglyceridemia/blood , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/complications , Hypertriglyceridemia/diagnosis , Middle Aged , Coronary Artery Disease/blood , Coronary Artery Disease/drug therapy , Benzoxazoles/therapeutic use , Benzoxazoles/pharmacology , Butyrates/therapeutic use , Butyrates/pharmacology , Treatment Outcome , Aged , Triglycerides/blood , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology , Biomarkers/blood , PPAR alpha/agonists , Bezafibrate/therapeutic use , Bezafibrate/pharmacology
20.
Heart Vessels ; 39(9): 810-817, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38743105

ABSTRACT

Transthyretin amyloid cardiomyopathy (ATTR-CM) is characterized by the functional and structural effects of amyloid infiltration, predominantly within the ventricles, causing biventricular wall thickening. Amyloid infiltration can be observed in the left atrium in ATTR-CM patients, but the association of left atrial (LA) myocardial function with cardiovascular events and of changes in LA myocardial function with tafamidis administration have not yet been clarified. Our aim was, therefore, to use speckle-tracking strain for investigating LA myocardial function in patients with ATTR-CM treated with tafamidis. We studied 55 patients with biopsy-proven ATTR-CM who had been treated with tafamidis (age: 76 ± 2 years, male: 93%). For speckle-tracking analysis of LA myocardial function, the systolic LA strain (LA reservoir function) was defined for this study as LA myocardial function from the apical 4-chamber view. The primary endpoint was defined as a composite comprising cardiovascular death and/or heart failure hospitalization after tafamidis administration over a median follow-up period of 28 ± 4 months. Patients with baseline LA strain < 8.6% (median value) experienced significantly more cardiovascular events than those without (log-rank P = 0.002). Moreover, LA strain in 26 patients worsened after tafamidis administration, and multivariate logistic regression analysis showed age, global longitudinal strain and relative apical longitudinal strain index were identified as independent determinants of deterioration of LA strain after tafamidis administration. In conclusion, baseline LA reservoir function is closely associated with cardiovascular events after tafamidis administration, and could be an additional parameter for the management of patients with ATTR-CM.


Subject(s)
Amyloid Neuropathies, Familial , Atrial Function, Left , Benzoxazoles , Cardiomyopathies , Heart Atria , Humans , Male , Female , Benzoxazoles/therapeutic use , Aged , Amyloid Neuropathies, Familial/physiopathology , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/diagnosis , Amyloid Neuropathies, Familial/complications , Cardiomyopathies/physiopathology , Cardiomyopathies/diagnosis , Cardiomyopathies/drug therapy , Atrial Function, Left/drug effects , Atrial Function, Left/physiology , Heart Atria/physiopathology , Heart Atria/diagnostic imaging , Heart Atria/drug effects , Retrospective Studies , Echocardiography , Prealbumin/genetics , Prealbumin/metabolism , Treatment Outcome , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL