Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 591(7851): 620-626, 2021 03.
Article in English | MEDLINE | ID: mdl-33731924

ABSTRACT

Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish1-7. Recent advances in partial embryo models derived from human pluripotent stem cells have enabled human development to be examined at early post-implantation stages8-14. However, models of the pre-implantation human blastocyst are lacking. Starting from naive human pluripotent stem cells, here we developed an effective three-dimensional culture strategy with successive lineage differentiation and self-organization to generate blastocyst-like structures in vitro. These structures-which we term 'human blastoids'-resemble human blastocysts in terms of their morphology, size, cell number, and composition and allocation of different cell lineages. Single-cell RNA-sequencing analyses also reveal the transcriptomic similarity of blastoids to blastocysts. Human blastoids are amenable to embryonic and extra-embryonic stem cell derivation and can further develop into peri-implantation embryo-like structures in vitro. Using chemical perturbations, we show that specific isozymes of protein kinase C have a critical function in the formation of the blastoid cavity. Human blastoids provide a readily accessible, scalable, versatile and perturbable alternative to blastocysts for studying early human development, understanding early pregnancy loss and gaining insights into early developmental defects.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Cell Differentiation , Pluripotent Stem Cells/cytology , Blastocyst/enzymology , Cell Culture Techniques/methods , Cell Line , Cell Lineage , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/enzymology , Human Embryonic Stem Cells/metabolism , Humans , Isoenzymes/metabolism , Pluripotent Stem Cells/enzymology , Pluripotent Stem Cells/metabolism , Protein Kinase C/metabolism , Single-Cell Analysis , Transcriptome
2.
Proc Natl Acad Sci U S A ; 119(30): e2201168119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858425

ABSTRACT

Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.


Subject(s)
DNA Methylation , DNA, Mitochondrial , Embryo Implantation , Genome, Mitochondrial , Oxidative Stress , Animals , Blastocyst/enzymology , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Embryo Implantation/genetics , Gain of Function Mutation , Loss of Function Mutation , Mice , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Stress/genetics , DNA Methyltransferase 3B
3.
Genes Dev ; 30(22): 2513-2526, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27920088

ABSTRACT

Extensive chromatin remodeling after fertilization is thought to take place to allow a new developmental program to start. This includes dynamic changes in histone methylation and, in particular, the remodeling of constitutive heterochromatic marks such as histone H4 Lys20 trimethylation (H4K20me3). While the essential function of H4K20me1 in preimplantation mouse embryos is well established, the role of the additional H4K20 methylation states through the action of the SUV4-20 methyltransferases has not been addressed. Here we show that Suv4-20h1/h2 are mostly absent in mouse embryos before implantation, underscoring a rapid decrease of H4K20me3 from the two-cell stage onward. We addressed the functional significance of this remodeling by introducing Suv4-20h1 and Suv4-20h2 in early embryos. Ectopic expression of Suv4-20h2 leads to sustained levels of H4K20me3, developmental arrest, and defects in S-phase progression. The developmental phenotype can be partially overcome through inhibition of the ATR pathway, suggesting that the main function for the remodeling of H4K20me3 after fertilization is to allow the timely and coordinated progression of replication. This is in contrast to the replication program in somatic cells, where H4K20me3 has been shown to promote replication origin licensing, and anticipates a different regulation of replication during this early developmental time window.


Subject(s)
Blastocyst/enzymology , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Blastocyst/cytology , Ectopic Gene Expression , Embryo, Mammalian , Genome/genetics , Histones/genetics , Histones/metabolism , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Zygote/metabolism
4.
Mol Cell ; 56(4): 564-79, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25457166

ABSTRACT

Primordial germ cells (PGCs) and preimplantation embryos undergo epigenetic reprogramming, which includes comprehensive DNA demethylation. We found that PRMT5, an arginine methyltransferase, translocates from the cytoplasm to the nucleus during this process. Here we show that conditional loss of PRMT5 in early PGCs causes complete male and female sterility, preceded by the upregulation of LINE1 and IAP transposons as well as activation of a DNA damage response. Similarly, loss of maternal-zygotic PRMT5 also leads to IAP upregulation. PRMT5 is necessary for the repressive H2A/H4R3me2s chromatin modification on LINE1 and IAP transposons in PGCs, directly implicating this modification in transposon silencing during DNA hypomethylation. PRMT5 translocates back to the cytoplasm subsequently, to participate in the previously described PIWI-interacting RNA (piRNA) pathway that promotes transposon silencing via de novo DNA remethylation. Thus, PRMT5 is directly involved in genome defense during preimplantation development and in PGCs at the time of global DNA demethylation.


Subject(s)
Blastocyst/enzymology , DNA Methylation , Genomic Instability , Ovum/enzymology , Protein Methyltransferases/physiology , Spermatozoa/enzymology , Animals , Apoptosis , Blastocyst/cytology , Cells, Cultured , DNA Damage , DNA Transposable Elements , Embryonic Development , Embryonic Stem Cells/enzymology , Female , Histones/metabolism , Male , Mice, Transgenic , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases
5.
Am J Physiol Cell Physiol ; 320(1): C30-C44, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33052068

ABSTRACT

Development of the mammalian preimplantation embryo is influenced by autocrine/paracrine factors and the availability of nutrients. Deficiencies of these during in vitro culture reduce the success of assisted reproductive technologies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway integrates external and internal signals, including those by amino acids (AAs), to promote normal preimplantation development. For this reason, AAs are often included in embryo culture media. In this study, we examined how withdrawal and addition of AAs to culture media modulate mTORC1 pathway activity compared with its activity in mouse embryos developed in vivo. Phosphorylation of signaling components downstream of mTORC1, namely, p70 ribosomal protein S6 kinase (p70S6K), ribosomal protein S6, and 4E binding protein 1 (4E-BP1), and that of protein kinase B (Akt), which lies upstream of mTORC1, changed significantly across stages of embryos developed in vivo. For freshly isolated blastocysts placed in vitro, the absence of AAs in the culture medium, even for a few hours, decreased mTORC1 signaling, which could only be partially restored by their addition. Long-term culture of early embryos to blastocysts in the absence of AAs decreased mTORC1 signaling to a greater extent and again this could only be partially restored by their inclusion. This failure to fully restore is probably due to decreased phosphatidylinositol 3-kinase (PI3K)/Akt/mTORC2 signaling in culture, as indicated by decreased P-AktS473. mTORC2 lies upstream of mTORC1 and is insensitive to AAs, and its reduced activity probably results from loss of maternal/autocrine factors. These data highlight reduced mTORC1/2 signaling activity correlating with compromised development in vitro and show that the addition of AAs can only partially offset these effects.


Subject(s)
Amino Acids/deficiency , Blastocyst/enzymology , Culture Media/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , Embryo Culture Techniques , Female , Male , Mice , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , Time Factors
6.
Mol Hum Reprod ; 27(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33599278

ABSTRACT

Human zygotes are difficult to obtain for research because of limited resources and ethical debates. Corrected human tripronuclear (ch3PN) zygotes obtained by removal of the extra pronucleus from abnormally fertilized tripronuclear (3PN) zygotes are considered an alternative resource for basic scientific research. In the present study, eight-cell and blastocyst formation efficiency were significantly lower in both 3PN and ch3PN embryos than in normal fertilized (2PN) embryos, while histone H3 lysine 9 trimethylation (H3K9me3) levels were much higher. It was speculated that the aberrant H3K9me3 level detected in ch3PN embryos may be related to low developmental competence. Microinjection of 1000 ng/µl lysine-specific demethylase 4A (KDM4A) mRNA effectively reduced the H3K9me3 level and significantly increased the developmental competence of ch3PN embryos. The quality of ch3PN zygotes improved as the grading criteria, cell number and pluripotent expression significantly increased in response to KDM4A mRNA injection. Developmental genes related to zygotic genome activation (ZGA) were also upregulated. These results indicate that KDM4A activates the transcription of the ZGA program by enhancing the expression of related genes, promoting epigenetic modifications and regulating the developmental potential of ch3PN embryos. The present study will facilitate future studies of ch3PN embryos and could provide additional options for infertile couples.


Subject(s)
Blastocyst/enzymology , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/biosynthesis , Zygote/enzymology , Blastocyst/pathology , Embryo Culture Techniques , Embryonic Development , Enzyme Induction , Female , Fertilization in Vitro , Gene Expression Regulation, Developmental , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Male , Methylation , Transcription, Genetic , Zygote/pathology
7.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068371

ABSTRACT

This study aimed to describe glutathione peroxidase 4 (GPx4) in rat oocytes, preimplantation embryos, and female genital organs. After copulation, Sprague Dawley female rats were euthanized with anesthetic on the first (D1), third (D3), and fifth days of pregnancy (D5). Ovaries, oviducts, and uterine horns were removed, and oocytes and preimplantation embryos were obtained. Immunohistochemical, immunofluorescent, and Western blot methods were employed. Using immunofluorescence, we detected GPx4 in both the oocytes and preimplantation embryos. Whereas in the oocytes, GPx4 was homogeneously diffused, in the blastomeres, granules were formed, and in the blastocysts, even clusters were present mainly around the cell nuclei. Employing immunohistochemistry, we detected GPx4 inside the ovary in the corpus luteum, stroma, follicles, and blood vessels. In the oviduct, the enzyme was present in the epithelium, stroma, blood vessels, and smooth muscles. In the uterus, GPx4 was found in the endometrium, myometrium, blood vessels, and stroma. Moreover, we observed GPx4 positive granules in the uterine gland epithelium on D1 and D3 and cytoplasm of fibroblasts forming in the decidua on D5. Western blot showed the highest GPx4 levels in the uterus and the lowest levels in the ovary. Our results show that the GPx4 is necessary as early as in the preimplantation development of a new individual because we detected it in an unfertilized oocyte in a blastocyst and not only after implantation, as was previously thought.


Subject(s)
Blastocyst/enzymology , Embryo Implantation , Embryonic Development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Oocytes/enzymology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Blastocyst/cytology , Endometrium/enzymology , Female , Male , Oocytes/cytology , Ovary/enzymology , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Pregnancy , Rats , Rats, Sprague-Dawley , Uterus/enzymology
8.
J Assist Reprod Genet ; 37(8): 1807-1814, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32767205

ABSTRACT

PURPOSE: Reduction in methylenetetrahydrofolate reductase (MTHFR) activity due to genetic variations in the MTHFR gene has been controversially implicated in subfertility in human in vitro fertilization. However, there is no direct gene-knockdown study of embryonic MTHFR to assess its involvement in mammalian preimplantation development. The purpose of this study is to investigate expression profiles and functional roles of MTHFR in bovine preimplantation development. METHODS: Reverse transcription-quantitative PCR (RT-qPCR) and analysis of publicly available RNA-seq data were performed to reveal expression levels of MTHFR during bovine preimplantation development. We knocked down MTHFR by siRNA-mediated RNA interference from the 8- to 16-cell stage and assessed the effects on preimplantation development. RESULTS: The RT-qPCR analysis showed relatively high MTHFR expression at the GV oocyte stage, which was decreased toward the 8- to 16-cell stage and then slightly restored at the blastocyst stage. Public data-based analysis also showed the similar pattern of expression with substantial embryonic expression at the blastocyst stage. MTHFR knockdown reduced the blastocyst rate (P < 0.01) and the numbers of total (P < 0.0001), trophectoderm (P < 0.0001), and inner cell mass (P < 0.001) cells. CONCLUSION: The results indicate that embryonic MTHFR is indispensable for normal blastocyst development. The findings provide insight into the debatable roles of MTHFR in fertility and may be applicable for the improvement of care for early embryos via modulation of surrounding folate-related nutritional conditions in vitro and/or in utero, depending on the parental and embryonic MTHFR genotype.


Subject(s)
Blastocyst/enzymology , Embryonic Development/genetics , Fertility/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Animals , Blastocyst/metabolism , Blastocyst/ultrastructure , Cattle , Female , Fertility/physiology , Gene Expression Regulation, Developmental/genetics , Humans , Oocytes/enzymology , Oocytes/growth & development , Oocytes/ultrastructure , RNA, Small Interfering
9.
Int J Mol Sci ; 21(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962179

ABSTRACT

In many cell types, epigenetic changes are partially regulated by the availability of metabolites involved in the activity of chromatin-modifying enzymes. Even so, the association between metabolism and the typical epigenetic reprogramming that occurs during preimplantation embryo development remains poorly understood. In this work, we explore the link between energy metabolism, more specifically the tricarboxylic acid cycle (TCA), and epigenetic regulation in bovine preimplantation embryos. Using a morphokinetics model of embryonic development (fast- and slow-developing embryos), we show that DNA methylation (5mC) and hydroxymethylation (5hmC) are dynamically regulated and altered by the speed of the first cleavages. More specifically, slow-developing embryos fail to perform the typical reprogramming that is necessary to ensure the generation of blastocysts with higher ability to establish specific cell lineages. Transcriptome analysis revealed that such differences were mainly associated with enzymes involved in the TCA cycle rather than specific writers/erasers of DNA methylation marks. This relationship was later confirmed by disturbing the embryonic metabolism through changes in α-ketoglutarate or succinate availability in culture media. This was sufficient to interfere with the DNA methylation dynamics despite the fact that blastocyst rates and total cell number were not quite affected. These results provide the first evidence of a relationship between epigenetic reprogramming and energy metabolism in bovine embryos. Likewise, levels of metabolites in culture media may be crucial for precise epigenetic reprogramming, with possible further consequences in the molecular control and differentiation of cells.


Subject(s)
Blastocyst/enzymology , Blastocyst/metabolism , Citric Acid Cycle , DNA Methylation , Animals , Blastocyst/cytology , Cattle , Culture Media/metabolism , Embryonic Development/genetics , Energy Metabolism , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Ontology , Ketoglutaric Acids/metabolism , Pregnancy , Succinic Acid/metabolism
10.
Biochem Biophys Res Commun ; 510(3): 403-408, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30711254

ABSTRACT

Culture conditions determine embryo quality, which may be affected on many levels (timing of development, blastomere count, transcripts, metabolite content, apoptosis). Molecular interactions of signalling pathways like MEK/ERK and WNT/ß-catenin are critical for cell-to-cell communication and cellular differentiation. Both pathways are important regulators of apoptosis. We have aimed to verify the prolonged effect of MEK/ERK silencing and WNT activation by chemical inhibitors (2i or 3i systems) on bovine IVP embryos. Apoptotic index, total cell count and transcription of embryo quality markers were evaluated. A higher rate of apoptosis was observed in 2i blastocysts, but was not accompanied by changes in transcript content of genes controlling apoptosis (BAX, BCL2, BAK, BAX/BCL2 ratio). Therefore, alternative pathways of apoptotic activation cannot be ruled out. The expression of genes related to embryo quality (HSPA1A, SLC2A1) was not affected. GJA1 transcripts were significantly higher in 3i blastocysts, what indicates a stimulatory effect of the applied inhibitors on cell-to-cell interactions. The lowest mRNA level of the IFNT2 gene was found in 2i embryos. A variation in the SDHA gene transcript was observed (with the highest content in the 3i blastocysts), what may suggest their reduced quality. It may be concluded that the modifications of culture conditions (activation of the WNT and silencing of the MEK/ERK signalling) might alter pathways crucial for embryo development without causing embryonic death.


Subject(s)
Apoptosis/drug effects , Blastocyst/drug effects , Gene Expression/drug effects , MAP Kinase Signaling System/drug effects , Wnt Signaling Pathway/drug effects , Animals , Blastocyst/cytology , Blastocyst/enzymology , Blastocyst/metabolism , Cattle , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
11.
Reprod Domest Anim ; 54 Suppl 3: 4-11, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31512318

ABSTRACT

In a diabetic pregnancy, an altered maternal metabolism led to increased formation of reactive α-dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) in the reproductive organs and embryos. The enzyme glyoxalase (GLO) 1 detoxifies reactive α-dicarbonyls thus protecting cells against malfunction or modifications of proteins by advanced glycated end products (AGEs). The aim of this study was to analyse the influence of a maternal insulin-dependent diabetes mellitus (IDD) on GLO1 expression and activity in preimplantation embryos in vivo and human trophoblast cells (Ac-1M88) in vitro. Maternal diabetes was induced in female rabbits by alloxan before conception and maintained during the preimplantation period. GLO1 expression and activity were investigated in 6-day-old blastocysts from healthy and diabetic rabbits. Furthermore, blastocysts and human trophoblast cells were exposed in vitro to hyperglycaemia, GO and MGO and analysed for GLO1 expression and activity. During gastrulation, GLO1 was expressed in all compartments of the rabbit blastocyst. Maternal diabetes decreased embryonic GLO1 protein amount by approx. 30 per cent whereas the enzymatic activity remained unchanged, indicating that the specific GLO1 activity increases along with metabolic changes. In in vitro cultured embryos, neither hyperglycaemia nor MGO and GO had an effect on GLO1 protein amount. In human trophoblast cells, a stimulating effect on the GLO1 expression was shown in the highest GO concentration, only. Our data show that maternal diabetes mellitus affects the specific activity of GLO1, indicating that GLO1 was post-translationally modified due to changes in metabolic processes in the preimplantation embryos.


Subject(s)
Blastocyst/metabolism , Diabetes Mellitus, Experimental/metabolism , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Animals , Blastocyst/enzymology , Cell Line , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/genetics , Female , Glyoxal/pharmacology , Humans , Hyperglycemia/metabolism , Pregnancy , Pyruvaldehyde/pharmacology , Rabbits , Trophoblasts
12.
J Biol Chem ; 292(33): 13784-13794, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28663368

ABSTRACT

Betaine (N,N,N-trimethylglycine) plays key roles in mouse eggs and preimplantation embryos first in a novel mechanism of cell volume regulation and second as a major methyl donor in blastocysts, but its origin is unknown. Here, we determined that endogenous betaine was present at low levels in germinal vesicle (GV) stage mouse oocytes before ovulation and reached high levels in the mature, ovulated egg. However, no betaine transport into oocytes was detected during meiotic maturation. Because betaine can be synthesized in mammalian cells via choline dehydrogenase (CHDH; EC 1.1.99.1), we assessed whether this enzyme was expressed and active. Chdh transcripts and CHDH protein were expressed in oocytes. No CHDH enzyme activity was detected in GV oocyte lysate, but CHDH became highly active during oocyte meiotic maturation. It was again inactive after fertilization. We then determined whether oocytes synthesized betaine and whether CHDH was required. Isolated maturing oocytes autonomously synthesized betaine in vitro in the presence of choline, whereas this failed to occur in Chdh-/- oocytes, directly demonstrating a requirement for CHDH for betaine accumulation in oocytes. Overall, betaine accumulation is a previously unsuspected physiological process during mouse oocyte meiotic maturation whose underlying mechanism is the transient activation of CHDH.


Subject(s)
Betaine/metabolism , Choline Dehydrogenase/metabolism , Oocytes/enzymology , Oogenesis , Up-Regulation , Absorption, Physiological , Animals , Blastocyst/cytology , Blastocyst/enzymology , Blastocyst/metabolism , Choline Dehydrogenase/chemistry , Choline Dehydrogenase/genetics , Crosses, Genetic , Enzyme Activation , Female , Gene Expression Regulation, Developmental , In Vitro Oocyte Maturation Techniques , Meiosis , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Morula/cytology , Morula/enzymology , Morula/metabolism , Oocytes/cytology , Oocytes/metabolism , Tritium , Zygote/cytology , Zygote/enzymology , Zygote/metabolism
13.
J Cell Physiol ; 233(6): 4530-4545, 2018 06.
Article in English | MEDLINE | ID: mdl-29115666

ABSTRACT

During embryo implantation, crosstalk between the endometrial epithelium and the blastocyst, especially the trophoblasts, is a prerequisite for successful implantation. During this crosstalk, various molecular and functional changes occur to promote synchrony between the embryo and the endometrium as well as the uterine cavity microenvironment. In the past few years, growing evidence has shown that endometrium-derived exosomes play pivotal roles in the embryonic-maternal crosstalk during implantation, although the exact mechanism of this crosstalk has yet to be determined. The presence of metalloproteinases has been reported in endometrium-derived exosomes, implying the importance of these enzymes in exosome-based crosstalk. Thus, in this review, we describe the potential roles of the metalloproteinases of endometrium-derived exosomes in promoting embryo attachment and implantation. This study could provide a better understanding of the potential roles of exosomal metalloproteinases in embryo implantation and pave the way for developing novel exosome-based regulatory agents to support early pregnancy.


Subject(s)
Blastocyst/enzymology , Embryo Implantation , Endometrium/enzymology , Exosomes/enzymology , Matrix Metalloproteinases/metabolism , Paracrine Communication , Abortion, Spontaneous/enzymology , Abortion, Spontaneous/physiopathology , Abortion, Spontaneous/prevention & control , Animals , Endometrium/physiopathology , Female , Humans , Pregnancy , Signal Transduction
14.
Hum Reprod ; 32(7): 1382-1392, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28472298

ABSTRACT

STUDY QUESTION: How does a maternal diabetic hyperadiponectineamia affect signal transduction and lipid metabolism in rabbit preimplantation blastocysts? SUMMARY ANSWER: In a diabetic pregnancy increased levels of adiponectin led to a switch in embryonic metabolism towards a fatty acid-dependent energy metabolism, mainly affecting genes that are responsible for fatty acid uptake and turnover. WHAT IS KNOWN ALREADY: Although studies in cell culture experiments have shown that adiponectin is able to regulate lipid metabolism via 5'-AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα), data on the effects of adiponectin on embryonic lipid metabolism are not available. In a diabetic pregnancy in rabbits, maternal adiponectin levels are elevated fourfold and are accompanied by an increase in intracellular lipid droplets in blastocysts, implying consequences for the embryonic hormonal and metabolic environment. STUDY DESIGN, SIZE, DURATION: Rabbit blastocysts were cultured in vitro with adiponectin (1 µg/ml) and with the specific AMPK-inhibitor Compound C for 15 min, 1 h and 4 h (N ≥ 3 independent experiments: for RNA analysis, n ≥ 4 blastocysts per treatment group; for protein analysis three blastocysts pooled per sample and three samples used per experiment). Adiponectin signalling was verified in blastocysts grown in vivo from diabetic rabbits with a hyperadiponectinaemia (N ≥ 3 independent experiments, n ≥ 4 samples per treatment group, eight blastocysts pooled per sample). PARTICIPANTS/MATERIALS, SETTING, METHODS: In these blastocysts, expression of molecules involved in adiponectin signalling [adaptor protein 1 (APPL1), AMPK, acetyl-CoA carboxylase (ACC), p38 mitogen-activated protein kinases (p38 MAPK)], lipid metabolism [PPARα, cluster of differentiation 36 (CD36), fatty acid transport protein 4 (FATP4), fatty acid binding protein (FABP4), carnitine palmityl transferase 1 (CPT1), hormone-senstive lipase (HSL), lipoprotein lipase (LPL)] and members of the insulin/insulin-like growth factor (IGF)-system [IGF1, IGF2, insulin receptor (InsR), IGF1 receptor (IGF1R)] were analyzed by quantitative RT-PCR and western blot. Analyses were performed in both models, i.e. adiponectin stimulated blastocysts (in vitro) and in blastocysts grown in vivo under increased adiponectin levels caused by a maternal diabetes mellitus. MAIN RESULTS AND THE ROLE OF CHANCE: In both in vitro and in vivo models adiponectin increased AMPK and ACC phosphorylation, followed by an activation of the transcription factor PPARα, and CPT1, the key enzyme of ß-oxidation (all P < 0.05 versus control). Moreover, mRNA levels of the fatty acid transporters CD36, FATP4 and FABP4, and HSL were upregulated by adiponectin/AMPK signalling (all P < 0.05 versus control). Under diabetic developmental conditions the amount of p38 MAPK was upregulated (P < 0.01 versus non-diabetic), which was not observed in blastocysts cultured in vitro with adiponectin, indicating that the elevated p38 MAPK was not related to adiponectin. However, a second effect of adiponectin has to be noted: its intensification of insulin sensitivity, by regulating IGF availability and InsR/IGF1R expression. LARGE SCALE DATA: Not applicable. LIMITATIONS REASONS FOR CAUTION: There are two main limitations for our study. First, human and rabbit embryogenesis can only be compared during blastocyst development. Therefore, the inferences from our findings are limited to the embryonic stages investigated here. Second, the increased adiponectin levels and lack of maternal insulin is only typical for a diabetes mellitus type one model. WIDER IMPLICATIONS OF THE FINDINGS: This is the first mechanistic study demonstrating a direct influence of adiponectin on lipid metabolism in preimplantation embryos. The numbers of young women with a diabetes mellitus type one are increasing steadily. We have shown that preimplantation embryos are able to adapt to changes in the uterine milieu, which is mediated by the adiponectin/AMPK signalling. A tightly hormonal control during pregnancy is essential for survival and proper development. In this control process, adiponectin plays a more important role than known so far. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the German Research Council (DFG RTG ProMoAge 2155), the EU (FP7 Epihealth No. 278418, FP7-EpiHealthNet N°317146), COST Action EpiConcept FA 1201 and SALAAM BM 1308. The authors have no conflict(s) of interest to disclose.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adiponectin/metabolism , Blastocyst/metabolism , Diabetes Mellitus, Type 1/metabolism , Lipid Metabolism , Pregnancy in Diabetics/metabolism , Up-Regulation , AMP-Activated Protein Kinases/genetics , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Alloxan , Animals , Blastocyst/enzymology , Blastocyst/pathology , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cells, Cultured , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/pathology , Ectogenesis , Female , Gene Expression Regulation, Developmental , PPAR alpha/genetics , PPAR alpha/metabolism , Phosphorylation , Pregnancy , Pregnancy in Diabetics/chemically induced , Pregnancy in Diabetics/pathology , Protein Processing, Post-Translational , Rabbits
15.
Anim Biotechnol ; 28(1): 18-25, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27379566

ABSTRACT

The present study was to find out the expression pattern and relative expression level of apoptotic (Bcl2, Bax, Casp3, and PCNA) and antioxidant enzyme [(GPx, Cu/Zn-SOD (SOD1) and Mn-SOD (SOD2)] genes in sheep oocytes and developing embryos produced in vitro by conventional RT-PCR and real time qPCR, respectively. Different developmental stages of embryos were produced in vitro from oocytes collected from local slaughter house ovaries. RT-PCR amplicons showed expression of Bcl2 and PCNA in all stages except at morula. In contrast Bax and Casp3 were expressed in all stages. GPx and SOD1 were expressed in all stages but SOD2 was not expressed in 8-16 cells, although expressed in the remaining stages. The qPCR analysis reflected that Bcl2 expression was significantly (P < 0.05) downregulated in morula and maximum upregulated expression was observed in in vitro matured oocytes. Higher upregulated expression (P < 0.05) of Bax was in morula and downregulated expression was at 2-4 cells. Casp3 was significantly upregulated at 8-16 cells and downregulated in in vitro matured oocyte. PCNA expression was highest at blastocyst and least expression was at morula. GPx was expressed significantly highest in matured oocytes and least expression was at zygote. SOD1 was expressed significantly highest at 8-16 cells and least expression was at zygote. Expression of SOD2 was least among all the antioxidant enzymes but significantly higher expression of SOD2 was in immature oocyte; however, least expression was at 8-16 cells. It can be concluded from the study that the sheep embryos produced in vitro are highly sensitive to culture condition, which alters the expression level of apoptotic and antioxidant enzyme genes.


Subject(s)
Apoptosis/genetics , Gene Expression Regulation, Developmental , Oocytes/physiology , Sheep/physiology , Animals , Antioxidants/metabolism , Blastocyst/enzymology , Blastocyst/physiology , Caspase 3/genetics , Embryonic Development , Female , Fertilization in Vitro , Gene Expression Regulation, Enzymologic , Glutathione Peroxidase/genetics , In Vitro Oocyte Maturation Techniques/veterinary , Morula/metabolism , Oocytes/enzymology , Proliferating Cell Nuclear Antigen/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Sheep/embryology , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics , bcl-2-Associated X Protein/genetics
16.
Genet Mol Res ; 16(3)2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28973717

ABSTRACT

Aldolase is a key enzyme involved in glycolysis, gluconeogenesis, and the pentose phosphate pathway. To establish the expression patterns of all three aldolase isozyme genes in different tissues and during early embryogenesis in lower vertebrates, as well as to explore the functional differences between these three isozymes, the grass carp was selected as a model owing to its relatively high glucose-metabolizing capability. Based on the cDNA sequences of the aldolase A, B, and C genes, the expression patterns of these three isozymes were analyzed in different tissues and during early embryogenesis using quantitative real-time polymerase chain reaction (qRT-PCR). Sequence analysis of cDNAs indicated that aldolase A, B, and C (GenBank accession numbers: KM192250, KM192251, and KM192252) consist of 364, 364, and 363 amino acids, respectively. The qRT-PCR results showed that the expression levels of aldolase A, B, and C were highest in the muscle, liver, and brain, respectively. Aldolase A and C exhibited similar expression patterns during embryogenesis, with high levels observed in unfertilized and fertilized eggs and at the blastocyst stage, followed by a decline and then increase after organogenesis. In contrast, aldolase B transcript was not detected during the unfertilized egg stage, and appeared only from gastrulation; the expression increased markedly during the feeding period (72 h after hatching), at which point the level was higher than those of aldolase A and C. These data suggest that the glucose content of grass carp starter feed should be adjusted according to the metabolic activity of aldolase B.


Subject(s)
Carps/genetics , Fish Proteins/genetics , Fructose-Bisphosphate Aldolase/genetics , Gene Expression Regulation, Developmental , Animals , Blastocyst/enzymology , Blastocyst/metabolism , Carps/embryology , Carps/growth & development , Fish Proteins/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Organ Specificity
17.
J Cell Sci ; 127(Pt 4): 752-62, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24338368

ABSTRACT

High telomerase activity is a characteristic of human embryonic stem cells (hESCs), however, the regulation and maintenance of correct telomere length in hESCs is unclear. In this study we investigated telomere elongation in hESCs in vitro and found that telomeres lengthened from their derivation in blastocysts through early expansion, but stabilized at later passages. We report that the core unit of telomerase, hTERT, was highly expressed in hESCs in blastocysts and throughout long-term culture; furthermore, this was regulated in a Wnt-ß-catenin-signaling-dependent manner. Our observations that the alternative lengthening of telomeres (ALT) pathway was suppressed in hESCs and that hTERT knockdown partially inhibited telomere elongation, demonstrated that high telomerase activity was required for telomere elongation. We observed that chromatin modification through trimethylation of H3K9 and H4K20 at telomeric regions decreased during early culture. This was concurrent with telomere elongation, suggesting that epigenetic regulation of telomeric chromatin may influence telomerase function. By measuring telomere length in 96 hESC lines, we were able to establish that telomere length remained relatively stable at 12.02 ± 1.01 kb during later passages (15-95). In contrast, telomere length varied in hESCs with genomic instability and hESC-derived teratomas. In summary, we propose that correct, stable telomere length may serve as a potential biomarker for genetically stable hESCs.


Subject(s)
Blastocyst/enzymology , Embryonic Stem Cells/enzymology , Telomerase/physiology , Telomere Homeostasis , Telomere/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Chromatin/metabolism , Genomic Instability , Histones/metabolism , Humans , Methylation , Mice , Neoplasm Transplantation , Protein Processing, Post-Translational , Teratoma/enzymology , Teratoma/pathology , Wnt Signaling Pathway
18.
Development ; 140(21): 4311-22, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24067354

ABSTRACT

During mouse pre-implantation development, extra-embryonic primitive endoderm (PrE) and pluripotent epiblast precursors are specified in the inner cell mass (ICM) of the early blastocyst in a 'salt and pepper' manner, and are subsequently sorted into two distinct layers. Positional cues provided by the blastocyst cavity are thought to be instrumental for cell sorting; however, the sequence of events and the mechanisms that control this segregation remain unknown. Here, we show that atypical protein kinase C (aPKC), a protein associated with apicobasal polarity, is specifically enriched in PrE precursors in the ICM prior to cell sorting and prior to overt signs of cell polarisation. aPKC adopts a polarised localisation in PrE cells only after they reach the blastocyst cavity and form a mature epithelium, in a process that is dependent on FGF signalling. To assess the role of aPKC in PrE formation, we interfered with its activity using either chemical inhibition or RNAi knockdown. We show that inhibition of aPKC from the mid blastocyst stage not only prevents sorting of PrE precursors into a polarised monolayer but concomitantly affects the maturation of PrE precursors. Our results suggest that the processes of PrE and epiblast segregation, and cell fate progression are interdependent, and place aPKC as a central player in the segregation of epiblast and PrE progenitors in the mouse blastocyst.


Subject(s)
Blastocyst Inner Cell Mass/cytology , Blastocyst/enzymology , Blastocyst/physiology , Embryonic Stem Cells/metabolism , Endoderm/physiology , Protein Kinase C/metabolism , Animals , Cell Lineage/physiology , Cell Polarity/physiology , DNA Primers/genetics , Endoderm/cytology , Fibroblast Growth Factors/metabolism , Fluorescent Antibody Technique , Image Processing, Computer-Assisted , Mice , Microscopy, Confocal , Protein Kinase C/genetics , RNA Interference
19.
Reprod Fertil Dev ; 28(3): 310-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25027718

ABSTRACT

N-3 polyunsaturated fatty acids (n-3 PUFAs) have their first double bond at the third carbon from the methyl end of the fatty-acid chain and had been proven to be beneficial to human health. However, mammals cannot produce n-3 PUFAs by themselves because they lack the n-3 fatty-acid desaturase (Fat-1) gene. Thus, the possibility of producing sFat-1 transgenic rabbits was explored in this study. The transgenic cassette of pPGK1-sFat-1-CMV-EGFP was constructed and transgenic rabbit embryos were produced by intracytoplasmic sperm injection (ICSI). When 123 EGFP-positive embryos at the 2-8-cell stage were transplanted into the oviduct of four oestrous-synchronised recipients, two of them became pregnant and gave birth to seven pups. However, transfer of embryos into the uterus of oestrous-synchronised recipients and oviduct or uterus of oocyte donor rabbits did not result in pregnancy. The integration of the sFat-1 gene was confirmed in six of the seven live pups by PCR and Southern blot. The expression of the sFat-1 gene in the six transgenic pups was also detected by reverse transcription polymerase chain reaction (RT-PCR). Gas chromatography-mass spectrometry analysis revealed that transgenic rabbits exhibited an ~15-fold decrease in the ratio of n-6:n-3 PUFAs in muscle compared with wild-type rabbits and non-transgenic rabbits. These results demonstrate that sFat-1 transgenic rabbits can be produced by ICSI and display a low ratio of n-6:n-3 PUFAs.


Subject(s)
Blastocyst/enzymology , Fatty Acid Desaturases/biosynthesis , Fatty Acids, Omega-3/metabolism , Meat , Muscle, Skeletal/metabolism , Sperm Injections, Intracytoplasmic/veterinary , Animals , Animals, Genetically Modified , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary , Enzyme Induction , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-6/metabolism , Female , Gas Chromatography-Mass Spectrometry/veterinary , Genotype , Male , Phenotype , Pregnancy , Pregnancy Rate , Rabbits , Reverse Transcriptase Polymerase Chain Reaction/veterinary
20.
Reprod Fertil Dev ; 28(6): 776-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25455885

ABSTRACT

The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.


Subject(s)
Blastocyst/metabolism , Down-Regulation , Ectogenesis , Embryo, Mammalian/metabolism , Oocytes/metabolism , Ribosomal Proteins/metabolism , Stress, Physiological , Animals , Animals, Outbred Strains , Blastocyst/cytology , Blastocyst/enzymology , Embryo Culture Techniques , Embryo, Mammalian/cytology , Embryo, Mammalian/enzymology , Female , Gene Expression Profiling , Hydrostatic Pressure/adverse effects , Male , Mice , Oligonucleotide Array Sequence Analysis , Oocytes/cytology , Oocytes/enzymology , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomal Proteins/genetics , Specific Pathogen-Free Organisms , Sperm Injections, Intracytoplasmic
SELECTION OF CITATIONS
SEARCH DETAIL