Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Biol Chem ; 299(4): 103075, 2023 04.
Article in English | MEDLINE | ID: mdl-36858199

ABSTRACT

The apoptotic caspase subfamily evolved into two subfamilies-monomeric initiators and dimeric effectors; both subfamilies share a conserved caspase-hemoglobinase fold with a protease domain containing a large subunit and a small subunit. Sequence variations in the conserved caspase-hemoglobinase fold resulted in changes in oligomerization, enzyme specificity, and regulation, making caspases an excellent model for examining the mechanisms of molecular evolution in fine-tuning structure, function, and allosteric regulation. We examined the urea-induced equilibrium folding/unfolding of two initiator caspases, monomeric caspase-8 and cFLIPL, over a broad pH range. Both proteins unfold by a three-state equilibrium mechanism that includes a partially folded intermediate. In addition, both proteins undergo a conserved pH-dependent conformational change that is controlled by an evolutionarily conserved mechanism. We show that the conformational free energy landscape of the caspase monomer is conserved in the monomeric and dimeric subfamilies. Molecular dynamics simulations in the presence or the absence of urea, coupled with limited trypsin proteolysis and mass spectrometry, show that the small subunit is unstable in the protomer and unfolds prior to the large subunit. In addition, the unfolding of helix 2 in the large subunit results in disruption of a conserved allosteric site. Because the small subunit forms the interface for dimerization, our results highlight an important driving force for the evolution of the dimeric caspase subfamily through stabilizing the small subunit.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein , Caspase 8 , Protein Folding , Urea , Caspase 8/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry
2.
Mol Cell ; 64(2): 236-250, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27746017

ABSTRACT

Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/chemistry , Death Domain Receptor Signaling Adaptor Proteins/chemistry , Fas-Associated Death Domain Protein/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Apoptosis/drug effects , Binding Sites , CARD Signaling Adaptor Proteins , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cryoelectron Microscopy , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Death Domain Receptor Signaling Adaptor Proteins/genetics , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Death Effector Domain , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Gene Expression , Humans , Jurkat Cells , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transfection , Viral Proteins/genetics , Viral Proteins/metabolism , fas Receptor/pharmacology
3.
J Chem Inf Model ; 61(7): 3543-3558, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34196179

ABSTRACT

The death-inducing signaling complex (DISC) is a fundamental multiprotein complex, which triggers the extrinsic apoptosis pathway through stimulation by death ligands. DISC consists of different death domain (DD) and death effector domain (DED) containing proteins such as the death receptor Fas (CD95) in complex with FADD, procaspase-8, and cFLIP. Despite many experimental and theoretical studies in this area, there is no global agreement neither on the DISC architecture nor on the mechanism of action of the involved species. In the current work, we have tried to reconstruct the DISC structure by identifying key protein interactions using a new protein-protein docking meta-approach. We combined the benefits of five of the most employed protein-protein docking engines, HADDOCK, ClusPro, HDOCK, GRAMM-X, and ZDOCK, in order to improve the accuracy of the predicted docking complexes. Free energy of binding and hot spot interacting residues were calculated and determined for each protein-protein interaction using molecular mechanics generalized Born surface area and alanine scanning techniques, respectively. In addition, a series of in-cellulo protein-fragment complementation assays were conducted to validate the protein-protein docking procedure. The results show that the DISC formation initiates by dimerization of adjacent FasDD trimers followed by recruitment of FADD through homotypic DD interactions with the oligomerized death receptor. Furthermore, the in-silico outcomes indicate that cFLIP cannot bind directly to FADD; instead, cFLIP recruitment to the DISC is a hierarchical and cooperative process where FADD initially recruits procaspase-8, which in turn recruits and heterodimerizes with cFLIP. Finally, a possible structure of the entire DISC is proposed based on the docking results.


Subject(s)
Apoptosis , Death Domain Receptor Signaling Adaptor Proteins/chemistry , Signal Transduction , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8 , Cell Membrane/chemistry , Fas-Associated Death Domain Protein/chemistry , Protein Interaction Mapping
4.
Biochemistry (Mosc) ; 85(10): 1134-1144, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33202199

ABSTRACT

Procaspase-8 activation at the death-inducing signaling complex (DISC) triggers extrinsic apoptotic pathway. Procaspase-8 activation takes place in the death effector domain (DED) filaments and is regulated by c-FLIP proteins, in particular, by the long isoform c-FLIPL. Recently, the first-in-class chemical probe targeting the caspase-8/c-FLIPL heterodimer was reported. This rationally designed small molecule, FLIPin, enhances caspase-8 activity after initial heterodimer processing. Here, we used a kinetic mathematical model to gain an insight into the mechanisms of FLIPin action in a complex with DISC, in particular, to unravel the effects of FLIPin at different stoichiometry and composition of the DED filament. Analysis of this model has identified the optimal c-FLIPL to procaspase-8 ratios in different cellular landscapes favoring the activity of FLIPin. We predicted that the activity FLIPin is regulated via different mechanisms upon c-FLIPL downregulation or upregulation. Our study demonstrates that a combination of mathematical modeling with system pharmacology allows development of more efficient therapeutic approaches and prediction of optimal treatment strategies.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein , Caspase 8/chemistry , Models, Theoretical , CASP8 and FADD-Like Apoptosis Regulating Protein/antagonists & inhibitors , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , HeLa Cells , Humans , Protein Binding , Protein Conformation , Protein Multimerization
5.
J Biol Chem ; 289(2): 1183-91, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24275659

ABSTRACT

Caspase-8 is now appreciated to govern both apoptosis following death receptor ligation and cell survival and growth via inhibition of the Ripoptosome. Cells must therefore carefully regulate the high level of caspase-8 activity during apoptosis versus the modest levels observed during cell growth. The caspase-8 paralogue c-FLIP is a good candidate for a molecular rheostat of caspase-8 activity. c-FLIP can inhibit death receptor-mediated apoptosis by competing with caspase-8 for recruitment to FADD. However, full-length c-FLIPL can also heterodimerize with caspase-8 independent of death receptor ligation and activate caspase-8 via an activation loop in the C terminus of c-FLIPL. This triggers cleavage of c-FLIPL at Asp-376 by caspase-8 to produce p43FLIP. The continued function of p43FLIP has, however, not been determined. We demonstrate that acute deletion of endogenous c-FLIP in murine effector T cells results in loss of caspase-8 activity and cell death. The lethality and caspase-8 activity can both be rescued by the transgenic expression of p43FLIP. Furthermore, p43FLIP associates with Raf1, TRAF2, and RIPK1, which augments ERK and NF-κB activation, IL-2 production, and T cell proliferation. Thus, not only is c-FLIP the initiator of caspase-8 activity during T cell activation, it is also an initial caspase-8 substrate, with cleaved p43FLIP serving to both stabilize caspase-8 activity and promote activation of pathways involved with T cell growth.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , NF-kappa B/metabolism , Peptide Fragments/metabolism , T-Lymphocytes/metabolism , Animals , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Caspase 8/genetics , Cell Proliferation , Cell Survival , Cells, Cultured , Humans , Immunoblotting , Interleukin-2/metabolism , Jurkat Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Peptide Fragments/genetics , Proto-Oncogene Proteins c-raf , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/cytology , TNF Receptor-Associated Factor 2/metabolism
6.
J Virol ; 88(12): 6539-41, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24719415

ABSTRACT

FLICE-inhibitory proteins (FLIPs) are a family of viral (poxvirus and herpesvirus) and cellular proteins. The hallmark of this family is the presence of tandem death-effector domains (DEDs). Despite this shared motif, each protein possesses different abilities to modulate apoptosis, NF-κB, and interferon regulatory factor 3 (IRF3). These similarities and differences are discussed and highlighted here. The comparative study of FLIPs provides a unique basis to understand virus-host interactions, viral pathogenesis, and cellular regulation of immune system signal transduction pathways.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/immunology , Viral Proteins/immunology , Virus Diseases/immunology , Virus Diseases/virology , Viruses/immunology , Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Humans , Immunity , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Multigene Family , NF-kappa B/genetics , NF-kappa B/immunology , Signal Transduction , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Diseases/genetics , Viruses/chemistry , Viruses/genetics
7.
Nat Commun ; 15(1): 3791, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710704

ABSTRACT

Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein , Caspase 8 , Fas-Associated Death Domain Protein , Humans , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , HEK293 Cells , Models, Molecular , Protein Binding , Protein Domains , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
8.
Biochim Biophys Acta ; 1824(1): 113-22, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21704196

ABSTRACT

Caspase-8, the initiator of extrinsically-triggered apoptosis, also has important functions in cellular activation and differentiation downstream of a variety of cell surface receptors. It has become increasingly clear that the heterodimer of caspase-8 with the long isoform of cellular FLIP (FLIP(L)) fulfills these pro-survival functions of caspase-8. FLIP(L), a catalytically defective caspase-8 paralog, can interact with caspase-8 to activate its catalytic function. The caspase-8/FLIP(L) heterodimer has a restricted substrate repertoire and does not induce apoptosis. In essence, caspase-8 heterodimerized with FLIP(L) prevents the receptor interacting kinases RIPK1 and -3 from executing the form of cell death known as necroptosis. This review discusses the latest insights in caspase-8 homo- versus heterodimerization and the implication this has for cellular death or survival. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.


Subject(s)
Apoptosis , Caspase 8/metabolism , Caspase 8/physiology , Cell Proliferation , Protein Multimerization/physiology , Animals , Apoptosis/genetics , Apoptosis/physiology , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/physiology , Caspase 8/chemistry , Caspase 8/genetics , Catalysis , Growth and Development/genetics , Humans , Models, Biological , Models, Molecular , Phylogeny
9.
Proc Natl Acad Sci U S A ; 106(20): 8169-74, 2009 May 19.
Article in English | MEDLINE | ID: mdl-19416807

ABSTRACT

Cellular FLICE-inhibitory protein (c-FLIP(L)) is a key regulator of the extrinsic cell death pathway. Although widely regarded as an inhibitor of initiator caspase activation and cell death, c-FLIP(L) is also capable of enhancing procaspase-8 activation through heterodimerization of their respective protease domains. However, the underlying mechanism of this activation process remains enigmatic. Here, we demonstrate that cleavage of the intersubunit linker of c-FLIP(L) by procaspase-8 potentiates the activation process by enhancing heterodimerization between the two proteins and vastly improving the proteolytic activity of unprocessed caspase-(C)8. The crystal structures of the protease-like domain of c-FLIP(L) alone and in complex with zymogen C8 identify the unique determinants that favor heterodimerization over procaspase-8 homodimerization, and induce the latent active site of zymogen C8 into a productive conformation. Together, these findings provide molecular insights into a key aspect of c-FLIP(L) function that modulates procaspase-8 activation to elicit diverse responses in different cellular contexts.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/metabolism , Animals , Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/chemistry , Crystallography, X-Ray , Enzyme Activation , Enzyme Precursors/metabolism , Humans , Protein Conformation , Protein Multimerization
10.
Structure ; 30(2): 229-239.e5, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34800372

ABSTRACT

Cellular FLICE-like inhibitory protein (cFLIP) is a member of the Death Domain superfamily with pivotal roles in many cellular processes and disease states, including cancer and autoimmune disorders. In the context of the death-inducing signaling complex (DISC), cFLIP isoforms regulate extrinsic apoptosis by controlling procaspase-8 activation. The function of cFLIP is mediated through a series of protein-protein interactions, engaging the two N-terminal death effector domains (DEDs). Here, we solve the structure of an engineered DED1 domain of cFLIP using solution nuclear magnetic resonance (NMR) and we define the interaction with FADD and calmodulin, protein-protein interactions that regulate the function of cFLIP in the DISC. cFLIP DED1 assumes a canonical DED fold characterized by six α helices and is able to bind calmodulin and FADD through two separate interfaces. Our results clearly demonstrate the role of DED1 in the cFLIP/FADD association and contribute to the understanding of the assembly of DISC filaments.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Calmodulin/metabolism , Fas-Associated Death Domain Protein/metabolism , Protein Engineering/methods , Binding Sites , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Circular Dichroism , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Domains , Protein Interaction Maps , Protein Structure, Secondary
11.
Nat Commun ; 12(1): 819, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547302

ABSTRACT

Regulated cell death is essential in development and cellular homeostasis. Multi-protein platforms, including the Death-Inducing Signaling Complex (DISC), co-ordinate cell fate via a core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP. Here, using electron microscopy, we visualize full-length procaspase-8 in complex with FADD. Our structural analysis now reveals how the FADD-nucleated tandem death effector domain (tDED) helical filament is required to orientate the procaspase-8 catalytic domains, enabling their activation via anti-parallel dimerization. Strikingly, recruitment of c-FLIPS into this complex inhibits Caspase-8 activity by altering tDED triple helix architecture, resulting in steric hindrance of the canonical tDED Type I binding site. This prevents both Caspase-8 catalytic domain assembly and tDED helical filament elongation. Our findings reveal how the plasticity, composition and architecture of the core FADD:Caspase-8 complex critically defines life/death decisions not only via the DISC, but across multiple key signaling platforms including TNF complex II, the ripoptosome, and RIPK1/RIPK3 necrosome.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/chemistry , Fas-Associated Death Domain Protein/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Catalytic Domain , Cloning, Molecular , Cryoelectron Microscopy , Death Domain Receptor Signaling Adaptor Proteins/chemistry , Death Domain Receptor Signaling Adaptor Proteins/genetics , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Regulated Cell Death/genetics , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
12.
Biomol NMR Assign ; 14(2): 239-243, 2020 10.
Article in English | MEDLINE | ID: mdl-32506385

ABSTRACT

Cellular FLICE-inhibitory protein (c-FLIP), which is involved in regulating the apoptosis of the extrinsic cell death pathway contains two death effector domains (DED). There are several splicing variants including short-form (c-FLIPS) and long-form (c-FLIPL). The death-inducing signaling complex (DISC) initiates apoptosis and programmed necrosis, DISC assembly and activation are regulated by c-FLIP. Here we report the NMR chemical shift assignments of c-FLIPs, which pave the way for investigating the molecular basis of the anti-apoptotic function of c-FLIPS.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/analysis , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Nuclear Magnetic Resonance, Biomolecular , Humans , Nitrogen Isotopes , Protein Structure, Secondary , Proton Magnetic Resonance Spectroscopy
13.
Oncogene ; 39(8): 1756-1772, 2020 02.
Article in English | MEDLINE | ID: mdl-31740779

ABSTRACT

The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Death Effector Domain , Amino Acid Sequence , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Death Domain Receptor Signaling Adaptor Proteins/metabolism , HeLa Cells , Humans , Jurkat Cells , Models, Molecular , Protein Isoforms/metabolism , Protein Transport , fas Receptor/metabolism
14.
Cell Death Differ ; 27(7): 2117-2130, 2020 07.
Article in English | MEDLINE | ID: mdl-31959913

ABSTRACT

Pharmacological targeting via small molecule-based chemical probes has recently acquired an emerging importance as a valuable tool to delineate molecular mechanisms. Induction of apoptosis via CD95/Fas and TRAIL-R1/2 is triggered by the formation of the death-inducing signaling complex (DISC). Caspase-8 activation at the DISC is largely controlled by c-FLIP proteins. However molecular mechanisms of this control have just started to be uncovered. In this study we report the first-in-class chemical probe targeting c-FLIPL in the heterodimer caspase-8/c-FLIPL. This rationally designed small molecule was aimed to imitate the closed conformation of the caspase-8 L2' loop and thereby increase caspase-8 activity after initial processing of the heterodimer. In accordance with in silico predictions, this small molecule enhanced caspase-8 activity at the DISC, CD95L/TRAIL-induced caspase activation, and subsequent apoptosis. The generated computational model provided further evidence for the proposed effects of the small molecule on the heterodimer caspase-8/c-FLIPL. In particular, the model has demonstrated that boosting caspase-8 activity by the small molecule at the early time points after DISC assembly is crucial for promoting apoptosis induction. Taken together, our study allowed to target the heterodimer caspase-8/c-FLIPL and get new insights into molecular mechanisms of its activation.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/metabolism , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Protein Multimerization , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/chemistry , Cell Line, Tumor , Cell Survival , Drug Evaluation, Preclinical , Fas Ligand Protein , Humans , Models, Molecular , Reproducibility of Results , TNF-Related Apoptosis-Inducing Ligand/metabolism
15.
Biomolecules ; 10(7)2020 07 02.
Article in English | MEDLINE | ID: mdl-32630842

ABSTRACT

Regenerative capacity in vital organs is limited by fibrosis propensity. Idiopathic pulmonary fibrosis (IPF), a progressive lung disease linked with aging, is a classic example. In this study, we show that in flow cytometry, immunoblots (IB) and in lung sections, FLIP levels can be regulated, in vivo and in vitro, through SIRT1 activity inhibition by CMH (4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide), a small molecule that, as we determined here by structural biology calculations, docked into its nonhistone substrate Ku70-binding site. Ku70 immunoprecipitations and immunoblots confirmed our theory that Ku70-deacetylation, Ku70/FLIP complex, myofibroblast resistance to apoptosis, cell survival, and lung fibrosis in bleomycin-treated mice, are reduced and regulated by CMH. Thus, small molecules associated with SIRT1-mediated regulation of Ku70 deacetylation, affecting FLIP stabilization in fibrotic-lung myofibroblasts, may be a useful strategy, enabling tissue regeneration.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Hydroxamic Acids/administration & dosage , Idiopathic Pulmonary Fibrosis/drug therapy , Ku Autoantigen/metabolism , Lung/cytology , Sirtuin 1/chemistry , Sirtuin 1/metabolism , Acetylation/drug effects , Animals , Binding Sites , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Idiopathic Pulmonary Fibrosis/metabolism , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Protein Stability/drug effects
16.
Cell Death Differ ; 15(4): 773-82, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18219316

ABSTRACT

Cellular FLICE-inhibitory protein (c-FLIP) proteins are known as potent inhibitors of death receptor-mediated apoptosis by interfering with caspase-8 activation at the death-inducing signaling complex (DISC). Among the three human isoforms, c-FLIP(long), c-FLIP(short) and c-FLIP(R), the latter isoform is poorly characterized. We report here the characterization of murine c-FLIP(R) and show that it is the only short c-FLIP isoform expressed in mice. By generating several mutants, we demonstrate that both death effector domains (DEDs) are required for DISC binding and the antiapoptotic function of c-FLIP(R). Surprisingly, the C-terminal tail is important for both protein stability and DISC recruitment. Three-dimensional modeling of c-FLIP(R) revealed a substantial similarity of the overall structures and potential interaction motifs with the viral FLIP MC159. We found, however, that c-FLIP(R) uses different structural motifs for its DISC recruitment. Whereas MC159 interferes with interaction and self-oligomerization of the DISC component FADD by its extensive hydrophilic surface, a narrow hydrophobic patch of c-FLIP(R) on the surface of DED2 is crucial for DISC association. Thus, despite the presence of similar tandem DEDs, viral and cellular FLIPs inhibit apoptosis by remarkably divergent mechanisms.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Mutation , Amino Acid Sequence , Animals , Binding Sites , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Caspase 8/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Imaging, Three-Dimensional , Mice , Models, Molecular , Molecular Sequence Data , NIH 3T3 Cells , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Conformation , Protein Isoforms/metabolism , Protein Structure, Tertiary , Transfection , Viral Proteins/chemistry , Viral Proteins/metabolism
17.
Mol Cells ; 25(2): 184-95, 2008 Apr 30.
Article in English | MEDLINE | ID: mdl-18414015

ABSTRACT

We examined the role of c-FLIP in the motility of HeLa cells. A small interfering RNA (siRNA) directed against c-FLIP inhibited the adhesion and motility of the cells without affecting their growth rate. The long form of c-FLIP (c-FLIPL), but not the short form (c-FLIPS), enhanced adhesion and motility. Downregulation of c-FLIPL with siRNA decreased phosphorylation of FAK and ERK, while overexpression of c-FLIPL increased their phosphorylation. Overexpression of FAK activated ERK, and enhanced the motility of HeLa cells. FRNK, an inhibitory fragment of FAK, inhibited ERK and decreased motility. Inhibition of ERK also significantly suppressed c-FLIPL-promoted motility. Inhibition of ROCK by Y27632 suppressed the c-FLIPL-promoted motility by reducing phosphorylation of FAK and ERK. Overexpression of c-FLIPL increased the expression and secretion of MMP-9, and inhibition of MMP-9 by Ilomastat reduced c-FLIPL- promoted cell motility. A caspase-like domain (amino acids 222-376) was found to be necessary for the c-FLIPL-promoted cell motility. We conclude that c-FLIPL promotes the motility of HeLa cells by activating FAK and ERK, and increasing MMP-9 expression.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Cell Movement , Extracellular Signal-Regulated MAP Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasms/enzymology , Neoplasms/pathology , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Extracellular Matrix Proteins/metabolism , HeLa Cells , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Protein Isoforms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , RNA, Small Interfering/metabolism , Transfection , rho-Associated Kinases/antagonists & inhibitors
18.
Yonsei Med J ; 49(1): 19-27, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18306465

ABSTRACT

Suppression of apoptosis is one of the hallmarks of carcinogenesis. Tumor cells endure apoptotic pressure by overexpressing several antiapoptotic proteins, and FLICE inhibitory protein (FLIP) is one of the important antiapoptotic proteins that have been shown to be overexpressed in various primary tumor cells. FLIP has two death-effector domains in tandem, mimicking the prodomain of procaspase-8. It is recruited to Fadd in death-inducing signaling complex, thereby preventing the activation of procaspase-8. To date, three isoforms of human cytosolic FLIP (c-FLIP) and six viral homologs (v-FLIP) have been identified. Recently, the crystal structure of v-FLIP MC159 was determined for the first time as an atomic-detail FLIP structure, which revealed that two death effector domains are packed tightly against each other mainly through conserved hydrophobic interactions. The overexpression of c-FLIP in tumor cells has been shown to be the determinant of the tumor's resistance to death ligands such as FasL and TRAIL. It has also been shown that the down-regulation of c-FLIP results in sensitizing resistant tumor cells. Therefore, the agents directly targeting c-FLIP at mRNA and protein levels are expected to be developed in near future and tested for the potential as a new class of anti-cancer drugs.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/antagonists & inhibitors , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase Inhibitors , Caspases/metabolism , Humans , Neoplasms/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL