Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 40(19): e107664, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34423453

ABSTRACT

Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum-derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system-mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans-Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase-activating Protein (GAP) ACAP1 to dysregulate Arf6-/Rab8a-dependent transport within the recycling endosome, which resulted in accretion of TGN-associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.


Subject(s)
ADP-Ribosylation Factor 6/metabolism , Brucella abortus/physiology , Brucellosis/metabolism , Brucellosis/microbiology , Host-Pathogen Interactions , Vacuoles/microbiology , rab GTP-Binding Proteins/metabolism , Animals , Bacterial Proteins/metabolism , Brucellosis/immunology , Endosomes/metabolism , Endosomes/microbiology , GTPase-Activating Proteins/metabolism , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Mice , Models, Biological , Protein Binding , Protein Transport , Type IV Secretion Systems , trans-Golgi Network
2.
EMBO Rep ; 24(9): e55376, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37503678

ABSTRACT

Bacteria of the genus Brucella cause brucellosis, one of the world's most common zoonotic diseases. A major contributor to Brucella's virulence is the ability to circumvent host immune defense mechanisms. Here, we find that the DNA-binding protein Dps from Brucella is secreted within the macrophage cytosol, modulating host iron homeostasis and mediating intracellular growth of Brucella. In addition to dampening iron-dependent production of reactive oxygen species (ROS), a key immune effector required for immediate bacterial clearance, cytosolic Dps mediates ferritinophagy activation to elevate intracellular free-iron levels, thereby promoting Brucella growth and inducing host cell necrosis. Inactivation of the ferritinophagy pathway by Ncoa4 gene knockout significantly inhibits intracellular growth of Brucella and host cell death. Our study uncovers an unconventional role of bacterial Dps, identifying a crucial virulence mechanism used by Brucella to adapt to the harsh environment inside macrophages.


Subject(s)
Brucella , Brucellosis , Humans , Brucellosis/metabolism , Brucellosis/microbiology , Macrophages/metabolism , Cell Death , Iron/metabolism
3.
J Immunol ; 211(5): 791-803, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37477668

ABSTRACT

The bacillus Calmette-Guérin (BCG) can elicit enhanced innate immune responses against a wide range of infections, known as trained immunity. Brucella abortus is the causative agent of brucellosis, a debilitating disease that affects humans and animals. In this study, we demonstrate that C57BL/6 mouse bone marrow-derived macrophages under BCG training enhance inflammatory responses against B. abortus. BCG-trained macrophages showed increased MHC class II and CD40 expression on the cell surface and higher IL-6, IL-12, and IL-1ß production. The increase in IL-1ß secretion was accompanied by enhanced activation of canonical and noncanonical inflammasome platforms. We observed elevated caspase-11 expression and caspase-1 processing in BCG-trained macrophages in response to B. abortus compared with untrained cells. In addition, these BCG-trained cells showed higher NLRP3 expression after B. abortus infection. From a metabolic point of view, signaling through the Akt/mammalian target of rapamycin/S6 kinase pathway was also enhanced. In addition, BCG training resulted in higher inducible NO synthase expression and nitrite production, culminating in an improved macrophage-killing capacity against intracellular B. abortus. In vivo, we monitored a significant reduction in the bacterial burden in organs from BCG-trained C57BL/6 mice when compared with the untrained group. In addition, previous BCG immunization of RAG-1-deficient mice partially protects against Brucella infection, suggesting the important role of the innate immune compartment in this scenario. Furthermore, naive recipient mice that received BM transfer from BCG-trained donors showed greater resistance to B. abortus when compared with their untrained counterparts. These results demonstrate that BCG-induced trained immunity in mice results in better control of intracellular B. abortus in vivo and in vitro.


Subject(s)
Brucella abortus , Brucellosis , Humans , Animals , Mice , BCG Vaccine , Mice, Inbred C57BL , Macrophages , Brucellosis/metabolism , Caspases/metabolism , Mammals
4.
J Immunol ; 209(3): 488-497, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35840160

ABSTRACT

Mammalian GTPase-activating proteins (GAPs) can inhibit innate immunity signaling in a spatiotemporal fashion; however, the role of bacterial GAPs in mediating innate immunity remains unknown. In this study, we show that BspI, a Brucella type IV secretion system (T4SS) effector protein, containing a GAP domain at the C terminus, negatively regulates proinflammatory responses and host protection to Brucella abotus infection in a mouse model. In macrophages, BspI inhibits the activation of inositol-requiring enzyme 1 (IRE1) kinase, but it does not inhibit activation of ATF6 and PERK. BspI suppresses induction of proinflammatory cytokines via inhibiting the activity of IRE1 kinase caused by VceC, a type IV secretion system effector protein that localizes to the endoplasmic reticulum. Ectopically expressed BspI interacts with IRE1 in HeLa cells. The inhibitory function of BspI depends on its GAP domain but not on interaction with small GTPase Ras-associated binding protein 1B (RAB1B). Collectively, these data support a model where BspI, in a GAP domain-dependent manner, inhibits activation of IRE1 to prevent proinflammatory cytokine responses.


Subject(s)
Brucellosis , Type IV Secretion Systems , Animals , Brucella abortus , Brucellosis/metabolism , Cytokines/metabolism , HeLa Cells , Humans , Inflammation , Mammals/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Type IV Secretion Systems/metabolism
5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34353909

ABSTRACT

Perturbation of the endoplasmic reticulum (ER), a central organelle of the cell, can have critical consequences for cellular homeostasis. An elaborate surveillance system known as ER quality control ensures that cells can respond and adapt to stress via the unfolded protein response (UPR) and that only correctly assembled proteins reach their destination. Interestingly, several bacterial pathogens hijack the ER to establish an infection. However, it remains poorly understood how bacterial pathogens exploit ER quality-control functions to complete their intracellular cycle. Brucella spp. replicate extensively within an ER-derived niche, which evolves into specialized vacuoles suited for exit from infected cells. Here we present Brucella-secreted protein L (BspL), a Brucella abortus effector that interacts with Herp, a central component of the ER-associated degradation (ERAD) machinery. We found that BspL enhances ERAD at the late stages of the infection. BspL targeting of Herp and ERAD allows tight control of the kinetics of autophagic Brucella-containing vacuole formation, delaying the last step of its intracellular cycle and cell-to-cell spread. This study highlights a mechanism by which a bacterial pathogen hijacks ERAD components for fine regulation of its intracellular trafficking.


Subject(s)
Bacterial Proteins/metabolism , Brucella abortus/pathogenicity , Brucellosis/metabolism , Animals , Bacterial Proteins/genetics , Brucella abortus/metabolism , Brucellosis/microbiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , HeLa Cells , Host-Pathogen Interactions/physiology , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Transcription Factor CHOP/genetics , Type IV Secretion Systems/metabolism , X-Box Binding Protein 1/genetics
6.
PLoS Pathog ; 17(5): e1009597, 2021 05.
Article in English | MEDLINE | ID: mdl-33989349

ABSTRACT

Macrophages metabolic reprogramming in response to microbial insults is a major determinant of pathogen growth or containment. Here, we reveal a distinct mechanism by which stimulator of interferon genes (STING), a cytosolic sensor that regulates innate immune responses, contributes to an inflammatory M1-like macrophage profile upon Brucella abortus infection. This metabolic reprogramming is induced by STING-dependent stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), a global regulator of cellular metabolism and innate immune cell functions. HIF-1α stabilization reduces oxidative phosphorylation and increases glycolysis during infection with B. abortus and, likewise, enhances nitric oxide production, inflammasome activation and IL-1ß release in infected macrophages. Furthermore, the induction of this inflammatory profile participates in the control of bacterial replication since absence of HIF-1α renders mice more susceptible to B. abortus infection. Mechanistically, activation of STING by B. abortus infection drives the production of mitochondrial reactive oxygen species (mROS) that ultimately influences HIF-1α stabilization. Moreover, STING increases the intracellular succinate concentration in infected macrophages, and succinate pretreatment induces HIF-1α stabilization and IL-1ß release independently of its cognate receptor GPR91. Collectively, these data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during B. abortus infection that is orchestrated by STING via HIF-1α pathway and highlight the metabolic reprogramming of macrophages as a potential treatment strategy for bacterial infections.


Subject(s)
Brucella abortus/immunology , Brucellosis/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Animals , Brucellosis/immunology , Brucellosis/microbiology , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
7.
PLoS Pathog ; 16(4): e1007979, 2020 04.
Article in English | MEDLINE | ID: mdl-32298382

ABSTRACT

Brucella species are facultative intracellular Gram-negative bacteria relevant to animal and human health. Their ability to establish an intracellular niche and subvert host cell pathways to their advantage depends on the delivery of bacterial effector proteins through a type IV secretion system. Brucella Toll/Interleukin-1 Receptor (TIR)-domain-containing proteins BtpA (also known as TcpB) and BtpB are among such effectors. Although divergent in primary sequence, they interfere with Toll-like receptor (TLR) signaling to inhibit the innate immune responses. However, the molecular mechanisms implicated still remain unclear. To gain insight into the functions of BtpA and BtpB, we expressed them in the budding yeast Saccharomyces cerevisiae as a eukaryotic cell model. We found that both effectors were cytotoxic and that their respective TIR domains were necessary and sufficient for yeast growth inhibition. Growth arrest was concomitant with actin depolymerization, endocytic block and a general decrease in kinase activity in the cell, suggesting a failure in energetic metabolism. Indeed, levels of ATP and NAD+ were low in yeast cells expressing BtpA and BtpB TIR domains, consistent with the recently described enzymatic activity of some TIR domains as NAD+ hydrolases. In human epithelial cells, both BtpA and BtpB expression reduced intracellular total NAD levels. In infected cells, both BtpA and BtpB contributed to reduction of total NAD, indicating that their NAD+ hydrolase functions are active intracellularly during infection. Overall, combining the yeast model together with mammalian cells and infection studies our results show that BtpA and BtpB modulate energy metabolism in host cells through NAD+ hydrolysis, assigning a novel role for these TIR domain-containing effectors in Brucella pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Brucella abortus/growth & development , Brucellosis/metabolism , Hydrolases/metabolism , NAD/metabolism , Saccharomyces cerevisiae/growth & development , Virulence Factors/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Brucella abortus/metabolism , Brucellosis/microbiology , HeLa Cells , Humans , Protein Conformation , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Virulence Factors/genetics
8.
PLoS Pathog ; 16(10): e1009020, 2020 10.
Article in English | MEDLINE | ID: mdl-33108406

ABSTRACT

Brucellosis, caused by a number of Brucella species, remains the most prevalent zoonotic disease worldwide. Brucella establish chronic infections within host macrophages despite triggering cytosolic innate immune sensors, including Stimulator of Interferon Genes (STING), which potentially limit infection. In this study, STING was required for control of chronic Brucella infection in vivo. However, early during infection, Brucella down-regulated STING mRNA and protein. Down-regulation occurred post-transcriptionally, required live bacteria, the Brucella type IV secretion system, and was independent of host IRE1-RNase activity. STING suppression occurred in MyD88-/- macrophages and was not induced by Toll-like receptor agonists or purified Brucella lipopolysaccharide (LPS). Rather, Brucella induced a STING-targeting microRNA, miR-24-2, in a type IV secretion system-dependent manner. Furthermore, STING downregulation was inhibited by miR-24 anti-miRs and in Mirn23a locus-deficient macrophages. Failure to suppress STING expression in Mirn23a-/- macrophages correlated with diminished Brucella replication, and was rescued by exogenous miR-24. Mirn23a-/- mice were also more resistant to splenic colonization one week post infection. Anti-miR-24 potently suppressed replication in wild type, but much less in STING-/- macrophages, suggesting most of the impact of miR-24 induction on replication occurred via STING suppression. In summary, Brucella sabotages cytosolic surveillance by miR-24-dependent suppression of STING expression; post-STING activation "damage control" via targeted STING destruction may enable establishment of chronic infection.


Subject(s)
Brucella/metabolism , Brucellosis/metabolism , Membrane Proteins/biosynthesis , MicroRNAs/metabolism , Animals , Brucella/genetics , Brucellosis/genetics , Female , Host-Pathogen Interactions/immunology , Macrophages/immunology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , RNA, Messenger/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism
9.
Microb Pathog ; 164: 105458, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35227838

ABSTRACT

Brucellosis is a bacterial disease of animals and a zoonotic infection. Thrombocytopenia is a common outcome in long-lasting brucellosis in humans. Likewise, ex vivo experiments have shown that platelets may play a role in Brucella abortus infections. Following these reports, we explored the course of brucellosis in thrombocytopenic mice, using the non-toxic low-molecular-weight aspercetin protein that depletes platelets in vivo. Aspercetin does not induce systemic hemorrhage or inflammation, and when injected into mice, it generates a rapid dose-dependent drop in platelet counts without affecting central organs, disrupting hematological parameters, or the proinflammatory cytokine profile. Compared to the B. abortus infected control group, the infected thrombocytopenic mice did not show significant differences in the hematological profiles, pathological score, spleen, liver histopathology, or bacterial loads. Except for IL-6, which was higher in the infected thrombocytopenic mice, the TNF-α, IFN-γ and IL-10 did not significantly differ with the PBS-infected group. The results indicate that platelets do not play a significant role in modulating Brucella infection in vivo at the early stages of infection, which is commensurate with the stealthy strategy followed by Brucella organisms at the onset of the disease.


Subject(s)
Blood Platelets , Brucella abortus , Brucellosis , Animals , Blood Platelets/metabolism , Brucella abortus/metabolism , Brucellosis/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism
10.
J Immunol ; 204(3): 632-643, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31852753

ABSTRACT

Thioredoxin-interacting protein (TXNIP) is a multifunctional protein that functions in tumor suppression, oxidative stress, and inflammatory responses. However, how TXNIP functions during microbial infections is rarely reported. In this study, we demonstrate that Brucella infection decreased TXNIP expression to promote its intracellular growth in macrophages by decreasing the production of NO and reactive oxygen species (ROS). Following Brucella abortus infection, TXNIP knockout RAW264.7 cells produced significantly lower levels of NO and ROS, compared with wild-type RAW264.7 cells. Inducible NO synthase (iNOS) inhibitor treatment reduced NO levels, which resulted in a dose-dependent restoration of TXNIP expression, demonstrating that the expression of TXNIP is regulated by NO. In addition, the expression of iNOS and the production of NO were dependent on the type IV secretion system of Brucella Moreover, Brucella infection reduced TXNIP expression in bone marrow-derived macrophages and mouse lung and spleen. Knocked down of the TXNIP expression in bone marrow-derived macrophages increased intracellular survival of Brucella These findings revealed the following: 1) TXNIP is a novel molecule to promote Brucella intracellular survival by reducing the production of NO and ROS; 2) a negative feedback-regulation system of NO confers protection against iNOS-mediated antibacterial effects. The elucidation of this mechanism may reveal a novel host surveillance pathway for bacterial intracellular survival.


Subject(s)
Brucella abortus/physiology , Brucellosis/metabolism , Carrier Proteins/metabolism , Macrophages/immunology , Thioredoxins/metabolism , Animals , Brucellosis/microbiology , Carrier Proteins/genetics , Disease Models, Animal , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Intracellular Space/metabolism , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Thioredoxins/genetics
11.
Infect Immun ; 89(10): e0015621, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34125603

ABSTRACT

Brucellosis is one of the most common global zoonoses and is caused by facultative intracellular bacteria of the genus Brucella. Numerous studies have found that MyD88 signaling contributes to protection against Brucella; however, the underlying mechanism has not been entirely defined. Here, we show that MyD88 signaling in hematopoietic cells contributes both to inflammation and to control of Brucella melitensis infection in vivo. While the protective role of MyD88 in Brucella infection has often been attributed to promotion of gamma interferon (IFN-γ) production, we found that MyD88 signaling restricts host colonization by B. melitensis even in the absence of IFN-γ. In vitro, we show that MyD88 promotes macrophage glycolysis in response to B. melitensis. Interestingly, a B. melitensis mutant lacking the glucose transporter, GluP, was more highly attenuated in MyD88-/- than in wild-type mice, suggesting MyD88 deficiency results in an increased availability of glucose in vivo, which Brucella can exploit via GluP. Metabolite profiling of macrophages identified several metabolites regulated by MyD88 in response to B. melitensis, including itaconate. Subsequently, we found that itaconate has antibacterial effects against Brucella and also regulates the production of proinflammatory cytokines in B. melitensis-infected macrophages. Mice lacking the ability to produce itaconate were also more susceptible to B. melitensis in vivo. Collectively, our findings indicate that MyD88-dependent changes in host metabolism contribute to control of Brucella infection.


Subject(s)
Brucellosis/metabolism , Glucose/metabolism , Myeloid Differentiation Factor 88/metabolism , Succinates/metabolism , Animals , Brucella melitensis/pathogenicity , Brucellosis/microbiology , Cytokines/metabolism , Glycolysis/physiology , Interferon-gamma/metabolism , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Signal Transduction/physiology
12.
Neurochem Res ; 46(12): 3264-3272, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34536195

ABSTRACT

Neurobrucellosis is a serious central nervous system (CNS) inflammatory disorder caused by Brucella, and outer membrane protein-31 (Omp31) plays an important role in Brucella infection. This study aims to determine whether Omp31 can induce autophagy in BV-2 microglia. Another goal of the study is to further examine the effect of autophagy on the nuclear transcription factor κB (NF-κB) p65 signaling pathway. We observed that Omp31 stimulated autophagy by increasing microtubule-associated protein 1 light chain 3B (LC3B-II) levels and inducing autophagosome formation at 6 h and 12 h. Concomitantly, Omp31 induced tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expression in a time-dependent manner but reduced the expression of TNF-α at 6 h. We utilized Omp31 with or without rapamycin or 3-methyladenine (3-MA) to treat BV-2 microglia, and it demonstrated further that Omp31 induced autophagy by promoting LC3B-II, Beclin-1 proteins expression and inhibiting the p62 protein levels. Furthermore, we explored the effects of autophagy on the NF-κB p65 pathway through western blot analysis, RT-qPCR assay, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. The data suggest that Omp31 as well as rapamycin, the autophagy inducer, can decrease TNF-α levels through the inhibition of the NF-κB p65 signaling pathway. Taken together, Omp31 can function as a catalyst in both autophagy induction and NF-κB p65 signal inhibition. Furthermore, Omp31-induced autophagy may inhibit the expression of TNF-α by negatively regulating NF-κB p65 signaling pathway.


Subject(s)
Autophagy , Bacterial Outer Membrane Proteins/metabolism , Brucella/physiology , Brucellosis/pathology , Microglia/pathology , NF-kappa B/antagonists & inhibitors , Animals , Bacterial Outer Membrane Proteins/genetics , Brucellosis/metabolism , Brucellosis/microbiology , Interleukin-6/metabolism , Microglia/metabolism , Microglia/microbiology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
13.
BMC Vet Res ; 17(1): 289, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34461896

ABSTRACT

BACKGROUND: UTP-glucose-1-phosphoryl transferase (UGPase) catalyzes the synthesis of UDP-glucose, which is essential for generating the glycogen needed for the synthesis of bacterial lipopolysaccharide (LPS) and capsular polysaccharide, which play important roles in bacterial virulence. However, the molecular function of UGPase in Brucella is still unknown. RESULTS: In this study, the ubiquitination modification of host immune-related protein in cells infected with UGPase-deleted or wild-type Brucella was analyzed using ubiquitination proteomics technology. The ubiquitination modification level and type of NF-κB Essential Modulator (NEMO or Ikbkg), a molecule necessary for NF-κB signal activation, was evaluated using Coimmunoprecipitation, Western blot, and dual-Luciferase Assay. We found 80 ubiquitin proteins were upregulated and 203 ubiquitin proteins were downregulated in cells infected with B. melitensis 16 M compared with those of B. melitensis UGPase-deleted strain (16 M-UGPase-). Moreover, the ubiquitin-modified proteins were mostly enriched in the categories of regulation of kinase/NF-κB signaling and response to a bacterium, suggesting Brucella UGPase inhibits ubiquitin modification of related proteins in the host NF-κB signaling pathway. Further analysis showed that the ubiquitination levels of NEMO K63 (K63-Ub) and Met1 (Met1-Ub) were significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M-infected cells, further confirming that the ubiquitination levels of NF-κB signaling-related proteins were regulated by the bacterial UGPase. Besides, the expression level of IκBα was decreased, but the level of p-P65 was significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M- and mock-infected cells, demonstrating that B. melitensis UGPase can significantly inhibit the degradation of IκBα and the phosphorylation of p65, and thus suppressing the NF-κB pathway. CONCLUSIONS: The results of this study showed that Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO, which will provide a new scientific basis for the study of immune mechanisms induced by Brucella.


Subject(s)
Brucella melitensis/metabolism , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Ubiquitination , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brucella melitensis/genetics , Brucellosis/metabolism , Brucellosis/microbiology , Gene Expression Regulation , Mice , RAW 264.7 Cells , Signal Transduction , Ubiquitin/genetics , Ubiquitin/metabolism
14.
Infect Immun ; 88(11)2020 10 19.
Article in English | MEDLINE | ID: mdl-32778612

ABSTRACT

Brucella, the causative agent of brucellosis, is a stealthy intracellular pathogen that is highly pathogenic to a range of mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane and has been implicated in virulence in many bacterial pathogens. However, the roles of the Tat system and related substrates in Brucella remain unclear. We report here that disruption of Tat increases the sensitivity of Brucella melitensis M28 to the membrane stressor sodium dodecyl sulfate (SDS), indicating cell envelope defects, as well as to EDTA. In addition, mutating Tat renders M28 bacteria more sensitive to oxidative stress caused by H2O2 Further, loss of Tat significantly attenuates B. melitensis infection in murine macrophages ex vivo Using a mouse model for persistent infection, we demonstrate that Tat is required for full virulence of B. melitensis M28. Genome-wide in silico prediction combined with an in vivo amidase reporter assay indicates that at least 23 proteins are authentic Tat substrates, and they are functionally categorized into solute-binding proteins, oxidoreductases, cell envelope biosynthesis enzymes, and others. A comprehensive deletion study revealed that 6 substrates contribute significantly to Brucella virulence, including an l,d-transpeptidase, an ABC transporter solute-binding protein, and a methionine sulfoxide reductase. Collectively, our work establishes that the Tat pathway plays a critical role in Brucella virulence.


Subject(s)
Bacterial Proteins/metabolism , Brucella melitensis/pathogenicity , Brucellosis/metabolism , Twin-Arginine-Translocation System/metabolism , Virulence/physiology , Animals , Mice , Stress, Physiological/physiology
15.
Microb Pathog ; 144: 104201, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32325238

ABSTRACT

Brucellosis is a zoonotic infectious disease caused by Brucella infection. MarR-family transcription factors are closely related to diverse physiological functions necessary for many pathogens adaptation to environmental changes. However, whether the MarR-family transcription factors are involved in virulence, mediated inflammatory responses and regulated virulence gene expression in the intracellular pathogen Brucella are still unknown. Therefore, we created a 2308ΔMarR6 mutant of B. abortus 2308 (S2308). Virulence and inflammatory cytokines assays were performed using a murine macrophage cell line (RAW 264.7). We also performed chromatin immunoprecipitation of MarR6 followed by next-generation sequencing (ChIP-seq). The results showed that 2308ΔMarR6 was significantly reduced survival capability in RAW 264.7. After the macrophages were infected with 2308ΔMarR6, the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-12 (IL-12), interferon-gamma (IFN-γ) and macrophage chemoattractant protein-1 (MCP-1) were decreased and were significantly lower than that for the S2308-infected group, indicating that the 2308ΔMarR6 mutant could reduce the secretion of inflammatory cytokines. Furthermore, we detected 122 intergenic ChIP-seq peaks of MarR6 binding distributed across the Brucella genome. Taken together, the research has recorded valuable data about MarR6. Our findings are of great significance in elucidating the function of MarR6.


Subject(s)
Bacterial Proteins/genetics , Brucella/genetics , Gene Expression Regulation, Bacterial , Repressor Proteins/genetics , Animals , Brucella abortus/genetics , Brucellosis/metabolism , Cytokines , High-Throughput Nucleotide Sequencing , Interferon-gamma/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Macrophages/microbiology , Mice , Mutation , RAW 264.7 Cells , Transcription Factors/genetics , Tumor Necrosis Factor-alpha/metabolism , Virulence
16.
Cell Microbiol ; 21(10): e13080, 2019 10.
Article in English | MEDLINE | ID: mdl-31265755

ABSTRACT

Brucella melitensis infection causes acute necrotizing inflammation in pregnant animals; however, the pathophysiological mechanisms leading to placentitis are unknown. Here, we demonstrate that high-mobility group box 1 (HMGB1) acts as a mediator of placenta inflammation in B. melitensis-infected pregnant mice model. HMGB1 levels were increased in trophoblasts or placental explant during B. melitensis infection. Inhibition of HMGB1 activity with neutralising antibody significantly reduced the secretion of inflammatory cytokines in B. melitensis-infected trophoblasts or placenta, whereas administration of recombinant HMGB1 (rHMGB1) increased the inflammatory response. Mechanistically, this decreased inflammatory response results from inhibition of HMGB1 activity, which cause the suppression of both mitogen-activated protein kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Moreover, neutralising antibody to HMGB1 prevented B. melitensis infection-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in trophoblasts. In contrast, in vitro stimulation of trophoblasts with rHMGB1 caused activation of NADPH oxidase and increased the production of ROS, which contributes to high bacterial burden within trophoblasts or placenta. In vivo, treatment with anti-HMGB1 antibody increases the number of Brucella survival within placenta in B. melitensis-infected pregnant mice but successfully reduced the severity of placentitis and abortion.


Subject(s)
Brucella melitensis/physiology , Brucellosis/immunology , HMGB1 Protein/metabolism , Placenta/immunology , Trophoblasts/metabolism , Trophoblasts/microbiology , Abortion, Spontaneous/genetics , Abortion, Spontaneous/metabolism , Abortion, Spontaneous/microbiology , Animals , Brucella melitensis/genetics , Brucella melitensis/metabolism , Brucella melitensis/pathogenicity , Brucellosis/genetics , Brucellosis/metabolism , Cytokines/metabolism , DNA Replication/immunology , Female , HMGB1 Protein/administration & dosage , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/genetics , Inflammation/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NADPH Oxidases/chemistry , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Phosphorylation , Placenta/microbiology , Placenta/pathology , Pregnancy , Reactive Oxygen Species/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Trophoblasts/enzymology
17.
J Immunol ; 200(2): 607-622, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29203515

ABSTRACT

Immunity against microbes depends on recognition of pathogen-associated molecular patterns by innate receptors. Signaling pathways triggered by Brucella abortus DNA involves TLR9, AIM2, and stimulator of IFN genes (STING). In this study, we observed by microarray analysis that several type I IFN-associated genes, such as IFN-ß and guanylate-binding proteins (GBPs), are downregulated in STING knockout (KO) macrophages infected with Brucella or transfected with DNA. Additionally, we determined that STING and cyclic GMP-AMP synthase (cGAS) are important to engage the type I IFN pathway, but only STING is required to induce IL-1ß secretion, caspase-1 activation, and GBP2 and GBP3 expression. Furthermore, we determined that STING but not cGAS is critical for host protection against Brucella infection in macrophages and in vivo. This study provides evidence of a cGAS-independent mechanism of STING-mediated protection against an intracellular bacterial infection. Additionally, infected IFN regulatory factor-1 and IFNAR KO macrophages had reduced GBP2 and GBP3 expression and these cells were more permissive to Brucella replication compared with wild-type control macrophages. Because GBPs are critical to target vacuolar bacteria, we determined whether GBP2 and GBPchr3 affect Brucella control in vivo. GBPchr3 but not GBP2 KO mice were more susceptible to bacterial infection, and small interfering RNA treated-macrophages showed reduction in IL-1ß secretion and caspase-1 activation. Finally, we also demonstrated that Brucella DNA colocalizes with AIM2, and AIM2 KO mice are less resistant to B. abortus infection. In conclusion, these findings suggest that the STING-dependent type I IFN pathway is critical for the GBP-mediated release of Brucella DNA into the cytosol and subsequent activation of AIM2.


Subject(s)
Brucella abortus/immunology , Brucellosis/immunology , Brucellosis/metabolism , GTP-Binding Proteins/metabolism , Inflammasomes/metabolism , Membrane Proteins/metabolism , Signal Transduction , Animals , Brucella abortus/genetics , Brucellosis/genetics , Brucellosis/microbiology , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Cytokines/metabolism , GTP-Binding Proteins/genetics , Gene Expression , Gene Expression Profiling , Granuloma/metabolism , Granuloma/microbiology , Granuloma/pathology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate , Inflammation Mediators , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/genetics , Mice , Mice, Knockout , Models, Biological , NF-kappa B/metabolism
18.
Biochem Biophys Res Commun ; 516(1): 82-88, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31196623

ABSTRACT

Peroxiredoxin-5 (Prdx5) is a multifunctional protein involved in oxidative stress, apoptosis and inflammatory responses. However, how Prdx5 functions during microbial infections is rarely reported. In this study, we demonstrate that Brucella infection increased Prdx5 expression to promote its intracellular growth in macrophages. Further study show that B. abortus infection promoted its intracellular growth by decreasing the production of nitric oxide and reactive oxygen species. In addition, the expression of Prdx5 was independent on live Brucella and the type IV secretion system of Brucella. Instead, its expression was regulated by the lipopolysaccharide of Brucella. Moreover, Brucella infection increased Prdx5 expression in primary macrophage and mice. Collectively, these findings demonstrate for the first time that Prdx5 promotes Brucella intracellular growth by decreasing the production of NO and ROS. This finding provides new insights into the evasive strategies of Brucella and will be useful for the development of novel effective therapeutic approaches to treat Brucella infections.


Subject(s)
Brucella abortus/physiology , Brucellosis/genetics , Host-Pathogen Interactions , Peroxiredoxins/genetics , Reactive Oxygen Species/metabolism , Animals , Brucella abortus/metabolism , Brucellosis/metabolism , Cells, Cultured , HEK293 Cells , Humans , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Nitric Oxide/immunology , Peroxiredoxins/metabolism , RAW 264.7 Cells , Up-Regulation
19.
Curr Microbiol ; 76(4): 510-519, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30805699

ABSTRACT

Brucellosis is the most common zoonotic disease that caused by intracellular parasitic bacteria Brucella. The survival and replication of Brucella in the host depend on the type IV secretion system (T4SS). The T4SS system of Brucella has many components and secreted proteins. But the mechanism helped Brucella to evade the host defense is still not clear. The objective of the present study was to investigate the effects of VceA on autophagy and apoptosis in Brucella-infected embryonic trophoblast cells. We constructed the VceA mutant strain (2308ΔVceA) and complementary strain (2308ΔVceA-C) of Brucella abortus 2308 (S2308). The human trophoblast cells (HPT-8 cells) and mice were infected by S2308, 2308ΔVceA and 2308ΔVceA-C. The cell autophagy and apoptosis were detected. The Atg5, LC3-II and Bcl-2 mRNA expression were significantly increased in 2308ΔVceA group than the S2308 group, and mRNA expression of P62 and Caspase-3 were significantly decreased than the S2308 group. Western blotting, qPCR and flow cytometry analysis showed that 2308ΔVceA promoted autophagy and inhibited apoptosis. Mouse immunohistochemistry experiments showed that P62 protein was scattered coloring and Cytochrome C protein was scarcely in 2308ΔVceA group at the myometrium. These results indicated that 2308ΔVceA promoted autophagy and inhibited apoptosis in HPT-8 cells during Brucella infection.


Subject(s)
Apoptosis/genetics , Bacterial Proteins/genetics , Brucella abortus/genetics , Brucellosis/microbiology , Brucellosis/pathology , Trophoblasts/pathology , Type IV Secretion Systems/genetics , Animals , Autophagy/genetics , Bacterial Proteins/metabolism , Brucella abortus/metabolism , Brucellosis/metabolism , Cell Line , Female , Genetic Complementation Test , Humans , Immunohistochemistry , Mice, Inbred BALB C , Myometrium/metabolism , Myometrium/pathology , RNA, Messenger/metabolism , Sequence Deletion , Trophoblasts/metabolism
20.
Mediators Inflamm ; 2019: 5869257, 2019.
Article in English | MEDLINE | ID: mdl-31686983

ABSTRACT

BACKGROUND: T-helper type 1 (Th1) cells and Th1-produced cytokines play essential roles in the immune response to foreign pathogens, such as Brucella spp. The aim of this study was to evaluate the dynamic changes of Th1 cells and Th1-produced cytokines in patients with acute brucellosis and their impact on clinical decision-making. METHODS: Fifty-one individuals with acute brucellosis and 17 healthy subjects were enrolled in this study. The brucellosis patients were diagnosed based on clinical symptoms, laboratory tests, and clinical examination. The levels of serum gamma-interferon (IFN-γ) and tumor necrosis factor-alpha (TNF-α), along with the percentage of Th1 cells, were determined by flow cytometry bead arrays (CBA). RESULTS: The frequency of Th1 cells, along with the levels of IFN-γ and TNF-α, was negatively correlated with the clinical parameters. The mean serum levels of IFN-γ and TNF-α and the frequency of Th1 cells were significantly higher in the brucellosis patients in comparison with the healthy subjects (p < 0.05). Besides, the cytokine levels were not significantly different between the positive and negative blood culture groups. IFN-γ levels significantly decreased from 6 months to 12 months post treatment (p < 0.05). However, the IFN-γ levels remained higher than those of the healthy subjects by 12 months post treatment (p < 0.05). The IFN-γ/TNF-α ratio was significantly higher in severe cases than in nonsevere cases (p < 0.05). CONCLUSIONS: The IFN-γ levels secreted by Th1 cells remain significantly higher than those of healthy subjects more than 12 months after treatment with antibiotics. This finding is different from similar studies. The IFN-γ/TNF-α ratio may be a feasible parameter for assessing clinical severity, yet further longitudinal studies of the immunization and inflammatory reaction of brucellosis are needed in larger patient populations.


Subject(s)
Brucellosis/immunology , Interferon-gamma/metabolism , Th1 Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adult , Brucellosis/metabolism , Cytokines/metabolism , Female , Flow Cytometry , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL