Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.670
Filter
Add more filters

Publication year range
1.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33031746

ABSTRACT

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Subject(s)
Biopolymers/metabolism , Mucins/metabolism , von Willebrand Factor/metabolism , Amino Acid Sequence , Animals , Cryoelectron Microscopy , Disulfides/metabolism , Female , Glycosylation , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Mice, Inbred C57BL , Models, Molecular , Mucins/chemistry , Mucins/ultrastructure , Peptides/chemistry , Protein Domains , Protein Multimerization , von Willebrand Factor/chemistry , von Willebrand Factor/ultrastructure
2.
Nature ; 626(8001): 1019-1024, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38418914

ABSTRACT

The single chirality of biological molecules is a signature of life. Yet, rationalizing how single chirality emerged remains a challenging goal1. Research has commonly focused on initial symmetry breaking and subsequent enantioenrichment of monomer building blocks-sugars and amino acids-that compose the genetic polymers RNA and DNA as well as peptides. If these building blocks are only partially enantioenriched, however, stalling of chain growth may occur, whimsically termed in the case of nucleic acids as "the problem of original syn"2. Here, in studying a new prebiotically plausible route to proteinogenic peptides3-5, we discovered that the reaction favours heterochiral ligation (that is, the ligation of L monomers with D monomers). Although this finding seems problematic for the prebiotic emergence of homochiral L-peptides, we demonstrate, paradoxically, that this heterochiral preference provides a mechanism for enantioenrichment in homochiral chains. Symmetry breaking, chiral amplification and chirality transfer processes occur for all reactants and products in multicomponent competitive reactions even when only one of the molecules in the complex mixture exhibits an imbalance in enantiomer concentrations (non-racemic). Solubility considerations rationalize further chemical purification and enhanced chiral amplification. Experimental data and kinetic modelling support this prebiotically plausible mechanism for the emergence of homochiral biological polymers.


Subject(s)
Biopolymers , Evolution, Chemical , Peptides , Proteins , Stereoisomerism , Biopolymers/chemistry , Nucleic Acids/chemical synthesis , Nucleic Acids/chemistry , Origin of Life , Peptides/chemistry , Proteins/chemical synthesis , Proteins/chemistry , Solubility
3.
Nature ; 628(8006): 110-116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570715

ABSTRACT

The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.


Subject(s)
Biopolymers , Evolution, Chemical , Hot Temperature , Origin of Life , Biopolymers/chemistry , Dimerization , Glycine/chemistry , Hydrogen-Ion Concentration , Nucleotides/chemistry , Polyphosphates/chemistry , Solvents/chemistry
4.
Nature ; 618(7967): 1065-1071, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198476

ABSTRACT

Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1-7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.


Subject(s)
Cell Adhesion Molecules, Neuronal , Cell Death , Cell Membrane , Nerve Growth Factors , Animals , Humans , Mice , Cell Adhesion Molecules, Neuronal/chemistry , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/ultrastructure , Cell Membrane/metabolism , Cell Membrane/pathology , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Nerve Growth Factors/chemistry , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/ultrastructure , Mutagenesis, Site-Directed , Biopolymers/chemistry , Biopolymers/genetics , Biopolymers/metabolism
5.
Nature ; 597(7876): 430-434, 2021 09.
Article in English | MEDLINE | ID: mdl-34471289

ABSTRACT

Extracellular electron transfer by Geobacter species through surface appendages known as microbial nanowires1 is important in a range of globally important environmental phenomena2, as well as for applications in bio-remediation, bioenergy, biofuels and bioelectronics. Since 2005, these nanowires have been thought to be type 4 pili composed solely of the PilA-N protein1. However, previous structural analyses have demonstrated that, during extracellular electron transfer, cells do not produce pili but rather nanowires made up of the cytochromes OmcS2,3 and OmcZ4. Here we show that Geobacter sulfurreducens binds PilA-N to PilA-C to assemble heterodimeric pili, which remain periplasmic under nanowire-producing conditions that require extracellular electron transfer5. Cryo-electron microscopy revealed that C-terminal residues of PilA-N stabilize its copolymerization with PilA-C (to form PilA-N-C) through electrostatic and hydrophobic interactions that position PilA-C along the outer surface of the filament. PilA-N-C filaments lack π-stacking of aromatic side chains and show a conductivity that is 20,000-fold lower than that of OmcZ nanowires. In contrast with surface-displayed type 4 pili, PilA-N-C filaments show structure, function and localization akin to those of type 2 secretion pseudopili6. The secretion of OmcS and OmcZ nanowires is lost when pilA-N is deleted and restored when PilA-N-C filaments are reconstituted. The substitution of pilA-N with the type 4 pili of other microorganisms also causes a loss of secretion of OmcZ nanowires. As all major phyla of prokaryotes use systems similar to type 4 pili, this nanowire translocation machinery may have a widespread effect in identifying the evolution and prevalence of diverse electron-transferring microorganisms and in determining nanowire assembly architecture for designing synthetic protein nanowires.


Subject(s)
Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/metabolism , Geobacter , Nanowires , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biopolymers , Electric Conductivity , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Geobacter/cytology , Geobacter/metabolism , Protein Multimerization
6.
Nature ; 599(7885): 497-502, 2021 11.
Article in English | MEDLINE | ID: mdl-34759315

ABSTRACT

Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements1. However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion2-7. Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ7, but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.


Subject(s)
CRISPR-Cas Systems , Cyanobacteria , DNA Transposable Elements/genetics , Gene Editing/methods , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/ultrastructure , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Biopolymers , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Cryoelectron Microscopy , Cyanobacteria/enzymology , Cyanobacteria/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/ultrastructure , Models, Molecular , Mutagenesis, Insertional , Polymerization , RNA/genetics , RNA/metabolism , Substrate Specificity , Transposases/metabolism , Transposases/ultrastructure , Zinc Fingers
7.
Proc Natl Acad Sci U S A ; 121(6): e2309457121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289949

ABSTRACT

Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.


Subject(s)
Biocompatible Materials , Hydrogels , Animals , Hydrogels/chemistry , Biopolymers , Mammals
8.
Proc Natl Acad Sci U S A ; 121(19): e2321992121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38684000

ABSTRACT

Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.


Subject(s)
DNA , Biopolymers/chemistry , DNA/chemistry , X-Ray Diffraction , Nucleic Acid Conformation , Models, Molecular , Stereoisomerism
9.
Proc Natl Acad Sci U S A ; 121(21): e2318905121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739787

ABSTRACT

We propose that spontaneous folding and molecular evolution of biopolymers are two universal aspects that must concur for life to happen. These aspects are fundamentally related to the chemical composition of biopolymers and crucially depend on the solvent in which they are embedded. We show that molecular information theory and energy landscape theory allow us to explore the limits that solvents impose on biopolymer existence. We consider 54 solvents, including water, alcohols, hydrocarbons, halogenated solvents, aromatic solvents, and low molecular weight substances made up of elements abundant in the universe, which may potentially take part in alternative biochemistries. We find that along with water, there are many solvents for which the liquid regime is compatible with biopolymer folding and evolution. We present a ranking of the solvents in terms of biopolymer compatibility. Many of these solvents have been found in molecular clouds or may be expected to occur in extrasolar planets.


Subject(s)
Solvents , Biopolymers/chemistry , Solvents/chemistry , Extraterrestrial Environment/chemistry , Evolution, Molecular , Water/chemistry
10.
Nat Chem Biol ; 20(2): 201-210, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012344

ABSTRACT

Bacteria can be programmed to create engineered living materials (ELMs) with self-healing and evolvable functionalities. However, further development of ELMs is greatly hampered by the lack of engineerable nonpathogenic chassis and corresponding programmable endogenous biopolymers. Here, we describe a technological workflow for facilitating ELMs design by rationally integrating bioinformatics, structural biology and synthetic biology technologies. We first develop bioinformatics software, termed Bacteria Biopolymer Sniffer (BBSniffer), that allows fast mining of biopolymers and biopolymer-producing bacteria of interest. As a proof-of-principle study, using existing pathogenic pilus as input, we identify the covalently linked pili (CLP) biosynthetic gene cluster in the industrial workhorse Corynebacterium glutamicum. Genetic manipulation and structural characterization reveal the molecular mechanism of the CLP assembly, ultimately enabling a type of programmable pili for ELM design. Finally, engineering of the CLP-enabled living materials transforms cellulosic biomass into lycopene by coupling the extracellular and intracellular bioconversion ability.


Subject(s)
Bacteria , Metabolic Engineering , Workflow , Lycopene , Biopolymers
11.
PLoS Biol ; 21(3): e3002045, 2023 03.
Article in English | MEDLINE | ID: mdl-36947568

ABSTRACT

We live our lives immersed in plastic pollution: a problem that is becoming more acute. Viable alternatives that can reduce plastic pollution are being sought. Could bioplastics be the hoped-for solution to this problem?


Subject(s)
Environmental Pollution , Plastics , Environmental Pollution/prevention & control , Biopolymers
12.
Proc Natl Acad Sci U S A ; 120(23): e2304666120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252962

ABSTRACT

Nonlinear stiffening is a ubiquitous property of major types of biopolymers that make up the extracellular matrices (ECM) including collagen, fibrin, and basement membrane. Within the ECM, many types of cells such as fibroblasts and cancer cells have a spindle-like shape that acts like two equal and opposite force monopoles, which anisotropically stretch their surroundings and locally stiffen the matrix. Here, we first use optical tweezers to study the nonlinear force-displacement response to localized monopole forces. We then propose an effective-probe scaling argument that a local point force application can induce a stiffened region in the matrix, which can be characterized by a nonlinear length scale R* that increases with the increasing force magnitude; the local nonlinear force-displacement response is a result of the nonlinear growth of this effective probe that linearly deforms an increasing portion of the surrounding matrix. Furthermore, we show that this emerging nonlinear length scale R* can be observed around living cells and can be perturbed by varying matrix concentration or inhibiting cell contractility.


Subject(s)
Collagen , Extracellular Matrix , Elasticity , Biopolymers , Fibrin
13.
Proc Natl Acad Sci U S A ; 120(44): e2305198120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37878716

ABSTRACT

Microbial communities perform essential ecosystem functions such as the remineralization of organic carbon that exists as biopolymers. The first step in mineralization is performed by biopolymer degraders, which harbor enzymes that can break down polymers into constituent oligo- or monomeric forms. The released nutrients not only allow degraders to grow, but also promote growth of cells that either consume the degradation products, i.e., exploiters, or consume metabolites released by the degraders or exploiters, i.e., scavengers. It is currently not clear how such remineralizing communities assemble at the microscale-how interactions between the different guilds influence their growth and spatial distribution, and hence the development and dynamics of the community. Here, we address this knowledge gap by studying marine microbial communities that grow on the abundant marine biopolymer alginate. We used batch growth assays and microfluidics coupled to time-lapse microscopy to quantitatively investigate growth and spatial distribution of single cells. We found that the presence of exploiters or scavengers alters the spatial distribution of degrader cells. In general, exploiters and scavengers-which we collectively refer to as cross-feeder cells-slowed down the growth of degrader cells. In addition, coexistence with cross-feeders altered the production of the extracellular enzymes that break down polymers by degrader cells. Our findings reveal that ecological interactions by nondegrading community members have a profound impact on the functions of microbial communities that remineralize carbon biopolymers in nature.


Subject(s)
Microbiota , Biopolymers , Social Behavior , Carbon , Microbial Interactions
14.
Proc Natl Acad Sci U S A ; 120(8): e2216547120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36800389

ABSTRACT

Cyanophycin is a bacterial polymer mainly used for nitrogen storage. It is composed of a peptide backbone of L-aspartate residues with L-arginines attached to their side chains through isopeptide bonds. Cyanophycin is degraded in two steps: Cyanophycinase cleaves the polymer into ß-Asp-Arg dipeptides, which are hydrolyzed into free Asp and Arg by enzymes possessing isoaspartyl dipeptide hydrolase activity. Two unrelated enzymes with this activity, isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA) have been shown to degrade ß-Asp-Arg dipeptides, but bacteria which encode cyanophycin-metabolizing genes can lack iaaA and iadA genes. In this study, we investigate a previously uncharacterized enzyme whose gene can cluster with cyanophycin-metabolizing genes. This enzyme, which we name cyanophycin dipeptide hydrolase (CphZ), is specific for dipeptides derived from cyanophycin degradation. Accordingly, a co-complex structure of CphZ and ß-Asp-Arg shows that CphZ, unlike IadA or IaaA, recognizes all portions of its ß-Asp-Arg substrate. Bioinformatic analyses showed that CphZ is found in very many proteobacteria and is homologous to an uncharacterized protein encoded in the "arginine/ornithine transport" (aot) operon of many pseudomonas species, including Pseudomonas aeruginosa. In vitro assays show that AotO is indeed a CphZ, and in cellulo growth experiments show that this enzyme and the aot operon allow P. aeruginosa to take up and use ß-Asp-Arg as a sole carbon and nitrogen source. Together the results establish the novel, highly specific enzyme subfamily of CphZs, suggesting that cyanophycin is potentially used by a much wider range of bacteria than previously appreciated.


Subject(s)
Bacteria , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteria/metabolism , Dipeptides/genetics , Dipeptides/metabolism , Biopolymers , Nitrogen/metabolism , Polymers
15.
PLoS Comput Biol ; 20(8): e1012320, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39116194

ABSTRACT

Although depolymerization of complex carbohydrates is a growth-limiting bottleneck for microbial decomposers, we still lack understanding about how the production of different types of extracellular enzymes affect individual microbes and in turn the performance of whole decomposer communities. In this work we use a theoretical model to evaluate the potential trade-offs faced by microorganisms in biopolymer decomposition which arise due to the varied biochemistry of different depolymerizing enzyme classes. We specifically consider two broad classes of depolymerizing extracellular enzymes, which are widespread across microbial taxa: exo-enzymes that cleave small units from the ends of polymer chains and endo-enzymes that act at random positions generating degradation products of varied sizes. Our results demonstrate a fundamental trade-off in the production of these enzymes, which is independent of system's complexity and which appears solely from the intrinsically different temporal depolymerization dynamics. As a consequence, specialists that produce either exo- or only endo-enzymes limit their growth to high or low substrate conditions, respectively. Conversely, generalists that produce both enzymes in an optimal ratio expand their niche and benefit from the synergy between the two enzymes. Finally, our results show that, in spatially-explicit environments, consortia composed of endo- and exo-specialists can only exist under oligotrophic conditions. In summary, our analysis demonstrates that the (evolutionary or ecological) selection of a depolymerization pathway will affect microbial fitness under low or high substrate conditions, with impacts on the ecological dynamics of microbial communities. It provides a possible explanation why many polysaccharide degraders in nature show the genetic potential to produce both of these enzyme classes.


Subject(s)
Bacteria , Biopolymers/metabolism , Biopolymers/chemistry , Bacteria/metabolism , Bacteria/enzymology , Models, Biological , Computational Biology
17.
Nature ; 573(7772): 96-101, 2019 09.
Article in English | MEDLINE | ID: mdl-31462779

ABSTRACT

The viscoelasticity of the crosslinked semiflexible polymer networks-such as the internal cytoskeleton and the extracellular matrix-that provide shape and mechanical resistance against deformation is assumed to dominate tissue mechanics. However, the mechanical responses of soft tissues and semiflexible polymer gels differ in many respects. Tissues stiffen in compression but not in extension1-5, whereas semiflexible polymer networks soften in compression and stiffen in extension6,7. In shear deformation, semiflexible polymer gels stiffen with increasing strain, but tissues do not1-8. Here we use multiple experimental systems and a theoretical model to show that a combination of nonlinear polymer network elasticity and particle (cell) inclusions is essential to mimic tissue mechanics that cannot be reproduced by either biopolymer networks or colloidal particle systems alone. Tissue rheology emerges from an interplay between strain-stiffening polymer networks and volume-conserving cells within them. Polymer networks that soften in compression but stiffen in extension can be converted to materials that stiffen in compression but not in extension by including within the network either cells or inert particles to restrict the relaxation modes of the fibrous networks that surround them. Particle inclusions also suppress stiffening in shear deformation; when the particle volume fraction is low, they have little effect on the elasticity of the polymer networks. However, as the particles become more closely packed, the material switches from compression softening to compression stiffening. The emergence of an elastic response in these composite materials has implications for how tissue stiffness is altered in disease and can lead to cellular dysfunction9-11. Additionally, the findings could be used in the design of biomaterials with physiologically relevant mechanical properties.


Subject(s)
Biomechanical Phenomena , Biopolymers/chemistry , Cell Count , Extracellular Matrix/metabolism , Fibrin/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Blood Coagulation , Cell Line , Elasticity , Erythrocytes/cytology , Fibrin/chemistry , Fibroblasts/cytology , Glioma/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Models, Biological , Rats , Rats, Sprague-Dawley , Rheology
18.
Proc Natl Acad Sci U S A ; 119(42): e2204073119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215498

ABSTRACT

Sustainable circular economy requires materials that possess a property profile comparable to synthetic polymers and, additionally, processing and sourcing of raw materials that have a small environmental footprint. Here, we present a paradigm for processing marine biopolymers into materials that possess both elastic and plastic behavior within a single system involving a double-interpenetrating polymer network comprising the elastic phase of dynamic physical cross-links and stress-dissipating ionically cross-linked domains. As a proof of principle, films possessing more than twofold higher elastic modulus, ultimate tensile strength, and yield stress than those of polylactic acid were realized by blending two water-soluble marine polysaccharides, namely alginic acid (Alg) with physically cross-linkable carboxylated agarose (CA) followed by ionic cross-linking with a divalent cation. Dried CAAlg films showed homogeneous nano-micro-scale domains, with yield stress and size of the domains scaling inversely with calcium concentration. Through surface activation/cross-linking using calcium, CAAlg films could be further processed using wet bonding to yield laminated structures with interfacial failure loads (13.2 ± 0.81 N) similar to the ultimate loads of unlaminated films (10.09 ± 1.47 N). Toward the engineering of wood-marine biopolymer composites, an array of lines of CAAlg were printed on wood veneers (panels), dried, and then bonded following activation with calcium to yield fully bonded wood two-ply laminate. The system presented herein provides a blueprint for the adoption of marine algae-derived polysaccharides in the development of sustainable high-performance materials.


Subject(s)
Alginic Acid , Calcium , Biopolymers/chemistry , Cations, Divalent , Plastics , Polymers/chemistry , Polysaccharides/chemistry , Sepharose , Water/chemistry
19.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35217619

ABSTRACT

Periplasmic chaperones 17-kilodalton protein (Skp) and survival factor A (SurA) are essential players in outer membrane protein (OMP) biogenesis. They prevent unfolded OMPs from misfolding during their passage through the periplasmic space and aid in the disassembly of OMP aggregates under cellular stress conditions. However, functionally important links between interaction mechanisms, structural dynamics, and energetics that underpin both Skp and SurA associations with OMPs have remained largely unresolved. Here, using single-molecule fluorescence spectroscopy, we dissect the conformational dynamics and thermodynamics of Skp and SurA binding to unfolded OmpX and explore their disaggregase activities. We show that both chaperones expand unfolded OmpX distinctly and induce microsecond chain reconfigurations in the client OMP structure. We further reveal that Skp and SurA bind their substrate in a fine-tuned thermodynamic process via enthalpy-entropy compensation. Finally, we observed synergistic activity of both chaperones in the disaggregation of oligomeric OmpX aggregates. Our findings provide an intimate view into the multifaceted functionalities of Skp and SurA and the fine-tuned balance between conformational flexibility and underlying energetics in aiding chaperone action during OMP biogenesis.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Biopolymers/metabolism , Molecular Chaperones/metabolism , Bacterial Outer Membrane Proteins/chemistry , Fluorescence Resonance Energy Transfer/methods , Molecular Chaperones/chemistry , Protein Conformation
20.
Proc Natl Acad Sci U S A ; 119(42): e2212642119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36191178

ABSTRACT

Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air-water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.


Subject(s)
Amino Acids , Oxazolidinones , Alanine , Amides , Amino Acids/chemistry , Biopolymers , Dehydration , Dipeptides/chemistry , Glycine , Humans , Peptides/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL