Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.203
Filter
Add more filters

Publication year range
1.
Cell ; 177(6): 1495-1506.e12, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150622

ABSTRACT

The L-type voltage-gated Ca2+ (Cav) channels are modulated by various compounds exemplified by 1,4-dihydropyridines (DHP), benzothiazepines (BTZ), and phenylalkylamines (PAA), many of which have been used for characterizing channel properties and for treatment of hypertension and other disorders. Here, we report the cryoelectron microscopy (cryo-EM) structures of Cav1.1 in complex with archetypal antagonistic drugs, nifedipine, diltiazem, and verapamil, at resolutions of 2.9 Å, 3.0 Å, and 2.7 Å, respectively, and with a DHP agonist Bay K 8644 at 2.8 Å. Diltiazem and verapamil traverse the central cavity of the pore domain, directly blocking ion permeation. Although nifedipine and Bay K 8644 occupy the same fenestration site at the interface of repeats III and IV, the coordination details support previous functional observations that Bay K 8644 is less favored in the inactivated state. These structures elucidate the modes of action of different Cav ligands and establish a framework for structure-guided drug discovery.


Subject(s)
Calcium Channel Blockers/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/ultrastructure , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Amino Acid Sequence , Animals , Binding Sites , Calcium Channels/metabolism , Calcium Channels/physiology , Calcium Channels/ultrastructure , Calcium Channels, L-Type/physiology , Cryoelectron Microscopy , Diltiazem , Ligands , Male , Models, Molecular , Nifedipine , Rabbits , Verapamil
2.
Nature ; 572(7767): 131-135, 2019 08.
Article in English | MEDLINE | ID: mdl-31316205

ABSTRACT

Pathogen-associated molecular patterns (PAMPs) activate innate immunity in both animals and plants. Although calcium has long been recognized as an essential signal for PAMP-triggered immunity in plants, the mechanism of PAMP-induced calcium signalling remains unknown1,2. Here we report that calcium nutrient status is critical for calcium-dependent PAMP-triggered immunity in plants. When calcium supply is sufficient, two genes that encode cyclic nucleotide-gated channel (CNGC) proteins, CNGC2 and CNGC4, are essential for PAMP-induced calcium signalling in Arabidopsis3-7. In a reconstitution system, we find that the CNGC2 and CNGC4 proteins together-but neither alone-assemble into a functional calcium channel that is blocked by calmodulin in the resting state. Upon pathogen attack, the channel is phosphorylated and activated by the effector kinase BOTRYTIS-INDUCED KINASE1 (BIK1) of the pattern-recognition receptor complex, and this triggers an increase in the concentration of cytosolic calcium8-10. The CNGC-mediated calcium entry thus provides a critical link between the pattern-recognition receptor complex and calcium-dependent immunity programs in the PAMP-triggered immunity signalling pathway in plants.


Subject(s)
Arabidopsis/immunology , Arabidopsis/metabolism , Calmodulin/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Plant Immunity/immunology , Animals , Arabidopsis Proteins/agonists , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Calcium Signaling , Calmodulin/pharmacology , Cyclic Nucleotide-Gated Cation Channels/agonists , Cyclic Nucleotide-Gated Cation Channels/antagonists & inhibitors , Cyclic Nucleotide-Gated Cation Channels/genetics , Female , Immunity, Innate , Oocytes/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Xenopus
3.
Nat Chem Biol ; 16(11): 1246-1254, 2020 11.
Article in English | MEDLINE | ID: mdl-32807966

ABSTRACT

The diamide insecticide class is one of the top-selling insecticides globally. They are used to control a wide range of pests by targeting their ryanodine receptors (RyRs). Here, we report the highest-resolution cryo-electron microscopy (cryo-EM) structure of RyR1 in the open state, in complex with the anthranilic diamide chlorantraniliprole (CHL). The 3.2-Å local resolution map facilitates unambiguous assignment of the CHL binding site. The molecule induces a conformational change by affecting the S4-S5 linker, triggering channel opening. The binding site is further corroborated by mutagenesis data, which reveal how diamide insecticides are selective to the Lepidoptera group of insects over honeybee or mammalian RyRs. Our data reveal that several pests have developed resistance via two mechanisms, steric hindrance and loss of contact. Our results provide a foundation for the development of highly selective pesticides aimed at overcoming resistance and therapeutic molecules to treat human myopathies.


Subject(s)
Calcium Channel Blockers/metabolism , Diamide/chemistry , Insecticides/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , ortho-Aminobenzoates/metabolism , Amino Acid Sequence , Animals , Bees , Binding Sites , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Cryoelectron Microscopy , Drug Development , Drug Resistance , Insecticides/chemistry , Insecticides/pharmacology , Lepidoptera , Models, Molecular , Mutagenesis/physiology , Protein Binding , Protein Conformation , Signal Transduction , Substrate Specificity , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology
4.
Biochem Biophys Res Commun ; 555: 1-6, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33812052

ABSTRACT

Cigarette smoke (CS) contains many toxins that collectively harm nearly every organ in the body, and smoking is a key risk factor for many chronic diseases. Aside from its toxic actions, CS may alter expression of the drug- and steroid-binding pregnane X receptor (PXR), which when activated upregulates expression of cytochrome P450 (CYP) enzymes, glutathione transferases (GSTs), and multidrug resistance protein 1 (MDR1), an adaptive metabolic array that mediates clearance of CS component toxins. We sought to identify new PXR agonists that may be useful for restoring PXR activity in conditions wherein it is suppressed, and their mechanisms of PXR binding and activation. PXR has a uniquely larger, hydrophobic, and highly flexible ligand-binding domain (LBD) vs. other nuclear receptors, enabling it to interact with structurally diverse molecules. We tested certain calcium channel blockers (CCBs) as a pharmacological subset of potential PXR ligands, analyzing by molecular docking methods, and identified a putative active site in the PXR LBD, along with the relevant bonds and bonding energies. We analyzed felodipine binding and agonist activity in detail, as it showed the lowest binding energy among CCBs tested. We found felodipine was a potent PXR agonist as measured by luciferase reporter assay, whereas CCBs with higher binding energies were less potent (amlodipine) or nearly inactive (manidipine), and it induced CYP3A4 expression in HepG2 cells, a known target of PXR agonism. Felodipine also both induced PXR mRNA in HepG2 hepatocytes and reduced CS extract-induced diminution of PXR levels, indicating it modulates PXR expression. The results illuminate mechanisms of ligand-induced PXR activation and identify felodipine as a novel PXR agonist.


Subject(s)
Calcium Channel Blockers/pharmacology , Cigarette Smoking/adverse effects , Felodipine/pharmacology , Pregnane X Receptor/agonists , Pregnane X Receptor/metabolism , Binding Sites , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/metabolism , Computer Simulation , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inducers/pharmacology , Down-Regulation/drug effects , Drug Evaluation, Preclinical/methods , Felodipine/chemistry , Felodipine/metabolism , Hep G2 Cells , Humans , Ligands , Molecular Docking Simulation , Pregnane X Receptor/chemistry
5.
Bioorg Chem ; 107: 104523, 2021 02.
Article in English | MEDLINE | ID: mdl-33339668

ABSTRACT

Chuanxiongdiolides R4-R6 (1-3), three novel phthalide dimers featuring two classes of unreported monomeric units (ligustilide/senkyunolide A and ligustilide/neocnidilide) with an unprecedented linkage style (3a,7'/7a,7'a), were isolated from the aerial parts of Ligusticum chuanxiong, together with three pairs of enantiomeric phthalide dimers [(-)/(+)-4a/4b, 5a/5b, and 6a/6b]. The bioassays revealed that compounds 1, 3, 4, 5, and 6 showed significant vasodilation effects, and the mechanism may be attributed to Cav1.2 activation blockade. Based on the established compounds library, the structure activity relationship of the phthalides was proposed. Our findings afford possible leads for developing new vasodilator against cardiovascular and cerebrovascular diseases such as hypertension and ischemic stroke.


Subject(s)
Benzofurans/pharmacology , Heterocyclic Compounds, Bridged-Ring/pharmacology , Ligusticum/chemistry , Vasodilator Agents/pharmacology , Animals , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/metabolism , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/isolation & purification , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , HEK293 Cells , Heterocyclic Compounds, Bridged-Ring/chemical synthesis , Heterocyclic Compounds, Bridged-Ring/isolation & purification , Heterocyclic Compounds, Bridged-Ring/metabolism , Humans , Molecular Docking Simulation , Molecular Structure , Plant Components, Aerial/chemistry , Protein Binding , Rabbits , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Vasodilator Agents/chemistry , Vasodilator Agents/isolation & purification , Vasodilator Agents/metabolism
6.
Proc Natl Acad Sci U S A ; 115(47): 12051-12056, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30397133

ABSTRACT

Genetically encoded inhibitors for voltage-dependent Ca2+ (CaV) channels (GECCIs) are useful research tools and potential therapeutics. Rad/Rem/Rem2/Gem (RGK) proteins are Ras-like G proteins that potently inhibit high voltage-activated (HVA) Ca2+ (CaV1/CaV2 family) channels, but their nonselectivity limits their potential applications. We hypothesized that nonselectivity of RGK inhibition derives from their binding to auxiliary CaVß-subunits. To investigate latent CaVß-independent components of inhibition, we coexpressed each RGK individually with CaV1 (CaV1.2/CaV1.3) or CaV2 (CaV2.1/CaV2.2) channels reconstituted in HEK293 cells with either wild-type (WT) ß2a or a mutant version (ß2a,TM) that does not bind RGKs. All four RGKs strongly inhibited CaV1/CaV2 channels reconstituted with WT ß2a By contrast, when channels were reconstituted with ß2a,TM, Rem inhibited only CaV1.2, Rad selectively inhibited CaV1.2 and CaV2.2, while Gem and Rem2 were ineffective. We generated mutant RGKs (Rem[R200A/L227A] and Rad[R208A/L235A]) unable to bind WT CaVß, as confirmed by fluorescence resonance energy transfer. Rem[R200A/L227A] selectively blocked reconstituted CaV1.2 while Rad[R208A/L235A] inhibited CaV1.2/CaV2.2 but not CaV1.3/CaV2.1. Rem[R200A/L227A] and Rad[R208A/L235A] both suppressed endogenous CaV1.2 channels in ventricular cardiomyocytes and selectively blocked 25 and 62%, respectively, of HVA currents in somatosensory neurons of the dorsal root ganglion, corresponding to their distinctive selectivity for CaV1.2 and CaV1.2/CaV2.2 channels. Thus, we have exploited latent ß-binding-independent Rem and Rad inhibition of specific CaV1/CaV2 channels to develop selective GECCIs with properties unmatched by current small-molecule CaV channel blockers.


Subject(s)
Calcium Channel Blockers/metabolism , Calcium Channels/genetics , Monomeric GTP-Binding Proteins/metabolism , Biophysical Phenomena , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, N-Type/metabolism , HEK293 Cells , Humans , Ion Channel Gating/physiology , Myocytes, Cardiac/metabolism , Neurons/metabolism , Protein Engineering/methods , Substrate Specificity/genetics , ras Proteins/metabolism
7.
Angew Chem Int Ed Engl ; 60(6): 3131-3137, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33125829

ABSTRACT

1,4-Dihydropyridines (DHP), the most commonly used antihypertensives, function by inhibiting the L-type voltage-gated Ca2+ (Cav ) channels. DHP compounds exhibit chirality-specific antagonistic or agonistic effects. The structure of rabbit Cav 1.1 bound to an achiral drug nifedipine reveals the general binding mode for DHP drugs, but the molecular basis for chiral specificity remained elusive. Herein, we report five cryo-EM structures of nanodisc-embedded Cav 1.1 in the presence of the bestselling drug amlodipine, a DHP antagonist (R)-(+)-Bay K8644, and a titration of its agonistic enantiomer (S)-(-)-Bay K8644 at resolutions of 2.9-3.4 Å. The amlodipine-bound structure reveals the molecular basis for the high efficacy of the drug. All structures with the addition of the Bay K8644 enantiomers exhibit similar inactivated conformations, suggesting that (S)-(-)-Bay K8644, when acting as an agonist, is insufficient to lock the activated state of the channel for a prolonged duration.


Subject(s)
Calcium Channel Blockers/chemistry , Calcium Channels, L-Type/chemistry , Dihydropyridines/chemistry , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/chemistry , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/metabolism , Amlodipine/chemistry , Amlodipine/metabolism , Binding Sites , Calcium Channel Agonists/chemistry , Calcium Channel Agonists/metabolism , Calcium Channel Blockers/metabolism , Calcium Channels, L-Type/metabolism , Cryoelectron Microscopy , Dihydropyridines/metabolism , Molecular Dynamics Simulation , Nanostructures/chemistry , Protein Structure, Tertiary , Stereoisomerism
8.
Toxicol Appl Pharmacol ; 401: 115072, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32470353

ABSTRACT

Ochratoxin A (OTA) is a dietary mycotoxin that can cause nephrotoxicity, hepatotoxicity, neurotoxicity and carcinogenicity. We found that in mice OTA is transported by the drug transporters mouse (m)ABCB1 and/or mABCG2, mOATP1A/1B, and human (h)OATP1B3. The complete deletion of mABCB1 and mABCG2 resulted in ~2-fold higher OTA liver and kidney accumulation upon intravenous injection. Upon oral administration, absence of mOATP1A/1B led to a substantial (>3-fold) decrease in hepatic and small intestinal exposure of OTA. Furthermore, in humanized mouse strains, hepatic expression of transgenic hOATP1B3, but not hOATP1B1, partly reversed the reduced liver concentration of OTA in mOATP1A/1B knockout mice. These data indicate that transgenic hOATP1B3 can significantly transport OTA into the liver, and can at least partly compensate for the loss of the mOATP1A/1B transporters. This study shows that some ABC and OATP transporters can substantially affect the pharmacokinetics of OTA, which might have implications for its toxicity behavior.


Subject(s)
Calcium Channel Blockers/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , Liver/metabolism , Ochratoxins/metabolism , Organic Cation Transport Proteins/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Animals , Calcium Channel Blockers/pharmacology , Humans , Liver/drug effects , Male , Mice , Mice, Knockout , Mice, Transgenic , Ochratoxins/pharmacology
9.
Bioorg Med Chem ; 28(18): 115655, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32828422

ABSTRACT

Structural modifications of the neuronal calcium channel blocker MONIRO-1, including constraining the phenoxyaniline portion of the molecule and replacing the guanidinium functionality with tertiary amines, led to compounds with significantly improved affinities for the endogenously expressed CaV2.2 channel in the SH-SY5Y neuroblastoma cell line. These analogues also showed promising activity towards the CaV3.2 channel, recombinantly expressed in HEK293T cells. Both of these ion channels have received attention as likely targets for the treatment of neuropathic pain. The dibenzoazepine and dihydrobenzodiazepine derivatives prepared in this study show an encouraging combination of neuronal calcium ion channel inhibitory potency, plasma stability and potential to cross the blood-brain-barrier.


Subject(s)
Anilides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Benzodiazepines/chemistry , Calcium Channel Blockers/chemical synthesis , Calcium Channels/metabolism , Neuralgia/drug therapy , Recombinant Proteins/metabolism , Anilides/metabolism , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/metabolism , Calcium/metabolism , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Neurons/metabolism , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Signal Transduction , Structure-Activity Relationship
10.
J Pharmacol Exp Ther ; 368(1): 79-87, 2019 01.
Article in English | MEDLINE | ID: mdl-30396915

ABSTRACT

Endogenous canine ATP binding cassette B1 (cABCB1) is expressed abundantly in Madin-Darby canine kidney type II (MDCKII) cells, and its presence often complicates phenotyping of the transport process. Errors in estimating the corrected efflux ratio (cER), as a result of the variable expression of cABCB1, were examined for the dual substrates of ABCB1 and ABCG2 in MDCKII cells expressing human ABCG2 (hABCG2). cABCB1 mRNA and protein expression was 60% and 55% lower, respectively, in MDCKII cells expressing hABCG2 compared with the wild type, suggesting that the expression of endogenous cABCB1 became variable after the expression of hABCG2. To minimize the contribution of endogenous efflux, cABCB1 was suppressed kinetically (using verapamil as a selective inhibitor) or biochemically (transfecting short-hairpin RNA against cABCB1). Under these suppression conditions, cER values for irinotecan and topotecan (dual substrates of ABCB1 and ABCG2) were elevated by more than 4-fold and 2-fold, respectively, compared with cER values without the suppression. The cER of olaparib was similarly increased to 3- and 5-fold in MDCKII cells under the kinetic and biochemical suppression of cABCB1, respectively, suggesting that hABCG2-mediated efflux cannot be ruled out for olaparib. Since the substrate selectivity for ABCB1 and ABCG2 overlapped considerably, the possibility of an inaccurate estimation of cER must be considered for dual substrates in the case of the variable expression of cABCB1 in MDCKII cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Phthalazines/metabolism , Piperazines/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Animals , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Dogs , Dose-Response Relationship, Drug , Humans , LLC-PK1 Cells , Madin Darby Canine Kidney Cells , Phthalazines/pharmacology , Piperazines/pharmacology , Swine
11.
J Pharmacol Sci ; 140(2): 193-196, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31235271

ABSTRACT

We tested whether NNC 55-0396 (NNC), a T-type calcium channel (T-channel) blocker, reduces the brain injury caused by middle cerebral artery occlusion and reperfusion (MCAO/R) in mice. NNC, administered i.c.v. before the occlusion, greatly reduced the MCAO/R-induced brain infarct and neurological dysfunctions, although it, given toward the end of occlusion, was less effective. Systemic administration of NNC before the occlusion also attenuated the infarct and neurological dysfunctions. Our data imply that blood-brain-barrier-permeable T-channel blockers such as NNC are capable of reducing MCAO/R-induced brain damage, and that T-channels are involved in neuronal damage induced by ischemia rather than reperfusion.


Subject(s)
Benzimidazoles/administration & dosage , Brain Injuries/etiology , Brain Injuries/prevention & control , Calcium Channel Blockers/administration & dosage , Cyclopropanes/administration & dosage , Infarction, Middle Cerebral Artery/complications , Naphthalenes/administration & dosage , Reperfusion Injury/complications , Animals , Benzimidazoles/metabolism , Blood-Brain Barrier/metabolism , Calcium Channel Blockers/metabolism , Calcium Channels, T-Type/physiology , Cyclopropanes/metabolism , Infusions, Intraventricular , Infusions, Parenteral , Male , Mice, Inbred Strains , Naphthalenes/metabolism , Time Factors
12.
Mol Pharmacol ; 94(3): 973-983, 2018 09.
Article in English | MEDLINE | ID: mdl-29980657

ABSTRACT

Nifedipine and FPL 64176 (FPL), which block and potentiate L-type voltage-gated Ca2+ channels, respectively, modulate Cav1.2 more potently than Cav1.3. To identify potential strategies for developing subtype-selective inhibitors, we investigated the role of divergent amino acid residues in transmembrane domains IIIS5 and the extracellular IIIS5-3P loop region in modulation of these channels by nifedipine and FPL. Insertion of the extracellular IIIS5-3P loop from Cav1.2 into Cav1.3 (Cav1.3+) reduced the IC50 of nifedipine from 289 to 101 nM, and substitution of S1100 with an A residue, as in Cav1.2, accounted for this difference. Substituting M1030 in IIIS5 to V in Cav1.3+ (Cav1.3+V) further reduced the IC50 of nifedipine to 42 nM. FPL increased current amplitude with an EC50 of 854 nM in Cav1.3, 103 nM in Cav1.2, and 99 nM in Cav1.3+V. In contrast to nifedipine block, substitution of M1030 to V in Cav1.3 had no effect on potency of FPL potentiation of current amplitude, but slowed deactivation in the presence and absence of 10 µM FPL. FPL had no effect on deactivation of Cav1.3/dihydropyridine-insensitive (DHPi), a channel with very low sensitivity to nifedipine block (IC50 ∼93 µM), but did shift the voltage-dependence of activation by ∼-10 mV. We conclude that the M/V variation in IIIS5 and the S/A variation in the IIIS5-3P loop of Cav1.2 and Cav1.3 largely determine the difference in nifedipine potency between these two channels, but the difference in FPL potency is determined by divergent amino acids in the IIIS5-3P loop.


Subject(s)
Calcium Channel Agonists/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/physiology , Nifedipine/pharmacology , Pyrroles/pharmacology , Amino Acid Sequence , Calcium Channel Agonists/metabolism , Calcium Channel Blockers/metabolism , Calcium Channels, L-Type/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Nifedipine/metabolism , Protein Structure, Secondary , Pyrroles/metabolism
13.
J Biol Chem ; 292(50): 20412-20424, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29018094

ABSTRACT

P-glycoprotein (Pgp) is an efflux pump important in multidrug resistance of cancer cells and in determining drug pharmacokinetics. Pgp is a prototype ATP-binding cassette transporter with two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. Conformational changes at the NBDs (the Pgp engines) lead to changes across Pgp transmembrane domains that result in substrate translocation. According to current alternating access models (substrate-binding pocket accessible only to one side of the membrane at a time), binding of ATP promotes NBD dimerization, resulting in external accessibility of the drug-binding site (outward-facing, closed NBD conformation), and ATP hydrolysis leads to dissociation of the NBDs with the subsequent return of the accessibility of the binding site to the cytoplasmic side (inward-facing, open NBD conformation). However, previous work has not investigated these events under near-physiological conditions in a lipid bilayer and in the presence of transport substrate. Here, we used luminescence resonance energy transfer (LRET) to measure the distances between the two Pgp NBDs. Pgp was labeled with LRET probes, reconstituted in lipid nanodiscs, and the distance between the NBDs was measured at 37 °C. In the presence of verapamil, a substrate that activates ATP hydrolysis, the NBDs of Pgp reconstituted in nanodiscs were never far apart during the hydrolysis cycle, and we never observed the NBD-NBD distances of tens of Å that have previously been reported. However, we found two main conformations that coexist in a dynamic equilibrium under all conditions studied. Our observations highlight the importance of performing studies of efflux pumps under near-physiological conditions, in a lipid bilayer, at 37 °C, and during substrate-stimulated hydrolysis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Adenosine Triphosphate/metabolism , Calcium Channel Blockers/metabolism , Lipid Bilayers/chemistry , Models, Molecular , Verapamil/metabolism , ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/genetics , Adenosine Triphosphate/chemistry , Amino Acid Substitution , Animals , Binding Sites , Biological Transport, Active , Bioluminescence Resonance Energy Transfer Techniques , Calcium Channel Blockers/chemistry , Cysteine/chemistry , Europium/chemistry , Hydrolysis , Mice , Mutation , Nanostructures/chemistry , Protein Conformation , Protein Interaction Domains and Motifs , Protein Refolding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Terbium/chemistry , Verapamil/chemistry
14.
J Neurophysiol ; 120(3): 910-919, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29742027

ABSTRACT

The integration of stimuli of different modalities is fundamental to information processing within the nervous system. A descending interneuron in the cricket brain, with prominent dendrites in the deutocerebrum, receives input from three sensory modalities: touch of the antennal flagellum, strain of the antennal base, and visual stimulation. Using calcium imaging, we demonstrate that each modality drives a Ca2+ increase in a different dendritic region. Moreover, touch of the flagellum is represented in a topographic map along the neuron's dendrites. Using intracellular recording, we investigated the effects of Ca2+ on spike shape through the application of the Ca2+ channel antagonist Cd2+ and identified probable Ca2+-dependent K+ currents. NEW & NOTEWORTHY Different dendritic regions of the cricket brain neuron DBNi1-2 showed localized Ca2+ increases when three modalities of stimulation (touch of the flagellum, strain at antennal base, and visual input) were given. Touch stimulation induces localized Ca2+ increases according to a topographic map of the antenna. Ca2+ appears to activate K+ currents in DBNi1-2.


Subject(s)
Arthropod Antennae/physiology , Brain/physiology , Calcium/metabolism , Dendrites/metabolism , Gryllidae/physiology , Interneurons/physiology , Action Potentials/physiology , Animals , Brain/diagnostic imaging , Cadmium/metabolism , Calcium Channel Blockers/metabolism , Calcium Channels , Calcium Signaling/physiology , Female , Flagella/physiology , Male , Optical Imaging/methods , Photic Stimulation , Potassium Channels, Calcium-Activated/metabolism , Touch/physiology
15.
Bioorg Med Chem ; 26(12): 3406-3413, 2018 07 23.
Article in English | MEDLINE | ID: mdl-29776832

ABSTRACT

The proteins Orai1 and STIM1 control store-operated Ca2+ entry (SOCE) into cells. SOCE is important for migration, invasion and metastasis of MDA-MB-231 human triple negative breast cancer (TNBC) cells and has been proposed as a target for cancer drug discovery. Two hit compounds from a medium throughput screen, displayed encouraging inhibition of SOCE in MDA-MB-231 cells, as measured by a Fluorescence Imaging Plate Reader (FLIPR) Ca2+ assay. Following NMR spectroscopic analysis of these hits and reassignment of their structures as 5-hydroxy-5-trifluoromethylpyrazolines, a series of analogues was prepared via thermal condensation reactions between substituted acylhydrazones and trifluoromethyl 1,3-dicarbonyl arenes. Structure-activity relationship (SAR) studies showed that small lipophilic substituents at the 2- and 3-positions of the RHS and 2-, 3- and 4-postions of the LHS terminal benzene rings improved activity, resulting in a novel class of potent and selective inhibitors of SOCE.


Subject(s)
Calcium Channel Blockers/chemistry , ORAI1 Protein/antagonists & inhibitors , Pyrazoles/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Calcium/metabolism , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Cell Line, Tumor , Female , Humans , ORAI1 Protein/metabolism , Protein Array Analysis , Pyrazoles/metabolism , Pyrazoles/pharmacology , Spectrometry, Fluorescence , Structure-Activity Relationship
16.
Bioorg Med Chem ; 26(13): 3773-3784, 2018 07 30.
Article in English | MEDLINE | ID: mdl-29706529

ABSTRACT

A series of aminoisopropanoloxy derivatives of xanthone has been synthesized and their pharmacological properties regarding the cardiovascular system has been evaluated. Radioligand binding and functional studies in isolated organs revealed that title compounds present high affinity and antagonistic potency for α1-(compound 2 and 8), ß-(compounds 1, 3, 4, 7), α1/ß-(compounds 5 and 6) adrenoceptors. Furthermore, compound 7, the structural analogue of verapamil, possesses calcium entry blocking activity. The title compounds showed hypotensive and antiarrhythmic properties due to their adrenoceptor blocking effect. Moreover, they did not affect QRS and QT intervals, and they did not have proarrhythmic potential at tested doses. In addition they exerted anti-aggregation effect. The results of this study suggest that new compounds with multidirectional activity in cardiovascular system might be found in the group of xanthone derivatives.


Subject(s)
Adrenergic Antagonists/chemical synthesis , Drug Design , Xanthones/chemistry , Adrenergic Antagonists/metabolism , Adrenergic Antagonists/pharmacology , Animals , Blood Pressure/drug effects , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/chemistry , Calcium Channels/metabolism , Heart Rate/drug effects , Inhibitory Concentration 50 , Male , Platelet Aggregation/drug effects , Radioligand Assay , Rats , Rats, Wistar , Receptors, Adrenergic, alpha/chemistry , Receptors, Adrenergic, alpha/metabolism , Receptors, Adrenergic, beta/chemistry , Receptors, Adrenergic, beta/metabolism , Structure-Activity Relationship , Verapamil/chemistry , Xanthones/metabolism , Xanthones/pharmacology
17.
Mol Psychiatry ; 21(10): 1324-32, 2016 10.
Article in English | MEDLINE | ID: mdl-27240535

ABSTRACT

l-type calcium channel (LTCC) antagonists have been used in bipolar disorder for over 30 years, without becoming an established therapeutic approach. Interest in this class of drugs has been rekindled by the discovery that LTCC genes are part of the genetic aetiology of bipolar disorder and related phenotypes. We have therefore conducted a systematic review of LTCC antagonists in the treatment and prophylaxis of bipolar disorder. We identified 23 eligible studies, with six randomised, double-blind, controlled clinical trials, all of which investigated verapamil in acute mania, and finding no evidence that it is effective. Data for other LTCC antagonists (diltiazem, nimodipine, nifedipine, methyoxyverapamil and isradipine) and for other phases of the illness are limited to observational studies, and therefore no robust conclusions can be drawn. Given the increasingly strong evidence for calcium signalling dysfunction in bipolar disorder, the therapeutic candidacy of this class of drugs has become stronger, and hence we also discuss issues relevant to their future development and evaluation. In particular, we consider how genetic, molecular and pharmacological data can be used to improve the selectivity, efficacy and tolerability of LTCC antagonists. We suggest that a renewed focus on LTCCs as targets, and the development of 'brain-selective' LTCC ligands, could be one fruitful approach to innovative pharmacotherapy for bipolar disorder and related phenotypes.


Subject(s)
Bipolar Disorder/drug therapy , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/therapeutic use , Calcium Channels, L-Type/genetics , Double-Blind Method , Humans , Isradipine/therapeutic use , Nimodipine/therapeutic use , Verapamil/therapeutic use
18.
J Appl Microbiol ; 123(3): 661-668, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28708280

ABSTRACT

AIMS: The aim of this study is to report on the hydrolytic action of Alcaligenes faecalis isolated from soil samples and its ability to degrade ochratoxin A. METHODS AND RESULTS: An A. faecalis strain was identified and characterized by employing both a phenotypic analysis and 16S rDNA sequence analysis. The results show that this strain could degrade ochratoxin A efficiently but could not use it as a sole carbon source. Ochratoxin α was confirmed as a degradation product in the intracellular extract of A. faecalis using UPLC-MS/MS. Our results suggest that the biodegradation of ochratoxin A by the A. faecalis strain occurs through the hydrolysis of the ochratoxin A amide bond by a putative peptidase. This is the first report to date on the degradation of ochratoxin A by A. faecalis. CONCLUSION: The A. faecalis strain is presumably a suitable candidate for use in the biodegradation of ochratoxin A. SIGNIFICANCE AND IMPACT OF THE STUDY: Ochratoxin A, which is produced by some filamentous fungi, severely impacts human and animal health by contaminating several types of food and feed. Our study contributes to the identification of the function of A. faecalis 0D-1, which is capable of producing hydrolytic enzyme(s) to biodegrade ochratoxin A into nontoxic ochratoxin α, to minimize the risk associated with ochratoxin A exposure.


Subject(s)
Alcaligenes faecalis/isolation & purification , Alcaligenes faecalis/metabolism , Ochratoxins/metabolism , Soil Microbiology , Alcaligenes faecalis/classification , Alcaligenes faecalis/genetics , Animals , Biodegradation, Environmental , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/metabolism , Humans , Ochratoxins/chemistry , Soil/chemistry , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Tandem Mass Spectrometry
19.
Chem Pharm Bull (Tokyo) ; 65(10): 893-903, 2017.
Article in English | MEDLINE | ID: mdl-28966273

ABSTRACT

Resurgence to target L-type voltage-dependent calcium channels has been applied by the synthesis of two series of nifedipine analogues where the ortho- or a meta-nitrophenyl ring is retained. A pre-synthetic molecular docking study with a receptor model followed by molecular alignment has been performed on 47 compounds to predict the most active member. The IC50 values revealed that some of the compounds are similar to or more active than nifedipine. Substitution of groups at the 3- and 5-positions of the dihydropyridine (DHP) ring gave 3k, which is more active than nifedipine. Our valid three-dimensional quantitative structure-activity relationship (3D-QSAR) model prefigures the influence of lipophilicity, bulkiness and chelating effects of the C3 and C5 substituents. Bulky groups interfere with ring-to-ring hydrophobic interaction with tyrosine (Tyr)4311 and limit the efficiency of increasing the length of the hydrocarbon chain of esters at the 3- and 5-positions of the DHP ring as an approach to increasing the activity. The presence of a chelating substituent on the phenyl ring at the 4-position of the DHP ring ensures strong binding to the receptor and hence stabilization of the closed-channel conformation. The validation of 3D-QSAR model indicated its proficiency in predicting activity of newly compounds belonging to the same chemical class.


Subject(s)
Calcium Channel Blockers/chemical synthesis , Dihydropyridines/chemistry , Dihydropyridines/chemical synthesis , Animals , Arcobacter/metabolism , Bacterial Proteins/metabolism , Binding Sites , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/metabolism , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/metabolism , Dihydropyridines/metabolism , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Structure, Tertiary , Quantitative Structure-Activity Relationship , Rabbits
20.
Rapid Commun Mass Spectrom ; 30(9): 1153-62, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27060844

ABSTRACT

RATIONALE: Diltiazem, a calcium channel blocker drug, is widespread in the environment because of its incomplete elimination during water treatment. It can cause negative effects on aquatic organisms; thus, a rapid and sensitive liquid chromatography/mass spectrometry (LC/MS) method to detect its presence was developed. Our approach is based on accurate mass measurements using a hybrid quadrupole-orbital trap mass spectrometer that was used to measure diltiazem and its metabolites in fish tissue. METHODS: Blood plasma, muscle, liver, and kidney tissues of rainbow trout (Oncorhynchus mykiss), exposed for 42 days to 30 µg L(-1) diltiazem, were used for the method development. No metabolite standards were required to identify the diltiazem biotransformation products in the fish tissue. RESULTS: Overall, 17 phase I diltiazem metabolites (including isomeric forms) were detected and tentatively identified using the MassFrontier spectral interpretation software. A semi-quantitative approach was used for organ-dependent comparison of the metabolite concentrations. CONCLUSIONS: These data increase our understanding about diltiazem and its metabolites in aquatic organisms, such as fish. These encompass desmethylation, desacetylation and hydroxylation as well as their combinations. This study represents the first report of the complex diltiazem phase I metabolic pathways in fish.


Subject(s)
Calcium Channel Blockers/chemistry , Calcium Channel Blockers/metabolism , Diltiazem/chemistry , Diltiazem/metabolism , Fishes/metabolism , Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Kidney/chemistry , Kidney/metabolism , Liver/chemistry , Liver/metabolism , Molecular Structure , Muscles/chemistry , Muscles/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL