Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.759
Filter
Add more filters

Publication year range
1.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38744282

ABSTRACT

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Subject(s)
Blastomeres , Cell Lineage , Embryo, Mammalian , Female , Humans , Blastomeres/cytology , Blastomeres/metabolism , Cell Division , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development , Germ Layers/cytology , Germ Layers/metabolism , Male , Animals , Mice
2.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38843832

ABSTRACT

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Subject(s)
Cell Differentiation , Spliceosomes , Animals , Humans , Mice , Blastocyst/metabolism , Blastocyst/cytology , Blastomeres/metabolism , Blastomeres/cytology , Cellular Reprogramming , Embryonic Development/genetics , Germ Layers/metabolism , Germ Layers/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , RNA Splicing , Spliceosomes/metabolism , Totipotent Stem Cells/metabolism , Totipotent Stem Cells/cytology , Zygote/metabolism , Cells, Cultured , Models, Molecular , Protein Structure, Tertiary , Genome, Human , Single-Cell Analysis , Growth Differentiation Factor 15/chemistry , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Epigenomics , Cell Lineage
3.
Cell ; 184(11): 2843-2859.e20, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33991488

ABSTRACT

Since establishment of the first embryonic stem cells (ESCs), in vitro culture of totipotent cells functionally and molecularly comparable with in vivo blastomeres with embryonic and extraembryonic developmental potential has been a challenge. Here we report that spliceosomal repression in mouse ESCs drives a pluripotent-to-totipotent state transition. Using the splicing inhibitor pladienolide B, we achieve stable in vitro culture of totipotent ESCs comparable at molecular levels with 2- and 4-cell blastomeres, which we call totipotent blastomere-like cells (TBLCs). Mouse chimeric assays combined with single-cell RNA sequencing (scRNA-seq) demonstrate that TBLCs have a robust bidirectional developmental capability to generate multiple embryonic and extraembryonic cell lineages. Mechanically, spliceosomal repression causes widespread splicing inhibition of pluripotent genes, whereas totipotent genes, which contain few short introns, are efficiently spliced and transcriptionally activated. Our study provides a means for capturing and maintaining totipotent stem cells.


Subject(s)
Totipotent Stem Cells/cytology , Totipotent Stem Cells/metabolism , Animals , Blastomeres/cytology , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mouse Embryonic Stem Cells/cytology , Totipotent Stem Cells/physiology
4.
Cell ; 175(7): 1887-1901.e18, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30550787

ABSTRACT

In early mammalian embryos, it remains unclear how the first cell fate bias is initially triggered and amplified toward cell fate segregation. Here, we report that a long noncoding RNA, LincGET, is transiently and asymmetrically expressed in the nucleus of two- to four-cell mouse embryos. Overexpression of LincGET in one of the two-cell blastomeres biases its progeny predominantly toward the inner cell mass (ICM) fate. Mechanistically, LincGET physically binds to CARM1 and promotes the nuclear localization of CARM1, which can further increase the level of H3 methylation at Arginine 26 (H3R26me), activate ICM-specific gene expression, upregulate transposons, and increase global chromatin accessibility. Simultaneous overexpression of LincGET and depletion of Carm1 no longer biased embryonic fate, indicating that the effect of LincGET in directing ICM lineage depends on CARM1. Thus, our data identify LincGET as one of the earliest known lineage regulators to bias cell fate in mammalian 2-cell embryos.


Subject(s)
Blastocyst/metabolism , Blastomeres/metabolism , Cell Lineage/physiology , Gene Expression Regulation, Developmental/physiology , RNA, Long Noncoding/biosynthesis , Animals , Blastocyst/cytology , Blastomeres/cytology , Female , Histones/metabolism , Methylation , Mice , Mice, Inbred ICR , Protein-Arginine N-Methyltransferases/biosynthesis , Protein-Arginine N-Methyltransferases/genetics , RNA, Long Noncoding/genetics
5.
Nature ; 617(7962): 792-797, 2023 May.
Article in English | MEDLINE | ID: mdl-35728625

ABSTRACT

In mice, only the zygotes and blastomeres from 2-cell embryos are authentic totipotent stem cells (TotiSCs) capable of producing all the differentiated cells in both embryonic and extraembryonic tissues and forming an entire organism1. However, it remains unknown whether and how totipotent stem cells can be established in vitro in the absence of germline cells. Here we demonstrate the induction and long-term maintenance of TotiSCs from mouse pluripotent stem cells using a combination of three small molecules: the retinoic acid analogue TTNPB, 1-azakenpaullone and the kinase blocker WS6. The resulting chemically induced totipotent stem cells (ciTotiSCs), resembled mouse totipotent 2-cell embryo cells at the transcriptome, epigenome and metabolome levels. In addition, ciTotiSCs exhibited bidirectional developmental potentials and were able to produce both embryonic and extraembryonic cells in vitro and in teratoma. Furthermore, following injection into 8-cell embryos, ciTotiSCs contributed to both embryonic and extraembryonic lineages with high efficiency. Our chemical approach to totipotent stem cell induction and maintenance provides a defined in vitro system for manipulating and developing understanding of the totipotent state and the development of multicellular organisms from non-germline cells.


Subject(s)
Totipotent Stem Cells , Animals , Mice , Blastomeres , Cell Differentiation/drug effects , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Totipotent Stem Cells/cytology , Totipotent Stem Cells/drug effects , Teratoma/pathology , Cell Lineage/drug effects
6.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38940293

ABSTRACT

Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Zebrafish , Animals , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation/drug effects , Hematopoiesis/drug effects , Receptors, Notch/metabolism , Signal Transduction/drug effects , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Cilia/metabolism , Cilia/drug effects , Blastomeres/cytology , Blastomeres/metabolism , Blastomeres/drug effects , Cells, Cultured
7.
Cell ; 150(3): 521-32, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863006

ABSTRACT

To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres.


Subject(s)
Embryo, Nonmammalian/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Amino Acid Sequence , Animals , Blastomeres/metabolism , Cell Cycle , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryo, Nonmammalian/cytology , Female , Humans , Insecta/cytology , Insecta/embryology , Insecta/metabolism , Male , Mammals/embryology , Mammals/metabolism , Membrane Proteins/metabolism , Molecular Sequence Data , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Spindle Apparatus/metabolism , Zebrafish/metabolism , Zygote/cytology , Zygote/metabolism
8.
Development ; 150(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37435786

ABSTRACT

The preimplantation mammalian (including mouse and human) embryo holds remarkable regulatory abilities, which have found their application, for example, in the preimplantation genetic diagnosis of human embryos. Another manifestation of this developmental plasticity is the possibility of obtaining chimaeras by combining either two embryos or embryos and pluripotent stem cells, which enables the verification of the cell pluripotency and generation of genetically modified animals used to elucidate gene function. Using mouse chimaeric embryos (constructed by injection of embryonic stem cells into the eight-cell embryos) as a tool, we aimed to explore the mechanisms underlying the regulatory nature of the preimplantation mouse embryo. We comprehensively demonstrated the functioning of a multi-level regulatory mechanism involving FGF4/MAPK signalling as a leading player in the communication between both components of the chimaera. This pathway, coupled with apoptosis, the cleavage division pattern and cell cycle duration controlling the size of the embryonic stem cell component and giving it a competitive advantage over host embryo blastomeres, provides a cellular and molecular basis for regulative development, ensuring the generation of the embryo characterised by proper cellular composition.


Subject(s)
Blastocyst , Embryo, Mammalian , Animals , Humans , Mice , Apoptosis/genetics , Blastocyst/metabolism , Blastomeres , Embryonic Development/genetics , Embryonic Stem Cells , Mammals
9.
Development ; 149(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35311995

ABSTRACT

Embryonic aneuploidy is highly complex, often leading to developmental arrest, implantation failure or spontaneous miscarriage in both natural and assisted reproduction. Despite our knowledge of mitotic mis-segregation in somatic cells, the molecular pathways regulating chromosome fidelity during the error-prone cleavage-stage of mammalian embryogenesis remain largely undefined. Using bovine embryos and live-cell fluorescent imaging, we observed frequent micro-/multi-nucleation of mis-segregated chromosomes in initial mitotic divisions that underwent unilateral inheritance, re-fused with the primary nucleus or formed a chromatin bridge with neighboring cells. A correlation between a lack of syngamy, multipolar divisions and asymmetric genome partitioning was also revealed, and single-cell DNA-seq showed propagation of primarily non-reciprocal mitotic errors. Depletion of the mitotic checkpoint protein BUB1B (also known as BUBR1) resulted in similarly abnormal nuclear structures and cell divisions, as well as chaotic aneuploidy and dysregulation of the kinase-substrate network that mediates mitotic progression, all before zygotic genome activation. This demonstrates that embryonic micronuclei sustain multiple fates, provides an explanation for blastomeres with uniparental origins, and substantiates defective checkpoints and likely other maternally derived factors as major contributors to the karyotypic complexity afflicting mammalian preimplantation development.


Subject(s)
Aneuploidy , Blastomeres , Animals , Cattle , Chromosomes , Embryonic Development/genetics , Karyotyping , Mammals/genetics , Mitosis/genetics
10.
PLoS Biol ; 20(3): e3001593, 2022 03.
Article in English | MEDLINE | ID: mdl-35324889

ABSTRACT

Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-µm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis.


Subject(s)
Blastomeres , Embryonic Development , Animals , Blastomeres/metabolism , Embryo, Mammalian , Female , Mice , Morphogenesis , Pregnancy , Zygote
11.
Genes Dev ; 31(5): 511-523, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28360182

ABSTRACT

To understand mammalian active DNA demethylation, various methods have been developed to map the genomic distribution of the demethylation intermediates 5-formylcysotine (5fC) and 5-carboxylcytosine (5caC). However, the majority of these methods requires a large number of cells to begin with. In this study, we describe low-input methylase-assisted bisulfite sequencing (liMAB-seq ) and single-cell MAB-seq (scMAB-seq), capable of profiling 5fC and 5caC at genome scale using ∼100 cells and single cells, respectively. liMAB-seq analysis of preimplantation embryos reveals the oxidation of 5mC to 5fC/5caC and the positive correlation between chromatin accessibility and processivity of ten-eleven translocation (TET) enzymes. scMAB-seq captures the cell-to-cell heterogeneity of 5fC and 5caC and reveals the strand-biased distribution of 5fC and 5caC. scMAB-seq also allows the simultaneous high-resolution mapping of sister chromatid exchange (SCE), facilitating the study of this type of genomic rearrangement. Therefore, our study not only establishes new methods for the genomic mapping of active DNA demethylation using limited numbers of cells or single cells but also demonstrates the utilities of the methods in different biological contexts.


Subject(s)
Chromosome Mapping/methods , DNA Methylation , Genomics/methods , Single-Cell Analysis/methods , Sister Chromatid Exchange , Animals , Blastomeres/metabolism , DNA Replication , Embryo, Mammalian , Mice
12.
Dev Dyn ; 253(3): 333-350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37698352

ABSTRACT

BACKGROUND: Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS: During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS: p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.


Subject(s)
Blastocyst , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/genetics , Blastomeres , Embryonic Development/genetics , Sea Urchins/genetics , Mammals
13.
Dev Biol ; 496: 24-35, 2023 04.
Article in English | MEDLINE | ID: mdl-36702215

ABSTRACT

Gastrulation is the first dynamic cell movement during embryogenesis. Endoderm and mesoderm cells are internalized into embryos during this process. Ascidian embryos provide a simple system for studying gastrulation in chordates. Gastrulation starts in spherical late 64-cell embryos with 10 endoderm blastomeres. The mechanisms of gastrulation in ascidians have been investigated, and a two-step model has been proposed. The first step involves apical constriction of endoderm cells, followed by apicobasal shortening in the second step. In this study, isolated ascidian endoderm progenitor cells displayed dynamic blebbing activity at the gastrula stage, although such a dynamic cell-shape change was not recognized in toto. Blebbing is often observed in migrating animal cells. In ascidians, endoderm cells displayed blebbing activity, while mesoderm and ectoderm cells did not. The timing of blebbing of isolated endoderm cells coincided with that of cell invagination. The constriction rate of apical surfaces correlated with the intensity of blebbing activity in each endoderm-lineage cell. Fibroblast growth factor (FGF) signaling was both necessary and sufficient for inducing blebbing activity, independent of cell fate specification. In contrast, the timing of initiation of blebbing and intensity of blebbing response to FGF signaling were controlled by intrinsic cellular factors. It is likely that the difference in intensity of blebbing activity between the anterior A-line and posterior B-line cells could account for the anteroposterior difference in the steepness of the archenteron wall. Inhibition of zygotic transcription, FGF signaling, and Rho kinase, all of which suppressed blebbing activity, resulted in incomplete apical constriction and failure of the eventual formation of cup-shaped gastrulae. Blebbing activity was involved in the progression and maintenance of apical constriction, but not in apicobasal shortening in whole embryos. Apical constriction is mediated by distinct blebbing-dependent and blebbing-independent mechanisms. Surface tension and consequent membrane contraction may not be the sole mechanical force for apical constriction and formation of cup-shaped gastrulae. The present study reveals the hidden cellular potential of endodermal cells during gastrulation and discusses the possible roles of blebbing in the invagination process.


Subject(s)
Gastrulation , Urochordata , Animals , Endoderm/metabolism , Blastomeres/physiology , Gastrula , Fibroblast Growth Factors/metabolism
14.
N Engl J Med ; 385(22): 2047-2058, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34818479

ABSTRACT

BACKGROUND: Embryo selection with preimplantation genetic testing for aneuploidy (PGT-A) may improve pregnancy outcomes after initial embryo transfer. However, it remains uncertain whether PGT-A improves the cumulative live-birth rate as compared with conventional in vitro fertilization (IVF). METHODS: In this multicenter, randomized, controlled trial, we randomly assigned subfertile women with three or more good-quality blastocysts to undergo either PGT-A or conventional IVF; all the women were between 20 and 37 years of age. Three blastocysts were screened by next-generation sequencing in the PGT-A group or were chosen by morphologic criteria in the conventional-IVF group and then were successively transferred one by one. The primary outcome was the cumulative live-birth rate after up to three embryo-transfer procedures within 1 year after randomization. We hypothesized that the use of PGT-A would result in a cumulative live-birth rate that was no more than 7 percentage points higher than the rate after conventional IVF, which would constitute the noninferiority margin for conventional IVF as compared with PGT-A. RESULTS: A total of 1212 patients underwent randomization, and 606 were assigned to each trial group. Live births occurred in 468 women (77.2%) in the PGT-A group and in 496 (81.8%) in the conventional-IVF group (absolute difference, -4.6 percentage points; 95% confidence interval [CI], -9.2 to -0.0; P<0.001). The cumulative frequency of clinical pregnancy loss was 8.7% and 12.6%, respectively (absolute difference, -3.9 percentage points; 95% CI, -7.5 to -0.2). The incidences of obstetrical or neonatal complications and other adverse events were similar in the two groups. CONCLUSIONS: Among women with three or more good-quality blastocysts, conventional IVF resulted in a cumulative live-birth rate that was noninferior to the rate with PGT-A. (Funded by the National Natural Science Foundation of China and others; ClinicalTrials.gov number, NCT03118141.).


Subject(s)
Aneuploidy , Fertilization in Vitro , Genetic Testing , Live Birth , Preimplantation Diagnosis , Adult , Blastomeres , Chromosome Disorders/diagnosis , Embryo Transfer , Female , High-Throughput Nucleotide Sequencing , Humans , Intention to Treat Analysis , Pregnancy , Prognosis , Young Adult
15.
Development ; 148(5)2021 03 09.
Article in English | MEDLINE | ID: mdl-33558388

ABSTRACT

CRISPR-stop converts protein-coding sequences into stop codons, which, in the appropriate location, results in a null allele. CRISPR-stop induction in one-cell-stage zygotes generates Founder 0 (F0) mice that are homozygous mutants; this avoids mouse breeding and serves as a rapid screening approach for nonlethal genes. However, loss of function of 25% of mammalian genes causes early lethality. Here, we induced CRISPR-stop in one of the two blastomeres of the zygote, a method we name mosaic CRISPR-stop, to produce mosaic Atoh1 and Sox10 F0 mice; these mice not only survived longer than regular Atoh1/Sox10 knockout mice but also displayed their recognized cochlear phenotypes. Moreover, by using mosaic CRISPR-stop, we uncovered a previously unknown role of another lethal gene, Rbm24, in the survival of cochlear outer hair cells (OHCs), and we further validated the importance of Rbm24 in OHCs by using our Rbm24 conditional knockout model. Together, our results demonstrated that mosaic CRISPR-stop is reliable and rapid, and we believe this method will facilitate rapid genetic screening of developmentally lethal genes in the mouse inner ear and also in other organs.


Subject(s)
CRISPR-Cas Systems/genetics , Genes, Essential/genetics , RNA, Guide, Kinetoplastida/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Blastomeres/cytology , Blastomeres/metabolism , Codon, Nonsense , Codon, Terminator , Hair Cells, Auditory, Outer/cytology , Hair Cells, Auditory, Outer/metabolism , Mice , Mice, Knockout , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SOXE Transcription Factors/deficiency , SOXE Transcription Factors/genetics , Zygote/cytology , Zygote/metabolism
16.
Development ; 148(7)2021 03 31.
Article in English | MEDLINE | ID: mdl-33688076

ABSTRACT

Activation of Wnt/ß-catenin (cWnt) signaling at the future posterior end of early bilaterian embryos is a highly conserved mechanism for establishing the anterior-posterior (AP) axis. Moreover, inhibition of cWnt at the anterior end is required for development of anterior structures in many deuterostome taxa. This phenomenon, which occurs around the time of gastrulation, has been fairly well characterized, but the significance of intracellular inhibition of cWnt signaling in cleavage-stage deuterostome embryos for normal AP patterning is less well understood. To investigate this process in an invertebrate deuterostome, we defined Axin function in early sea urchin embryos. Axin is ubiquitously expressed at relatively high levels in early embryos and functional analysis revealed that Axin suppresses posterior cell fates in anterior blastomeres by blocking ectopic cWnt activation in these cells. Structure-function analysis of sea urchin Axin demonstrated that only its GSK-3ß-binding domain is required for cWnt inhibition. These observations and results in other deuterostomes suggest that Axin plays a crucial conserved role in embryonic AP patterning by preventing cWnt activation in multipotent early blastomeres, thus protecting them from assuming ectopic cell fates.


Subject(s)
Axin Protein/genetics , Axin Protein/metabolism , Sea Urchins/embryology , Sea Urchins/genetics , Sea Urchins/physiology , Animals , Blastomeres/metabolism , Embryo, Nonmammalian/metabolism , Gastrulation , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Glycogen Synthase Kinase 3 beta/chemistry , Glycogen Synthase Kinase 3 beta/metabolism , Lytechinus , Strongylocentrotus purpuratus , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
17.
Hum Reprod ; 39(9): 1889-1898, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38926157

ABSTRACT

In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.


Subject(s)
Blastocyst , Cell Lineage , Embryonic Development , Animals , Humans , Blastocyst/cytology , Blastocyst/physiology , Embryonic Development/physiology , Mice , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/physiology , Blastocyst Inner Cell Mass/metabolism , Gene Expression Regulation, Developmental , Blastomeres/cytology , Blastomeres/physiology , Blastomeres/metabolism , Mammals , Embryo, Mammalian/cytology
18.
Reprod Biomed Online ; 48(5): 103763, 2024 05.
Article in English | MEDLINE | ID: mdl-38452604

ABSTRACT

RESEARCH QUESTION: Embryo blastomeres and the zona pellucida are occasionally damaged during vitrification; is this a result of crack-induced mechanical damage in the glass state, caused by external bending of the device? DESIGN: A stereomicroscope was used to observe external bending-induced cracks in a cryoprotectant. Thereafter, 309 human cleavage-stage embryos derived from abnormally fertilized eggs were used to assess embryo damage under two external bending conditions: forward bending and backward bending, with three bending degrees applied. Three distinct embryo positions were used to examine the correlation between bending and embryo damage. Damage was assessed by looking at blastomere lysis rates, and overall rates of damaged and surviving embryos. RESULTS: A series of parallel cracks were identified in the cryoprotectant used for external bending, which led to damage to the embryo blastomeres. Compared with forward bending and control, the embryos were found to be more easily damaged by backward bending, indicated by significantly higher blastomere lysis and embryo damage rates, and lower embryo survival rate of backward bending than forward bending (P < 0.001). The degree of embryo damage also increased as the degree of external forces increased. Embryo position correlated with degree of embryo damage. CONCLUSIONS: Cryoprotectant crack-induced damage was identified as the cause of embryo damage. Mechanical damage to the glass state occurs because of improper external bending of the cryodevice strip in liquid nitrogen during vitrification. To prevent damage, bending of the strip should be avoided and the embryos should be placed near the tip of the strip.


Subject(s)
Blastomeres , Cryopreservation , Cryoprotective Agents , Vitrification , Humans , Cryoprotective Agents/pharmacology , Female , Embryo, Mammalian/drug effects
19.
BMC Pregnancy Childbirth ; 24(1): 629, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354414

ABSTRACT

PURPOSE: Explore the effect of blastomere cell number on ART outcome of fresh embryo transfer on day 3. METHODS: Retrospective analysis of 540 fresh single day 3 embryo transfer cycles at the Reproductive Center of the Third Affiliated Hospital of Guangzhou Medical University from January 1, 2018 to October 31, 2022. Patients were divided into 5-6 cell group (n = 55), 7-9 cell group (n = 457), and ≥ 10 cell group(n = 28) based on the number of blastomeres. Single factor analysis of variance and Pearson's chi square test were used to compare the basic data, cycle information, pregnancy outcome and neonatal outcome. Univariate logistic regression was used to correct for confounding factors and analyze the influencing factors of pregnancy outcome. RESULTS: The positive HCG rate were 20%, 43%, 25% for the 5-6-cell, 7-9 cell and ≥ 10 cell groups respectively, with statistically significant differences (P < 0.001). The clinical pregnancy rate was 18%, 42%,21%, respectively (P < 0.001). The live birth rates were 13%, 34%,21% with P-value less than 0.05 which is statistically significant. In order to exclude the influence of confounding factors, multivariable logistic regression analysis was performed, and the outcomes were consistent with previous findings. There were no significant differences found in neonatal outcome between groups (P > 0.05). CONCLUSION: The results suggested that intermediate cleaving embryos (7-9 cell) still presents the highest clinical potential. Fast and slow cleaving embryos are not conducive to the ART outcome.


Subject(s)
Blastomeres , Pregnancy Outcome , Pregnancy Rate , Humans , Female , Pregnancy , Blastomeres/cytology , Retrospective Studies , Adult , Pregnancy Outcome/epidemiology , Embryo Transfer/methods , Embryo Transfer/statistics & numerical data , Live Birth , Cell Count , Single Embryo Transfer/statistics & numerical data , China
20.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972425

ABSTRACT

Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cerebral Cortex/metabolism , Formins/metabolism , Signal Transduction/physiology , rhoA GTP-Binding Protein/metabolism , Actomyosin/genetics , Actomyosin/metabolism , Animals , Animals, Genetically Modified , Blastomeres/cytology , Blastomeres/metabolism , Body Patterning/genetics , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cerebral Cortex/embryology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Formins/genetics , Functional Laterality/genetics , Functional Laterality/physiology , Signal Transduction/genetics , Torque , rhoA GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL