Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 34: 151-72, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26772212

ABSTRACT

Butyrophilin molecules (commonly contracted to BTN), collectively take their name from the eponymous protein in cow's milk. They are considered to be members of the B7 family of costimulatory receptors, which includes B7.1 (CD80), B7.2 (CD86), and related molecules, such as PD-L1 (B7-H1, CD274), ICOS-L (CD275), and B7-H3 (CD276). These coreceptors modulate T cell responses upon antigen presentation by major histocompatibility complex and cognate αß T cell receptor engagement. Molecules such as BTN3A1 (CD277), myelin oligodendrocyte glycoprotein, and mouse Skint1 and Btnl2, all members of the butyrophilin family, show greater structural and functional diversity than the canonical B7 receptors. Some butyrophilins mediate complex interactions between antigen-presenting cells and conventional αß T cells, and others regulate the immune responses of specific γδ T cell subsets by mechanisms that have characteristics of both innate and adaptive immunity.


Subject(s)
Adaptive Immunity , Antigen-Presenting Cells/immunology , B7 Antigens/metabolism , Butyrophilins/metabolism , Immunity, Innate , Milk/metabolism , T-Lymphocytes/immunology , Animals , Butyrophilins/immunology , Cattle , Humans , Lymphocyte Activation , Mice , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
2.
Nat Immunol ; 25(8): 1355-1366, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39014161

ABSTRACT

Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.


Subject(s)
Butyrophilins , Receptors, Antigen, T-Cell, gamma-delta , Butyrophilins/metabolism , Butyrophilins/immunology , Butyrophilins/chemistry , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Humans , Protein Binding , Protein Multimerization , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/chemistry , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Crystallography, X-Ray , Lymphocyte Activation/immunology , Models, Molecular , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism
3.
Cell ; 167(1): 203-218.e17, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27641500

ABSTRACT

Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαß(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.


Subject(s)
Butyrophilins/immunology , Intestinal Mucosa/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Butyrophilins/genetics , Gene Knockout Techniques , Humans , Mice , Mice, Inbred C57BL , Thymus Gland/immunology
4.
Nat Immunol ; 19(12): 1352-1365, 2018 12.
Article in English | MEDLINE | ID: mdl-30420626

ABSTRACT

T lymphocytes expressing γδ T cell antigen receptors (TCRs) comprise evolutionarily conserved cells with paradoxical features. On the one hand, clonally expanded γδ T cells with unique specificities typify adaptive immunity. Conversely, large compartments of γδTCR+ intraepithelial lymphocytes (γδ IELs) exhibit limited TCR diversity and effect rapid, innate-like tissue surveillance. The development of several γδ IEL compartments depends on epithelial expression of genes encoding butyrophilin-like (Btnl (mouse) or BTNL (human)) members of the B7 superfamily of T cell co-stimulators. Here we found that responsiveness to Btnl or BTNL proteins was mediated by germline-encoded motifs within the cognate TCR variable γ-chains (Vγ chains) of mouse and human γδ IELs. This was in contrast to diverse antigen recognition by clonally restricted complementarity-determining regions CDR1-CDR3 of the same γδTCRs. Hence, the γδTCR intrinsically combines innate immunity and adaptive immunity by using spatially distinct regions to discriminate non-clonal agonist-selecting elements from clone-specific ligands. The broader implications for antigen-receptor biology are considered.


Subject(s)
Adaptive Immunity/immunology , Immunity, Innate/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Animals , Antigens/immunology , Butyrophilins/immunology , Humans , Mice , Mice, Inbred C57BL
5.
Immunity ; 52(3): 487-498.e6, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32155411

ABSTRACT

Vγ9Vδ2 T cells respond in a TCR-dependent fashion to both microbial and host-derived pyrophosphate compounds (phosphoantigens, or P-Ag). Butyrophilin-3A1 (BTN3A1), a protein structurally related to the B7 family of costimulatory molecules, is necessary but insufficient for this process. We performed radiation hybrid screens to uncover direct TCR ligands and cofactors that potentiate BTN3A1's P-Ag sensing function. These experiments identified butyrophilin-2A1 (BTN2A1) as essential to Vγ9Vδ2 T cell recognition. BTN2A1 synergised with BTN3A1 in sensitizing P-Ag-exposed cells for Vγ9Vδ2 TCR-mediated responses. Surface plasmon resonance experiments established Vγ9Vδ2 TCRs used germline-encoded Vγ9 regions to directly bind the BTN2A1 CFG-IgV domain surface. Notably, somatically recombined CDR3 loops implicated in P-Ag recognition were uninvolved. Immunoprecipitations demonstrated close cell-surface BTN2A1-BTN3A1 association independent of P-Ag stimulation. Thus, BTN2A1 is a BTN3A1-linked co-factor critical to Vγ9Vδ2 TCR recognition. Furthermore, these results suggest a composite-ligand model of P-Ag sensing wherein the Vγ9Vδ2 TCR directly interacts with both BTN2A1 and an additional ligand recognized in a CDR3-dependent manner.


Subject(s)
Antigens/immunology , Butyrophilins/immunology , Germ Cells/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Antigens/metabolism , Antigens, CD/chemistry , Antigens, CD/immunology , Antigens, CD/metabolism , Butyrophilins/chemistry , Butyrophilins/metabolism , CHO Cells , Cricetinae , Cricetulus , Germ Cells/metabolism , HEK293 Cells , Humans , Phosphorylation , Protein Binding , Protein Multimerization , Receptors, Antigen, T-Cell, gamma-delta/chemistry , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/metabolism
6.
Nature ; 621(7980): 840-848, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674084

ABSTRACT

In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.


Subject(s)
Butyrophilins , Lymphocyte Activation , Phosphoproteins , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Animals , Humans , Antigens, CD/immunology , Antigens, CD/metabolism , Butyrophilins/immunology , Butyrophilins/metabolism , Camelids, New World/immunology , Molecular Dynamics Simulation , Phosphoproteins/immunology , Phosphoproteins/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Thermodynamics
7.
Cell Biochem Funct ; 42(5): e4081, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38934382

ABSTRACT

Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.


Subject(s)
Butyrophilins , Immunomodulation , Neoplasms , Humans , Butyrophilins/metabolism , Butyrophilins/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Immunomodulation/drug effects , Immunotherapy , Tumor Microenvironment/immunology
8.
Proc Natl Acad Sci U S A ; 117(12): 6697-6707, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32139608

ABSTRACT

Vγ9Vδ2 T cells are a major γδ T cell population in the human blood expressing a characteristic Vγ9JP rearrangement paired with Vδ2. This cell subset is activated in a TCR-dependent and MHC-unrestricted fashion by so-called phosphoantigens (PAgs). PAgs can be microbial [(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, HMBPP] or endogenous (isopentenyl pyrophosphate, IPP) and PAg sensing depends on the expression of B7-like butyrophilin (BTN3A, CD277) molecules. IPP increases in some transformed or aminobisphosphonate-treated cells, rendering those cells a target for Vγ9Vδ2 T cells in immunotherapy. Yet, functional Vγ9Vδ2 T cells have only been described in humans and higher primates. Using a genome-based study, we showed in silico translatable genes encoding Vγ9, Vδ2, and BTN3 in a few nonprimate mammalian species. Here, with the help of new monoclonal antibodies, we directly identified a T cell population in the alpaca (Vicugna pacos), which responds to PAgs in a BTN3-dependent fashion and shows typical TRGV9- and TRDV2-like rearrangements. T cell receptor (TCR) transductants and BTN3-deficient human 293T cells reconstituted with alpaca or human BTN3 or alpaca/human BTN3 chimeras showed that alpaca Vγ9Vδ2 TCRs recognize PAg in the context of human and alpaca BTN3. Furthermore, alpaca BTN3 mediates PAg recognition much better than human BTN3A1 alone and this improved functionality mapped to the transmembrane/cytoplasmic part of alpaca BTN3. In summary, we found remarkable similarities but also instructive differences of PAg-recognition by human and alpaca, which help in better understanding the molecular mechanisms controlling the activation of this prominent population of γδ T cells.


Subject(s)
Antibodies, Monoclonal/immunology , Butyrophilins/metabolism , Hemiterpenes/pharmacology , Lymphocyte Activation/immunology , Organophosphorus Compounds/pharmacology , T-Lymphocyte Subsets/immunology , Animals , Butyrophilins/antagonists & inhibitors , Butyrophilins/genetics , Butyrophilins/immunology , CRISPR-Cas Systems , Camelids, New World , Female , HEK293 Cells , Humans , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred BALB C , Protein Binding , Receptors, Antigen, T-Cell, gamma-delta/drug effects , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/metabolism
9.
Transfusion ; 61(1): 246-254, 2021 01.
Article in English | MEDLINE | ID: mdl-33098316

ABSTRACT

BACKGROUND: The Scianna (SC) blood group system comprises seven antigens. They reside on the erythroblast membrane-associated glycoprotein (ERMAP). The ERMAP and RHCE genes are juxtaposed to each other on chromosome 1. We report a novel SC antigen. STUDY DESIGN AND METHODS: Blood samples came from a patient and his two sisters in Saudi Arabia. To investigate the antibody specificity we used the column agglutination technique and soluble recombinant ERMAP protein. The significance of anti-SCAR was evaluated by the transfusion history and a monocyte monolayer assay. We determined the genomic sequence of ERMAP and RHCE genes. RESULTS: The patient's serum showed an antibody of titer 8 against a high-prevalence antigen. The soluble recombinant ERMAP protein inhibited the antibody. The propositus genotyped homozygous for an ERMAP:c.424C>G variant, for which his sisters were heterozygous. The c.424C>G variant occurred in the SC*01 allele in one haplotype with the RHCE*03 (RHCE*cE) allele. No signs of hemolysis occurred following an incompatible blood transfusion. The monocyte monolayer assay was negative. CONCLUSIONS: We characterized a high-prevalence antigen, with the proposed name "SCAR," which is the eighth antigen of the Scianna blood group system (proposed designation 013.008). Individuals homozygous for ERMAP:p.(Gln142Glu) protein variant can produce anti-SCAR. Although we did not observe any sign of hemolysis at this time, the anti-SCAR prompted a change of the treatment regimen. A review of the known reports indicated that all SC alloantibodies of sufficient titer should be considered capable of causing hemolysis.


Subject(s)
Anemia, Sickle Cell/therapy , Blood Group Antigens/genetics , Butyrophilins/genetics , Transfusion Reaction/blood , Alleles , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/genetics , Antisickling Agents/therapeutic use , Blood Group Antigens/immunology , Blood Transfusion/methods , Butyrophilins/immunology , Female , Genotype , Haplotypes , Heterozygote , Homozygote , Humans , Hydroxyurea/therapeutic use , Isoantibodies/genetics , Male , Monocytes/metabolism , Polymorphism, Single Nucleotide , Prevalence , Rh-Hr Blood-Group System/genetics , Rh-Hr Blood-Group System/immunology , Saudi Arabia/epidemiology , Transfusion Reaction/genetics , Young Adult , beta-Thalassemia/complications
10.
J Immunol ; 203(2): 311-320, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31285310

ABSTRACT

As interest in γδ T cells grows rapidly, what key points are emerging, and where is caution warranted? γδ T cells fulfill critical functions, as reflected in associations with vaccine responsiveness and cancer survival in humans and ever more phenotypes of γδ T cell-deficient mice, including basic physiological deficiencies. Such phenotypes reflect activities of distinct γδ T cell subsets, whose origins offer interesting insights into lymphocyte development but whose variable evolutionary conservation can obfuscate translation of knowledge from mice to humans. By contrast, an emerging and conserved feature of γδ T cells is their "adaptate" biology: an integration of adaptive clonally-restricted specificities, innate tissue-sensing, and unconventional recall responses that collectively strengthen host resistance to myriad challenges. Central to adaptate biology are butyrophilins and other γδ cell regulators, the study of which should greatly enhance our understanding of tissue immunogenicity and immunosurveillance and guide intensifying clinical interest in γδ cells and other unconventional lymphocytes.


Subject(s)
Immunologic Surveillance/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Animals , Butyrophilins/immunology , Humans , Monitoring, Immunologic/methods , T-Lymphocyte Subsets/immunology
11.
J Immunol ; 203(3): 607-626, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31227581

ABSTRACT

Vγ2Vδ2 T cells play important roles in human immunity to pathogens and tumors. Their TCRs respond to the sensing of isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate, by butyrophilin (BTN) 3A1. BTN3A1 is an Ig superfamily protein with extracellular IgV/IgC domains and intracellular B30.2 domains that bind prenyl pyrophosphates. We have proposed that intracellular α helices form a coiled-coil dimer that functions as a spacer for the B30.2 domains. To test this, five pairs of anchor residues were mutated to glycine to destabilize the coiled-coil dimer. Despite maintaining surface expression, BTN3A1 mutagenesis either abrogated or decreased stimulation by (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate. BTN3A2 and BTN3A3 proteins and orthologs in alpacas and dolphins are also predicted to have similar coiled-coil dimers. A second short coiled-coil region dimerizes the B30.2 domains. Molecular dynamics simulations predict that mutation of a conserved tryptophan residue in this region will destabilize the dimer, explaining the loss of stimulation by BTN3A1 proteins with this mutation. The juxtamembrane regions of other BTN/BTN-like proteins with B30.2 domains are similarly predicted to assume α helices, with many predicted to form coiled-coil dimers. An exon at the end of this region and the exon encoding the dimerization region for B30.2 domains are highly conserved. We propose that coiled-coil dimers function as rod-like helical molecular spacers to position B30.2 domains, as interaction sites for other proteins, and as dimerization regions to allow sensing by B30.2 domains. In these ways, the coiled-coil domains of BTN3A1 play critical roles for its function.


Subject(s)
Antigens, CD/genetics , B30.2-SPRY Domain/genetics , Butyrophilins/genetics , CD8-Positive T-Lymphocytes/immunology , Hemiterpenes/immunology , Organophosphates/immunology , Organophosphorus Compounds/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Amino Acid Sequence/genetics , Amino Acid Substitution/genetics , Antigens, CD/immunology , Butyrophilins/immunology , Dimerization , Humans , Lymphocyte Activation/immunology , Molecular Dynamics Simulation
12.
Proc Natl Acad Sci U S A ; 115(5): 1039-1044, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29339503

ABSTRACT

The long-held view that gamma delta (γδ) T cells in mice and humans are fundamentally dissimilar, as are γδ cells in blood and peripheral tissues, has been challenged by emerging evidence of the cells' regulation by butyrophilin (BTN) and butyrophilin-like (BTNL) molecules. Thus, murine Btnl1 and the related gene, Skint1, mediate T cell receptor (TCR)-dependent selection of murine intraepithelial γδ T cell repertoires in gut and skin, respectively; BTNL3 and BTNL8 are TCR-dependent regulators of human gut γδ cells; and BTN3A1 is essential for TCR-dependent activation of human peripheral blood Vγ9Vδ2+ T cells. However, some observations concerning BTN/Btnl molecules continue to question the extent of mechanistic conservation. In particular, murine and human gut γδ cell regulation depends on pairings of Btnl1 and Btnl6 and BTNL3 and BTNL8, respectively, whereas blood γδ cells are reported to be regulated by BTN3A1 independent of other BTNs. Addressing this paradox, we show that BTN3A2 regulates the subcellular localization of BTN3A1, including functionally important associations with the endoplasmic reticulum (ER), and is specifically required for optimal BTN3A1-mediated activation of Vγ9Vδ2+ T cells. Evidence that BTNL3/BTNL8 and Btnl1/Btnl6 likewise associate with the ER reinforces the prospect of broadly conserved mechanisms underpinning the selection and activation of γδ cells in mice and humans, and in blood and extralymphoid sites.


Subject(s)
Butyrophilins/immunology , Butyrophilins/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Amino Acid Motifs , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Antigens, CD/metabolism , Butyrophilins/chemistry , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Lymphocyte Activation , Mice , Protein Multimerization
13.
Semin Cell Dev Biol ; 84: 65-74, 2018 12.
Article in English | MEDLINE | ID: mdl-29471037

ABSTRACT

Despite playing critical roles in the immune response and having significant potential in immunotherapy, γδ T cells have garnered little of the limelight. One major reason for this paradox is that their antigen recognition mechanisms are largely unknown, limiting our understanding of their biology and our potential to modulate their activity. One of the best-studied γδ subsets is the human Vγ9Vδ2T cell population, which predominates in peripheral blood and can combat both microbial infections and cancers. Although it has been known for decades that Vγ9Vδ2T cells respond to the presence of small pyrophosphate-based metabolites, collectively named phosphoantigens (pAgs), derived from microbial sources or malignant cells, the molecular basis for this response has been unclear. A major breakthrough in this area came with the identification of the Butyrophilin 3A (BTN3A) proteins, members of the Butyrophilin/Butyrophilin-like protein family, as mediators between pAgs and Vγ9Vδ2T cells. In this article, we review the most recent studies regarding pAg activation of human Vγ9Vδ2T cells, mainly focusing on the role of BTN3A as the pAg sensing molecule, as well as its potential impact on downstream events of the activation process.


Subject(s)
Antigens, CD/immunology , Butyrophilins/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , T-Lymphocytes/drug effects , Animals , Antigens, CD/drug effects , Butyrophilins/drug effects , Butyrophilins/immunology , Diphosphates/pharmacology , Humans , Phosphorylation/drug effects , T-Lymphocytes/immunology
14.
Adv Exp Med Biol ; 1273: 91-104, 2020.
Article in English | MEDLINE | ID: mdl-33119877

ABSTRACT

Gamma delta (γδ) T cells which combine both innate and adaptive potential have extraordinary properties. Indeed, their strong cytotoxic and pro-inflammatory activity allows them to kill a broad range of tumor cells. Several studies have demonstrated that γδ T cells are an important component of tumor-infiltrated lymphocytes in patients affected by different types of cancer. Tumor-infiltrating γδ T cells are also considered as a good prognostic marker in many studies, though the presence of these cells is associated with poor prognosis in breast and colon cancers. The tumor microenvironment seems to drive γδ T-cell differentiation toward a tumor-promoting or a tumor-controlling phenotype, which suggests that some tumor microenvironments can limit the effectiveness of γδ T cells.The major γδ T-cell subsets in human are the Vγ9Vδ2 T cells that are specifically activated by phosphoantigens. This unique antigenic activation process operates in a framework that requires the expression of butyrophilin 3A (BTN3A) molecules. Interestingly, there is some evidence that BTN3A expression may be regulated by the tumor microenvironment. Given their strong antitumoral potential, Vγ9Vδ2 T cells are used in therapeutic approaches either by ex vivo culture and amplification, and then adoptive transfer to patients or by direct stimulation to propagate in vivo. These strategies have demonstrated promising initial results, but greater potency is needed. Combining Vγ9Vδ2 T-cell immunotherapy with systemic approaches to restore antitumor immune response in tumor microenvironment may improve efficacy.In this chapter, we first review the basic features of γδ T cells and their roles in the tumor microenvironment and then analyze the advances about the understanding of these cells' activation in tumors and why this represent unique challenges for therapeutics, and finally we discuss γδ T-cell-based therapeutic strategies and future perspectives of their development.


Subject(s)
Neoplasms/immunology , T-Lymphocyte Subsets/cytology , Tumor Microenvironment/immunology , Butyrophilins/immunology , Cell Differentiation , Humans , Lymphocyte Activation , Neoplasms/therapy , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets/immunology
15.
Cell Immunol ; 335: 22-29, 2019 01.
Article in English | MEDLINE | ID: mdl-30389093

ABSTRACT

Although hematopoietic stem cell transplantation (HSCT) has been widely used in the treatment of many diseases, graft-versus-host disease (GVHD) remains a major complication after allogeneic HSCT. Butyrophilin-like 2 (BTNL2) protein has been reported to have the ability to inhibit T cell proliferation in vitro; its ability to inhibit T cell responses in vivo has not been determined. We show here that in vivo administration of recombinant BTNL2-IgG2a Fc (rBTNL2-Ig) fusion protein ameliorates GVHD in mice. This is related to the ability of rBTNL2-Ig to inhibit T cell proliferation, activation and Th1/Th17 cytokine production in vivo. Furthermore, rBTNL2-Ig treatment increases the generation of regulatory T cells. Our results suggest that rBTNL2-Ig has the potential to be used in the prevention and treatment of patients with GVHD.


Subject(s)
Butyrophilins/metabolism , Butyrophilins/pharmacology , Graft vs Host Disease/prevention & control , Animals , Butyrophilins/immunology , Graft vs Host Disease/metabolism , Hematopoietic Stem Cell Transplantation/methods , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Transplantation, Homologous
16.
J Immunol ; 198(11): 4228-4234, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28461569

ABSTRACT

Vγ9Vδ2 T lymphocytes are the major human peripheral γδ T cell subset, with broad reactivity against stressed human cells, including tumor cells. Vγ9Vδ2 T cells are specifically activated by small phosphorylated metabolites called phosphoantigens (PAg). Stress-induced changes in target cell PAg levels are specifically detected by butyrophilin (BTN)3A1, using its intracellular B30.2 domain. This leads to the activation of Vγ9Vδ2 T cells. In this study, we show that changes in the juxtamembrane domain of BTN3A1, but not its transmembrane domain, induce a markedly enhanced or reduced γδ T cell reactivity. There is thus a specific requirement for BTN3A1's juxtamembrane domain for correct γδ T cell-related function. This work identified, as being of particular importance, a juxtamembrane domain region of BTN3A molecules identified as a possible dimerization interface and that is located close to the start of the B30.2 domain.


Subject(s)
Antigens, CD/chemistry , Antigens, CD/immunology , Butyrophilins/chemistry , Butyrophilins/immunology , Lymphocyte Activation , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Antigens/chemistry , Antigens/immunology , Antigens, CD/metabolism , Butyrophilins/metabolism , HEK293 Cells , Humans , Mutant Chimeric Proteins/immunology , Phosphorylation
17.
Eur J Immunol ; 47(6): 982-992, 2017 06.
Article in English | MEDLINE | ID: mdl-28386905

ABSTRACT

Phosphoantigens (PAgs)-like HMBPP ((E)-4-hydroxy-3-methyl-but-2-enyl diphosphate) and butyrophilin 3 (BTN3A, CD277)-specific monoclonal antibody 20.1 induce TCR-mediated activation of Vγ9Vδ2 T cells. Here, we compared murine reporter cells transduced with Vγ9Vδ2 TCRs G115, D1C55, and MOP for the activation in culture with human RAJI cells and PAgs or mAb 20.1 and its single-chain (sc) derivative. All transductants responded readily to PAg but only TCR MOP γ-chain-expressing cells responded to mAb/sc 20.1. Furthermore, both antagonist and agonist mAb and sc of the agonist mAb inhibited the PAg response of TCR-transduced murine reporter cells. These findings suggest that, in contrast to stimulation by physiological stimulators (PAg), the responsiveness to mAb 20.1 depends strongly on CDR3 sequences of the TCR, and that mAb 20.1 can interfere with the PAg-response. Mouse or human origin of reporter cells might affect the mAb 20.1 response since all three TCR-mediated mAb 20.1-induced activation of TCR-transduced Jurkat cells. The pronounced differences between PAg and mAb 20.1-induced activation observed here help to understand the often contradictory published data. This study provides novel perspectives on the physiological mechanism of Vγ9Vδ2 T-cell activation, and highlights the complex mode of action of BTN3A-specific antibodies as agents in cancer immunotherapy.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, CD/immunology , Butyrophilins/immunology , Lymphocyte Activation , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Cell Line , HEK293 Cells , Humans , Mice
18.
J Hum Genet ; 63(1): 83-87, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29215094

ABSTRACT

Primary open-angle glaucoma (POAG) is influenced by both genetic and environmental factors. Despite significant progress in identifying genetic variants associated with POAG, there remains a substantial amount of unexplained heritability. Study design features that may enhance knowledge of the genetic architecture include focusing on multiple quantitative traits related to ocular disorders (i.e. endophenotypes), targeting genetic variants that directly influence gene expression (i.e. cis-eQTLs) and utilising genetically isolated populations to reduce genetic and environmental noise and thus enhance association signals. In this study we performed heritability and blood-based eQTL association analysis of five key POAG endophenotypes in 330 individuals from the Norfolk Island (NI) isolate. Results showed evidence of heritability for all five traits, with H2 estimates ranging from 0.35 for intraocular pressure (IOP) to 0.82 for central corneal thickness (CCT) (P < 0.05). The primary finding was for BTN3A2, whereby both cis-SNP and transcript were significantly associated with disc size within a conditional regression model. Specifically, this model included rs853676 (ß = 0.23,P = 0.008) and transcript (ß = 0.23, P = 0.03). We also observed a cis-SNP association between optic disc size and LPCAT2 independent of transcript (P = 0.0004). These genes have specific functions in immune system pathways and suggest a role for an inherited immune component of POAG risk. This study also demonstrates an alternate approach to understanding the functional genetic basis of POAG and ocular health more generally.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase , Butyrophilins , Gene Expression Regulation , Glaucoma, Open-Angle , Optic Disk , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , 1-Acylglycerophosphocholine O-Acyltransferase/biosynthesis , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/immunology , Butyrophilins/biosynthesis , Butyrophilins/genetics , Butyrophilins/immunology , Female , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/immunology , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/pathology , Humans , Male , Melanesia , Optic Disk/immunology , Optic Disk/metabolism , Optic Disk/pathology , Phenotype
19.
J Immunol ; 197(8): 3059-3068, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27619996

ABSTRACT

Human Vγ9Vδ2 T cells recognize in a butyrophilin 3A/CD277-dependent way microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) or endogenous pyrophosphates (isopentenyl pyrophosphate [IPP]). Nitrogen-bisphosphonates such as zoledronic acid (ZOL) trigger selective γδ T cell activation because they stimulate IPP production in monocytes by inhibiting the mevalonate pathway downstream of IPP synthesis. We performed a comparative analysis of the capacity of purified monocytes, neutrophils, and CD4 T cells to serve as accessory cells for Vγ9Vδ2 T cell activation in response to three selective but mechanistically distinct stimuli (ZOL, HMBPP, agonistic anti-CD277 mAb). Only monocytes supported γδ T cell expansion in response to all three stimuli, whereas both neutrophils and CD4 T cells presented HMBPP but failed to induce γδ T cell expansion in the presence of ZOL or anti-CD277 mAb. Preincubation of accessory cells with the respective stimuli revealed potent γδ T cell-stimulating activity of ZOL- or anti-CD277 mAb-pretreated monocytes, but not neutrophils. In comparison with monocytes, ZOL-pretreated neutrophils produced little, if any, IPP and expressed much lower levels of farnesyl pyrophosphate synthase. Exogenous IL-18 enhanced the γδ T cell expansion with all three stimuli, remarkably also in response to CD4 T cells and neutrophils preincubated with anti-CD277 mAb or HMBPP. Our study uncovers unexpected differences between monocytes and neutrophils in their accessory function for human γδ T cells and underscores the important role of IL-18 in driving γδ T cell expansion. These results may have implications for the design of γδ T cell-based immunotherapeutic strategies.


Subject(s)
Antigens, CD/metabolism , Butyrophilins/metabolism , CD4-Positive T-Lymphocytes/immunology , Monocytes/immunology , Neutrophils/immunology , T-Lymphocytes/immunology , Antibodies, Blocking/immunology , Antigens, CD/immunology , Butyrophilins/immunology , Cells, Cultured , Diphosphonates/immunology , Geranyltranstransferase/metabolism , Hemiterpenes/immunology , Humans , Imidazoles/immunology , Interleukin-18/metabolism , Lymphocyte Activation , Mevalonic Acid/metabolism , Organophosphates/immunology , Organophosphorus Compounds/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Zoledronic Acid
20.
J Immunol ; 197(2): 419-28, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27271567

ABSTRACT

Vγ9Vδ2 effector T cells lyse cells in response to phosphorus-containing small molecules, providing primates a unique route to remove infected or malignant cells. Yet, the triggering mechanisms remain ill defined. We examined lysis mediated by human Vγ9Vδ2 effector T cells in response to the naturally occurring (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) or a synthetic cell-permeable prodrug, bis (pivaloyloxymethyl) (E)-4-hydroxy-3-methyl-but-2-enyl phosphonate. CD27(+)/CD45RA(-) Th1-like effector cells killed K562 target cells through a mechanism that could be enhanced by either compound or TCR Ab and blocked by Src inhibition or butyrophilin 3 isoform A1 (BTN3A1) disruption. Pretreatment at 4 °: C decreased HMBPP-induced lysis but did not reduce lysis induced by bis (pivaloyloxymethyl) (E)-4-hydroxy-3-methyl-but-2-enyl phosphonate. Together, our results show that internalization of HMBPP into target cells is required for BTN3A1-dependent lysis by Vγ9Vδ2 effector T cells. The enhanced activity of the prodrug analog is due to its ability to bypass the pathways required for entry of HMBPP. These findings support an inside-out model of T cell triggering driven by small-molecule induction of BTN3A1.


Subject(s)
Antigens, CD/immunology , Butyrophilins/immunology , Cytotoxicity, Immunologic/immunology , Organophosphates/pharmacology , Prodrugs/pharmacology , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Cytotoxicity, Immunologic/drug effects , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Lymphocyte Activation/drug effects , Organophosphates/immunology , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL