Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 19(3): e1011262, 2023 03.
Article in English | MEDLINE | ID: mdl-36947551

ABSTRACT

Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.


Subject(s)
Butterflies , Wasps , Animals , Odorants , Larva , Butterflies/parasitology , Wasps/parasitology , Host-Parasite Interactions
2.
J Anim Ecol ; 91(4): 780-793, 2022 04.
Article in English | MEDLINE | ID: mdl-35174493

ABSTRACT

Insect-pathogen dynamics can show seasonal and inter-annual variations that covary with fluctuations in insect abundance and climate. Long-term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence. Monarch butterflies Danaus plexippus are commonly infected with the protozoan Ophryocystis elektroscirrha (OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection. Here we compiled data on OE infection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration. Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid-2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result of OE, highlighting the need to consider the parasite as a potential threat to the monarch population. Increases in infection among eastern North American monarchs post-2002 suggest that changes to the host's ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.


Subject(s)
Butterflies , Parasites , Animal Migration , Animals , Butterflies/parasitology , Mexico , Plant Breeding , Seasons , United States
3.
Syst Parasitol ; 99(6): 715-726, 2022 12.
Article in English | MEDLINE | ID: mdl-36057076

ABSTRACT

Paddy, Oryza sativa L. (Poales: Poaecea) is infested by a series of lepidopteran, coleopteran, hemipteran, and acarine pests in India. Of the long list, the species Rice Leaf-Roller Pelopidas mathias (Fabricius, 1798) (Lepidoptera: Hesperiidae) is one of most encountered defoliators on paddy. Here we record and describe with illustrations, a new parasitic complex comprising of two new species of parasitic wasps, viz. Brachymeria eastwoodi Binoy, sp. nov. and Sympiesis eastwoodi James & Santhosh, sp. nov. on the pupae of P. mathias from southern India. The parasitoid complexes on P. mathias are also augmented.


Subject(s)
Butterflies , Lepidoptera , Oryza , Wasps , Animals , Butterflies/parasitology , India , Lepidoptera/parasitology , Plant Leaves , Species Specificity
4.
J Chem Ecol ; 47(2): 175-191, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33507456

ABSTRACT

Plants in the flowering stage need to ensure reproduction by protecting themselves from attack and by preserving interactions with mutualist pollinators. When different plant mutualists are using the same type of cues, such as volatile compounds, attraction of parasitoids and pollinators may trade off. To explore this, we compared volatile emission of Brassica nigra plants in response to single or dual attack on their inflorescences. Additionally, we recorded flower visitation by pollinators and the attraction of parasitoids in the greenhouse and/or field. Brassica nigra were exposed in the flowering stage to one or two of the following three attackers: Brevicoryne brassicae aphids, Pieris brassicae caterpillars, and Xanthomonas campestris pv. raphani bacteria. We found that single attack by caterpillars, and dual attack by caterpillars plus aphids, induced the strongest changes in plant volatile emission. The caterpillars' parasitoid C. glomerata did not exhibit preference for plants exposed to caterpillars only vs. plants exposed to caterpillars plus aphids or plus bacteria. However, the composition of the pollinator community associated with flowers of B. nigra was affected by plant exposure to the attackers, but the total number of pollinators visiting the plants did not change upon attack. We conclude that, when B. nigra were exposed to single or dual attack on their inflorescences, the plants maintained interactions with natural enemies of the insect attackers and with pollinators. We discuss how chemical diversity may contribute to plant resilience upon attack.


Subject(s)
Aphids/physiology , Butterflies/physiology , Herbivory , Mustard Plant/physiology , Pollination , Wasps/physiology , Animals , Butterflies/parasitology , Female , Genetic Fitness , Host-Parasite Interactions , Larva/parasitology , Larva/physiology , Mustard Plant/chemistry , Oviposition , Seeds/growth & development , Volatile Organic Compounds/analysis
5.
J Invertebr Pathol ; 186: 107670, 2021 11.
Article in English | MEDLINE | ID: mdl-34560107

ABSTRACT

Island ecosystems, which often contain undescribed insects and small populations of single island endemics, are at risk from diverse threats. The spread of pathogens is a major factor affecting not just pollinator species themselves, but also posing significant knock-on effects to often fragile island ecosystems through disruption of pollination networks. Insects are vulnerable to diverse pathogens and these can be introduced to islands in a number of ways, e.g. via the introduction of infected managed pollinator hosts (e.g. honey bees and their viruses, in particular Deformed wing virus), long-range migrants (e.g. monarch butterflies and their protozoan parasite, Ophryocystit elektroscirrha) and invasive species (e.g. social wasps are common invaders and are frequently infected with multi-host viruses such as Kashmir bee virus and Moku virus). Furthermore, these introductions can negatively affect island ecosystems through outcompeting native taxa for resources. As such, the greatest threat to island pollinator communities is not one particular pathogen, but the combination of pathogens and introduced and invasive insects that will likely carry them.


Subject(s)
Bees/virology , Butterflies/parasitology , Islands , Pollination , Wasps/virology , Animals , Insect Viruses , Introduced Species
6.
J Invertebr Pathol ; 183: 107544, 2021 07.
Article in English | MEDLINE | ID: mdl-33582107

ABSTRACT

Many parasites have external transmission stages that persist in the environment prior to infecting a new host. Understanding how long these stages can persist, and how abiotic conditions such as temperature affect parasite persistence, is important for predicting infection dynamics and parasite responses to future environmental change. In this study, we explored environmental persistence and thermal tolerance of a debilitating protozoan parasite that infects monarch butterflies. Parasite transmission occurs when dormant spores, shed by adult butterflies onto host plants and other surfaces, are later consumed by caterpillars. We exposed parasite spores to a gradient of ecologically-relevant temperatures for 2, 35, or 93 weeks. We tested spore viability by feeding controlled spore doses to susceptible monarch larvae, and examined relationships between temperature, time, and resulting infection metrics. We also examined whether distinct parasite genotypes derived from replicate migratory and resident monarch populations differed in their thermal tolerance. Finally, we examined evidence for a trade-off between short-term within-host replication and long-term persistence ability. Parasite viability decreased in response to warmer temperatures over moderate-to-long time scales. Individual parasite genotypes showed high heterogeneity in viability, but differences did not cluster by migratory vs. resident monarch populations. We found no support for a negative relationship between environmental persistence and within-host replication, as might be expected if parasites invest in short-term reproduction at the cost of longer-term survival. Findings here indicate that dormant spores can survive for many months under cooler conditions, and that heat dramatically shortens the window of transmission for this widespread and virulent butterfly parasite.


Subject(s)
Apicomplexa/physiology , Butterflies/parasitology , Animals , Butterflies/growth & development , Female , Larva/growth & development , Larva/parasitology , Male , Thermotolerance , United States
7.
Proc Natl Acad Sci U S A ; 115(20): 5205-5210, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29712841

ABSTRACT

Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.


Subject(s)
Butterflies/parasitology , Host-Parasite Interactions , Larva/parasitology , Plants/metabolism , Polydnaviridae/physiology , Venoms/administration & dosage , Wasps/parasitology , Animals , Butterflies/physiology , Butterflies/virology , Ecosystem , Gene Expression Regulation, Plant , Larva/physiology , Larva/virology , Plants/parasitology , Plants/virology , Symbiosis , Wasps/physiology , Wasps/virology
8.
Proc Biol Sci ; 287(1926): 20200443, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32345166

ABSTRACT

Polymorphic Batesian mimics exhibit multiple protective morphs that each mimic a different noxious model. Here, we study the genomic transitions leading to the evolution of different mimetic wing patterns in the polymorphic Mocker Swallowtail Papilio dardanus. We generated a draft genome (231 Mb over 30 chromosomes) and re-sequenced individuals of three morphs. Genome-wide single nucleotide polymorphism (SNP) analysis revealed elevated linkage disequilibrium and divergence between morphs in the regulatory region of engrailed, a developmental gene previously implicated in the mimicry switch. The diverged region exhibits a discrete chromosomal inversion (of 40 kb) relative to the ancestral orientation that is associated with the cenea morph, but not with the bottom-recessive hippocoonides morph or with non-mimetic allopatric populations. The functional role of this inversion in the expression of the novel phenotype is currently unknown, but by preventing recombination, it allows the stable inheritance of divergent alleles enabling geographic spread and local coexistence of multiple adaptive morphs.


Subject(s)
Biological Mimicry/physiology , Butterflies/parasitology , Chromosome Inversion , Animals , Genes, Insect , Genomics , Linkage Disequilibrium , Phenotype , Regulatory Sequences, Nucleic Acid , Wings, Animal
9.
Arch Insect Biochem Physiol ; 103(2): e21632, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31621105

ABSTRACT

Biogenic amines (BAs), such as octopamine, tyramine, dopamine, serotonin, and acetylcholine regulate various behaviors and physiological functions in insects. Here, we identified seven genes encoding BA biosynthetic enzymes and 16 genes encoding BA G protein-coupled receptors in the genome of the endoparasitoid wasp, Pteromalus puparum. We compared the genes with their orthologs in its host Pieris rapae and the related ectoparasitic wasp Nasonia vitripennis. All the genes show high (>90%) identity to orthologs in N. vitripennis. P. puparum and N. vitripennis have the smallest number of BA receptor genes among the insect species we investigated. We then analyzed the expression profiles of the genes, finding those acting in BA biosynthesis were highly expressed in adults and larvae and those encoding BA receptors are highly expressed in adults than immatures. Octα1R and 5-HT7 genes were highly expressed in salivary glands, and a high messenger RNA level of 5-HT1A was found in venom apparatuses. We infer that BA signaling is a fundamental component of the organismal organization, homeostasis and operation in parasitoids, some of the smallest insects.


Subject(s)
Biogenic Amines/metabolism , Butterflies/genetics , Insect Proteins/genetics , Wasps/genetics , Amino Acid Sequence , Animals , Butterflies/chemistry , Butterflies/metabolism , Butterflies/parasitology , Embryo, Nonmammalian/chemistry , Embryo, Nonmammalian/metabolism , Female , Gene Expression Profiling , Host-Parasite Interactions , Insect Proteins/chemistry , Insect Proteins/metabolism , Larva/genetics , Larva/metabolism , Male , Phylogeny , Pupa/genetics , Pupa/metabolism , Sequence Alignment , Wasps/enzymology , Wasps/growth & development , Wasps/metabolism
10.
J Invertebr Pathol ; 170: 107328, 2020 02.
Article in English | MEDLINE | ID: mdl-31952966

ABSTRACT

Many parasites are constrained to only one or a few hosts, showing host specificity. It remains unclear why some parasites are specialists and other parasites are generalists. The parasite Ophryocystis elektroscirrha (OE) is a neogregarine protozoan thought to be restricted to monarch butterflies, Danaus plexippus (Nymphaliae) and D. gilippus. Recently, we found OE-like spores in other Lepidoptera, specifically in three noctuid moths: Helicoverpa armigera, H. assulta and H. punctigera, as well as another nymphalid, Parthenos sylvia. To our knowledge, this is the first report of OE-like parasite infections in species other than the genus Danaus. In sequencing 558 bp of 18S rRNA, we found the genetic similarity between OE from D. plexippus and OE-like parasite from the moths H. armigera and H. punctigera to be 95.2%. When we conducted cross-species infection experiments, we could not infect the moths with OE from D. plexippus, but OE-like parasite from H. armigera did infect D. plexippus and a closely related moth species Heliothis virescens. Interestingly, we did not find the OE-like parasite in the H. armigera population from Spain. Inter-population infection experiments with H. armigera demonstrated a higher sensitivity to OE-like infection in the population from Spain compared to the populations from Australia and China. These results suggest geographic variation in OE-like susceptibility and coevolution between parasite and host. Our findings give important new insights into the prevalence and host specificity of OE and OE-like parasites, and provide opportunities to study parasite transmission over spatial and temporal scales.


Subject(s)
Apicomplexa/physiology , Butterflies/parasitology , Host Specificity , Host-Parasite Interactions , Moths/parasitology , Animals , Butterflies/growth & development , Larva/growth & development , Larva/parasitology , Moths/growth & development , Pupa/growth & development , Pupa/parasitology , Species Specificity
11.
Proc Biol Sci ; 286(1910): 20191630, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31480975

ABSTRACT

Understanding factors that allow highly virulent parasites to reach high infection prevalence in host populations is important for managing infection risks to human and wildlife health. Multiple transmission routes have been proposed as one mechanism by which virulent pathogens can achieve high prevalence, underscoring the need to investigate this hypothesis through an integrated modelling-empirical framework. Here, we examine a harmful specialist protozoan infecting monarch butterflies that commonly reaches high prevalence (50-100%) in resident populations. We integrate field and modelling work to show that a combination of three empirically-supported transmission routes (vertical, adult transfer and environmental transmission) can produce and sustain high infection prevalence in this system. Although horizontal transmission is necessary for parasite invasion, most new infections post-establishment arise from vertical transmission. Our study predicts that multiple transmission routes, coupled with high parasite virulence, can reduce resident host abundance by up to 50%, suggesting that the protozoan could contribute to declines of North American monarchs.


Subject(s)
Butterflies/parasitology , Animals , Host-Parasite Interactions , Prevalence , Virulence
12.
Ecol Lett ; 21(11): 1670-1680, 2018 11.
Article in English | MEDLINE | ID: mdl-30152196

ABSTRACT

Environmental change induces some wildlife populations to shift from migratory to resident behaviours. Newly formed resident populations could influence the health and behaviour of remaining migrants. We investigated migrant-resident interactions among monarch butterflies and consequences for life history and parasitism. Eastern North American monarchs migrate annually to Mexico, but some now breed year-round on exotic milkweed in the southern US and experience high infection prevalence of protozoan parasites. Using stable isotopes (δ2 H, δ13 C) and cardenolide profiles to estimate natal origins, we show that migrant and resident monarchs overlap during fall and spring migration. Migrants at sites with residents were 13 times more likely to have infections and three times more likely to be reproductive (outside normal breeding season) compared to other migrants. Exotic milkweed might either attract migrants that are already infected or reproductive, or alternatively, induce these states. Increased migrant-resident interactions could affect monarch parasitism, migratory success and long-term conservation.


Subject(s)
Animal Migration , Asclepias , Butterflies , Parasitic Diseases , Animals , Butterflies/parasitology , Seasons
13.
Proc Biol Sci ; 285(1885)2018 08 22.
Article in English | MEDLINE | ID: mdl-30135149

ABSTRACT

Climate change can increase spatial synchrony of population dynamics, leading to large-scale fluctuation that destabilizes communities. High trophic level species such as parasitoids are disproportionally affected because they depend on unstable resources. Most parasitoid wasps have complementary sex determination, producing sterile males when inbred, which can theoretically lead to population extinction via the diploid male vortex (DMV). We examined this process empirically using a hyperparasitoid population inhabiting a spatially structured host population in a large fragmented landscape. Over four years of high host butterfly metapopulation fluctuation, diploid male production by the wasp increased, and effective population size declined precipitously. Our multitrophic spatially structured model shows that host population fluctuation can cause local extinctions of the hyperparasitoid because of the DMV. However, regionally it persists because spatial structure allows for efficient local genetic rescue via balancing selection for rare alleles carried by immigrants. This is, to our knowledge, the first empirically based study of the possibility of the DMV in a natural host-parasitoid system.


Subject(s)
Butterflies/physiology , Butterflies/parasitology , Host-Parasite Interactions , Wasps/physiology , Animals , Diploidy , Male , Population Density , Population Dynamics , Sweden , Wasps/genetics
14.
Proc Biol Sci ; 283(1831)2016 05 25.
Article in English | MEDLINE | ID: mdl-27226470

ABSTRACT

A fragmented habitat becomes increasingly fragmented for species at higher trophic levels, such as parasitoids. To persist, these species are expected to possess life-history traits, such as high dispersal, that facilitate their ability to use resources that become scarce in fragmented landscapes. If a specialized parasitoid disperses widely to take advantage of a sparse host, then the parasitoid population should have lower genetic structure than the host. We investigated the temporal and spatial genetic structure of a hyperparasitoid (fourth trophic level) in a fragmented landscape over 50 × 70 km, using microsatellite markers, and compared it with the known structures of its host parasitoid, and the butterfly host which lives as a classic metapopulation. We found that population genetic structure decreases with increasing trophic level. The hyperparasitoid has fewer genetic clusters (K = 4), than its host parasitoid (K = 15), which in turn is less structured than the host butterfly (K = 27). The genetic structure of the hyperparasitoid also shows temporal variation, with genetic differentiation increasing due to reduction of the population size, which reduces the effective population size. Overall, our study confirms the idea that specialized species must be dispersive to use a fragmented host resource, but that this adaptation has limits.


Subject(s)
Butterflies/genetics , Butterflies/parasitology , Wasps/genetics , Wasps/parasitology , Animals , Ecosystem , Finland , Host-Parasite Interactions , Islands , Microsatellite Repeats , Population Density , Population Dynamics
15.
Mol Ecol ; 25(14): 3344-55, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27159020

ABSTRACT

The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full-siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co-evolution of host resistance and parasite virulence.


Subject(s)
Animal Distribution , Butterflies/parasitology , Ecosystem , Genetics, Population , Wasps/genetics , Animals , Bayes Theorem , Butterflies/genetics , Cluster Analysis , Female , Finland , Genetic Variation , Microsatellite Repeats , Polymorphism, Single Nucleotide , Population Dynamics
16.
Plant Cell Environ ; 39(9): 1920-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27043839

ABSTRACT

The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects (1) plant volatiles emitted in response to damage by a specialist herbivore, Pieris brassicae; (2) the attraction of the parasitic wasp Cotesia glomerata and (3) the performance of P. brassicae and C. glomerata. Plant volatiles were significantly induced by herbivory in both healthy and mildew-infected plants, but were quantitatively 41% lower for mildew-infected plants compared to healthy plants. Parasitoids strongly preferred Pieris-infested plants to dually-infested (Pieris + mildew) plants, and preferred dually infested plants over only mildew-infected plants. The performance of P. brassicae was unaffected by powdery mildew, but C. glomerata cocoon mass was reduced when parasitized caterpillars developed on mildew-infected plants. Thus, avoidance of mildew-infested plants may be adaptive for C. glomerata parasitoids, whereas P. brassicae caterpillars may suffer less parasitism on mildew-infected plants in nature. From a pest management standpoint, the concurrent presence of multiple plant antagonists can affect the efficiency of specific natural enemies, which may in turn have a negative impact on the regulation of pest populations.


Subject(s)
Ascomycota/physiology , Brassica rapa/microbiology , Butterflies/parasitology , Food Chain , Volatile Organic Compounds/metabolism , Wasps/physiology , Animals , Brassica rapa/metabolism , Female , Herbivory , Host-Parasite Interactions , Male , Smell
17.
J Exp Biol ; 219(Pt 19): 2984-2990, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27707863

ABSTRACT

The success of maternally transmitted endosymbiotic bacteria, such as Wolbachia, is directly linked to their host reproduction but in direct conflict with other parasites that kill the host before it reaches reproductive maturity. Therefore, symbionts that have evolved strategies to increase their host's ability to evade lethal parasites may have high penetrance, while detrimental symbionts would be selected against, leading to lower penetrance or extinction from the host population. In a natural population of the parasitoid wasp Hyposoter horticola in the Åland Islands (Finland), the Wolbachia strain wHho persists at an intermediate prevalence (∼50%). Additionally, there is a negative correlation between the prevalence of Wolbachia and a hyperparasitoid wasp, Mesochorus cf. stigmaticus, in the landscape. Using a manipulative field experiment, we addressed the persistence of Wolbachia at this intermediate level, and tested whether the observed negative correlation could be due to Wolbachia inducing either susceptibility or resistance to parasitism. We show that infection with Wolbachia does not influence the ability of the wasp to parasitize its butterfly host, Melitaea cinxia, but that hyperparasitism of the wasp increases in the presence of wHho. Consequently, the symbiont is detrimental, and in order to persist in the host population, must also have a positive effect on fitness that outweighs the costly burden of susceptibility to widespread parasitism.


Subject(s)
Parasites/microbiology , Wasps/microbiology , Wolbachia/physiology , Animals , Butterflies/parasitology , Disease Resistance , Estonia , Finland , Host-Pathogen Interactions , Larva/parasitology , Species Specificity , Virulence , Wasps/pathogenicity
18.
J Anim Ecol ; 85(5): 1246-54, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27286503

ABSTRACT

The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies. Overall, our results suggest that the use of antiparasitic compounds carries substantial costs, which could constrain host investment in medication behaviours.


Subject(s)
Apicomplexa/physiology , Asclepias/physiology , Biological Evolution , Butterflies/physiology , Genetic Fitness , Oviposition , Animals , Butterflies/growth & development , Butterflies/parasitology , Cardenolides/metabolism , Host-Parasite Interactions , Larva/growth & development , Larva/parasitology , Larva/physiology
19.
J Invertebr Pathol ; 140: 75-82, 2016 10.
Article in English | MEDLINE | ID: mdl-27642090

ABSTRACT

Throughout their global range, wild monarch butterflies (Danaus plexippus) are infected with the protozoan Ophryocystis elektroscirrha (OE). In monarchs, OE infection reduces pupal eclosion, adult lifespan, adult body size and flight ability. Infection of other butterfly hosts with OE is rare or unknown, and the only previously published records of OE infection were on monarch and queen butterflies (D. gilippus). Here we explored the occurrence and specificity of OE and OE-like parasites in four Danaus butterfly species. We surveyed wild D. eresimus (soldier), D. gilippus (queen), D. petilia (lesser wanderer), and D. plexippus (monarch) from five countries to determine the presence of infection. We conducted five cross-infection experiments, on monarchs and queen butterflies and their OE and OE-like parasites, to determine infection probability and the impact of infection on their hosts. Our field survey showed that OE-like parasites were present in D. gilippus, D. petilia, and D. plexippus, but were absent in D. eresimus. Infection probability varied geographically such that D. gilippus and D. plexippus populations in Puerto Rico and Trinidad were not infected or had low prevalence of infection, whereas D. plexippus from S. Florida and Australia had high prevalence. Cross-infection experiments showed evidence for host specificity, in that OE strains from monarchs were more effective at infecting monarchs than queens, and monarchs were less likely to be infected by OE-like strains from queens and lesser wanderers relative to their own natal strains. Our study showed that queens are less susceptible to OE and OE-like infection than monarchs, and that the reduction in adult lifespan following infection is more severe in monarchs than in queens.


Subject(s)
Apicomplexa , Butterflies/parasitology , Host Specificity , Protozoan Infections, Animal/parasitology , Animals , Species Specificity
20.
Int J Mol Sci ; 17(8)2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27527153

ABSTRACT

Experience of insect herbivores and their natural enemies in the natal habitat is considered to affect their likelihood of accepting a similar habitat or plant/host during dispersal. Growing phenology of food plants and the number of generations in the insects further determines lability of insect behavioural responses at eclosion. We studied the effect of rearing history on oviposition preference in a multivoltine herbivore (Pieris brassicae), and foraging behaviour in the endoparasitoid wasp (Cotesia glomerata) a specialist enemy of P. brassicae. Different generations of the insects are obligatorily associated with different plants in the Brassicaceae, e.g., Brassica rapa, Brassica nigra and Sinapis arvensis, exhibiting different seasonal phenologies in The Netherlands. Food plant preference of adults was examined when the insects had been reared on each of the three plant species for one generation. Rearing history only marginally affected oviposition preference of P. brassicae butterflies, but they never preferred the plant on which they had been reared. C. glomerata had a clear preference for host-infested B. rapa plants, irrespective of rearing history. Higher levels of the glucosinolate breakdown product 3-butenyl isothiocyanate in the headspace of B. rapa plants could explain enhanced attractiveness. Our results reveal the potential importance of flexible plant choice for female multivoltine insects in nature.


Subject(s)
Brassica rapa/metabolism , Butterflies/physiology , Mustard Plant/metabolism , Wasps/physiology , Animal Distribution , Animals , Butterflies/parasitology , Female , Flight, Animal , Food Preferences , Herbivory , Host-Parasite Interactions , Male , Oviposition
SELECTION OF CITATIONS
SEARCH DETAIL