Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters

Publication year range
1.
Environ Sci Technol ; 58(21): 9272-9282, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38749055

ABSTRACT

Triclocarban (TCC), as a widely used antimicrobial agent, is accumulated in waste activated sludge at a high level and inhibits the subsequent anaerobic digestion of sludge. This study, for the first time, investigated the effectiveness of microbial electrolysis cell-assisted anaerobic digestion (MEC-AD) in mitigating the inhibition of TCC to methane production. Experimental results showed that 20 mg/L TCC inhibited sludge disintegration, hydrolysis, acidogenesis, and methanogenesis processes and finally reduced methane production from traditional sludge anaerobic digestion by 19.1%. Molecular docking revealed the potential inactivation of binding of TCC to key enzymes in these processes. However, MEC-AD with 0.6 and 0.8 V external voltages achieved much higher methane production and controlled the TCC inhibition to less than 5.8%. TCC in the MEC-AD systems was adsorbed by humic substances and degraded to dichlorocarbanilide, leading to a certain detoxification effect. Methanogenic activities were increased in MEC-AD systems, accompanied by complete VFA consumption. Moreover, the applied voltage promoted cell apoptosis and sludge disintegration to release biodegradable organics. Metagenomic analysis revealed that the applied voltage increased the resistance of electrode biofilms to TCC by enriching functional microorganisms (syntrophic VFA-oxidizing and electroactive bacteria and hydrogenotrophic methanogens), acidification and methanogenesis pathways, multidrug efflux pumps, and SOS response.


Subject(s)
Electrolysis , Anaerobiosis , Sewage/microbiology , Methane/metabolism , Carbanilides/pharmacology
2.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068616

ABSTRACT

In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.


Subject(s)
Carbanilides/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Biotransformation/drug effects , Carbanilides/chemistry , Carbanilides/toxicity , Ecotoxicology , Humans , Triclosan/chemistry , Triclosan/toxicity
3.
J Cell Mol Med ; 24(1): 984-995, 2020 01.
Article in English | MEDLINE | ID: mdl-31742861

ABSTRACT

IL-2R pathway is a key regulator in the development of immune cells and has emerged as a promising drug target in cancer treatment, but there is a scarcity of related inhibitors. TPD7 is a novel biphenyl urea taspine derivate, which has been shown anti-cancer effect. Here, we demonstrated the anti-cancer activity of TPD7 in cutaneous T cell lymphoma and investigated the underlying mechanism of TPD7 through IL-2R signalling. The inhibitory effect of TPD7 on cell viability exhibited a strong correlation with the expression level of IL-2R, and cutaneous T cell lymphoma H9 and HUT78 cells were most sensitive to TPD7. TPD7 was nicely bound to IL-2R and down-regulated the mRNA and protein levels of IL-2R. Furthermore, TPD7 suppressed the downstream cascades of IL-2R including JAK/STAT, PI3K/AKT/mTOR and PLCγ/Raf/MAPK signalling, resulting in Bcl-2 mitochondrial apoptosis pathway and cell cycle proteins CDK/Cyclins regulation. And, these were verified by flow cytometry analysis that TPD7 facilitated cell apoptosis in H9 cells via mitochondrial pathway and impeded cell cycle progression at G2/M phase. TPD7 is a novel anti-cancer agent and may be a potential candidate for cutaneous T cell lymphoma treatment by regulating IL-2R signalling pathway.


Subject(s)
Biomarkers, Tumor/metabolism , Carbanilides/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Hydroxylamines/pharmacology , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphoma, T-Cell, Cutaneous/drug therapy , Skin Neoplasms/drug therapy , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Gene Expression Profiling , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/metabolism , Lymphoma, T-Cell, Cutaneous/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tumor Cells, Cultured
4.
Appl Environ Microbiol ; 86(16)2020 08 03.
Article in English | MEDLINE | ID: mdl-32503913

ABSTRACT

Triclocarban (TCC), a formerly used disinfectant, kills bacteria via an unknown mechanism of action. A structural hallmark is its N,N'-diaryl urea motif, which is also present in other antibiotics, including the recently reported small molecule PK150. We show here that, like PK150, TCC exhibits an inhibitory effect on Staphylococcus aureus menaquinone metabolism via inhibition of the biosynthesis protein demethylmenaquinone methyltransferase (MenG). However, the activity spectrum (MIC90) of TCC across a broad range of multidrug-resistant staphylococcus and enterococcus strains was much narrower than that of PK150. Accordingly, TCC did not cause an overactivation of signal peptidase SpsB, a hallmark of the PK150 mode of action. Furthermore, we were able to rule out inhibition of FabI, a confirmed target of the diaryl ether antibiotic triclosan (TCS). Differences in the target profiles of TCC and TCS were further investigated by proteomic analysis, showing complex but rather distinct changes in the protein expression profile of S. aureus Downregulation of the arginine deiminase pathway provided additional evidence for an effect on bacterial energy metabolism by TCC.IMPORTANCE TCC's widespread use as an antimicrobial agent has made it a ubiquitous environmental pollutant despite its withdrawal due to ecological and toxicological concerns. With its antibacterial mechanism of action still being unknown, we undertook a comparative target analysis between TCC, PK150 (a recently discovered antibacterial compound with structural resemblance to TCC), and TCS (another widely employed chlorinated biphenyl antimicrobial) in the bacterium Staphylococcus aureus We show that there are distinct differences in each compound's mode of action, but also identify a shared target between TCC and PK150, the interference with menaquinone metabolism by inhibition of MenG. The prevailing differences, however, which also manifest in a remarkably better broad-spectrum activity of PK150, suggest that even high levels of TCC or TCS resistance observed by continuous environmental exposure may not affect the potential of PK150 or related N,N'-diaryl urea compounds as new antibiotic drug candidates against multidrug-resistant infections.


Subject(s)
Bacterial Proteins/genetics , Carbanilides/pharmacology , Disinfectants/pharmacology , Enterococcus/drug effects , Methyltransferases/genetics , Staphylococcus aureus/drug effects , Bacterial Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Methyltransferases/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
5.
J Environ Sci Health B ; 55(11): 990-1001, 2020.
Article in English | MEDLINE | ID: mdl-32877275

ABSTRACT

Application of municipal biosolids in agriculture present a concern with potential uptake and bioaccumulation of pharmaceutical compounds from biosolids into agronomic plants. We evaluated the efficacy of biochar as a soil amendment to minimize uptake of antimicrobial agents (ciprofloxacin, triclocarban, and triclosan) in lettuce (Lactuca sativa) and carrot (Daucus carota) plants. Biochar reduced the concentration of ciprofloxacin and triclocarban in lettuce leaves and resulted in a 67% reduction of triclosan in carrot roots. There was no substantial difference in pharmaceutical concentrations in carrot and lettuce plant matter at low (2.0 g kg-1 soil) and high (20.4 g kg-1 soil) rates of applied biochar. The co-amendment of biochar and biosolids increased soil pH and nutrient content which were positively correlated with an increase in lettuce shoot biomass. Our results demonstrate the potential efficacy of using walnut shell biochar as a sorbent for pharmaceutical contaminants in soil without negatively affecting plant growth.


Subject(s)
Carbanilides/pharmacology , Charcoal , Ciprofloxacin/pharmacology , Daucus carota/drug effects , Lactuca/drug effects , Triclosan/pharmacokinetics , Agriculture/methods , Anti-Infective Agents/pharmacokinetics , Biomass , Biosolids , Daucus carota/growth & development , Daucus carota/metabolism , Lactuca/growth & development , Lactuca/metabolism , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics
6.
J Mol Recognit ; 32(1): e2755, 2019 01.
Article in English | MEDLINE | ID: mdl-30033524

ABSTRACT

The variable VHH domains of camelid single chain antibodies have been useful in numerous biotechnology applications due to their simplicity, biophysical properties, and abilities to bind to their cognate antigens with high affinities and specificity. Their interactions with proteins have been well-studied, but considerably less work has been done to characterize their ability to bind haptens. A high-resolution structural study of three nanobodies (T4, T9, and T10) which have been shown to bind triclocarban (TCC, 3-(4-chlorophenyl)-1-(3,4-dichlorophenyl)urea) with near-nanomolar affinity shows that binding occurs in a tunnel largely formed by CDR1 rather than a surface or lateral binding mode seen in other nanobody-hapten interactions. Additional significant interactions are formed with a non-hypervariable loop, sometimes dubbed "CDR4". A comparison of apo and holo forms of T9 and T10 shows that the binding site undergoes little conformational change upon binding of TCC. Structures of three nanobody-TCC complexes demonstrated there was not a standard binding mode. T4 and T9 have a high degree of sequence identity and bind the hapten in a nearly identical manner, while the more divergent T10 binds TCC in a slightly displaced orientation with the urea moiety rotated approximately 180° along the long axis of the molecule. In addition to methotrexate, this is the second report of haptens binding in a tunnel formed by CDR1, suggesting that compounds with similar hydrophobicity and shape could be recognized by nanobodies in analogous fashion. Structure-guided mutations failed to improve binding affinity for T4 and T9 underscoring the high degree of natural optimization.


Subject(s)
Carbanilides/pharmacology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Animals , Antibody Specificity , Binding Sites , Camelus , Carbanilides/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Protein Domains , Single-Domain Antibodies/genetics
7.
J Biochem Mol Toxicol ; 33(5): e22289, 2019 May.
Article in English | MEDLINE | ID: mdl-30657620

ABSTRACT

Triclocarban (TCC), which is used as an antimicrobial agent in personal care products, has been widely detected in aquatic ecosystems. However, the consequence of TCC exposure on embryo development is still elusive. Here, by using zebrafish embryos, we aimed to understand the developmental defects caused by TCC exposure. After exposure to 0.3, 30, and 300 µg/L TCC from 4-hour postfertilization (hpf) to 120 hpf, we observed that TCC exposure significantly increased the mortality and malformation, delayed hatching, and reduced body length. Exposure to TCC also affected the heart rate and expressions of cardiac development-related genes in zebrafish embryos. In addition, TCC exposure altered the expressions of the genes involved in hormonal pathways, indicating its endocrine disrupting effects. In sum, our data highlight the impact of TCC on embryo development and its interference with the hormone system of zebrafish.


Subject(s)
Anti-Infective Agents/adverse effects , Carbanilides/adverse effects , Embryo, Nonmammalian/embryology , Embryonic Development/drug effects , Endocrine Disruptors/adverse effects , Water Pollutants, Chemical/adverse effects , Zebrafish/embryology , Animals , Anti-Infective Agents/pharmacology , Carbanilides/pharmacology , Embryo, Nonmammalian/pathology , Endocrine Disruptors/pharmacology , Gene Expression Regulation, Developmental/drug effects , Water Pollutants, Chemical/pharmacology
8.
Malar J ; 17(1): 121, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558913

ABSTRACT

BACKGROUND: The increased resistance of the human malaria parasite Plasmodium falciparum to currently employed drugs creates an urgent call for novel anti-malarial drugs. Particularly, efforts should be devoted to developing fast-acting anti-malarial compounds in case clinical resistance increases to the first-line artemisinin-based combination therapy. SC83288, an amicarbalide derivative, is a clinical development candidate for the treatment of severe malaria. SC83288 is fast-acting and able to clear P. falciparum parasites at low nanomolar concentrations in vitro, as well as in a humanized SCID mouse model system in vivo. In this study, the antiplasmodial activity of SC83288 against artemisinins was profiled in order to assess its potential to replace, or be combined with, artemisinin derivatives. RESULTS: Based on growth inhibition and ring survival assays, no cross-resistance was observed between artemisinins and SC83288, using parasite lines that were resistant to either one of these drugs. In addition, no synergistic or antagonistic interaction was observed between the two drugs. This study further confirmed that SC83288 is a fast acting drug in several independent assays. Combinations of SC83288 and artesunate maintained the rapid parasite killing activities of both components. CONCLUSION: The results obtained in this study are consistent with artemisinins and SC83288 having distinct modes of action and different mechanisms of resistance. This study further supports efforts to continue the clinical development of SC83288 against severe malaria as an alternative to artemisinins in areas critically affected by artemisinin-resistance. Considering its fast antiplasmodial activity, SC83288 could be combined with a slow-acting anti-malarial drug.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Carbanilides/pharmacology , Plasmodium falciparum/drug effects , Animals , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Artemisinins/administration & dosage , Artemisinins/pharmacokinetics , Carbanilides/administration & dosage , Carbanilides/pharmacokinetics , Drug Interactions , Drug Resistance , Molecular Structure
9.
Molecules ; 23(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400165

ABSTRACT

Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorinated diarylurea widely used as an antibacterial soap additive, in the environment and in human beings. Indeed, the Food and Drug Administration has recently banned it from personal care products. Herein, we report the synthesis, antibacterial activity and cytotoxicity of novel N,N'-diarylureas as triclocarban analogs, designed by reducing one or more chlorine atoms of the former and/or replacing them by the novel pentafluorosulfanyl group, a new bioisostere of the trifluoromethyl group, with growing importance in drug discovery. Interestingly, some of these pentafluorosulfanyl-bearing ureas exhibited high potency, broad spectrum of antimicrobial activity against Gram-positive bacterial pathogens, and high selectivity index, while displaying a lower spontaneous mutation frequency than triclocarban. Some lines of evidence suggest a bactericidal mode of action for this family of compounds.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Carbanilides/chemistry , Carbanilides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Catheters/microbiology , Humans , Microbial Sensitivity Tests , Molecular Structure , Mutation Rate , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Structure-Activity Relationship
10.
Phytother Res ; 31(9): 1392-1399, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28703366

ABSTRACT

TPD7, a novel biphenyl urea taspine derivative, and berberine have presented inhibition on VEGFR2 that can be regulated by ephrin-B2 reverse signaling through interactions with the PDZ domain. The purpose of this study is to investigate the inhibitory effect of the combination of TPD7 and berberine (TAB) on T-cell acute lymphoblastic leukemia cell growth. TPD7 and berberine together synergistically inhibited the proliferation of Jurkat cells. Also, the combination of TAB induced G1 -phase cell-cycle arrest by downregulating the level of cyclin D1, cyclin E, and CDC2. Furthermore, the combination of TAB significantly enhanced apoptosis in Jurkat cells, and the apoptosis most likely resulted from the modulation of the level of Bcl-2 family members. Most importantly, the concomitant treatment simultaneously regulated the ephrin-B2 and VEGFR2 signaling, as well as modulated the MEK/ERK and PTEN/PI3K/AKT/mTOR signaling. Therefore, the combination treatment of TAB may be a promising therapeutic method in treating T-cell acute lymphoblastic leukemia. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Berberine/pharmacology , Carbanilides/pharmacology , Ephrin-B2/metabolism , Hydroxylamines/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Synergism , Humans , Jurkat Cells , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
11.
Plasmid ; 87-88: 72-78, 2016.
Article in English | MEDLINE | ID: mdl-27743797

ABSTRACT

The spread of antimicrobial resistance, usually mediated by horizontal transfer of plasmids, limits the options of treating bacterial infections and thereby poses a crucial human health problem. The disturbance of plasmid stability within bacterial species in clinical environments serves as a novel strategy to reduce the development and dissemination of antibiotic resistance. We tested the ability of irgasan to destabilize plasmids from Escherichia coli K-12 cells when added directly into liquid growth medium at concentrations below levels of marked bacterial growth inhibition, or when released into liquid growth medium from irgasan-impregnated Interpenetrating Polymer Network (IPN) silicone hydrogel objects, a novel technology developed as drug-delivery platform. IPN-mediated irgasan-release was indirectly monitored as the extent of plasmid loss from bacterial cells during a 24-hour period or during repeated exposure to new irgasan-loaded IPN devices every 24h for a total of 10days. The cells were genetically modified so that plasmid loss could be quantified by applying a combination of fluorescence-based reporter gene technology and flow cytometry. When exposing bacterial cells to the irgasan-impregnated IPNs for 24h, we observed a modest (2.8-4.7%), but significant (P<0.05), plasmid loss as well as an inhibition of bacterial growth, both gradually increasing with increasing impregnation concentration. Repeated exposure to irgasan-impregnated IPNs drastically increased the plasmid loss of up to 83%, but cells adapted over time, which indicated the limitations of this specific drug for future medical applications. This study, however, illustrates the ability of IPNs to release an impregnated compound into a liquid suspension to induce a significant biological impact on growing bacterial cells.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Carbanilides/pharmacology , Hydrogels , Plasmids/genetics , Polymers , Silicones , Anti-Infective Agents/administration & dosage , Carbanilides/administration & dosage , DNA Copy Number Variations/drug effects , Genomic Instability/drug effects , Hydrogels/chemistry , Polymers/chemistry , Silicones/chemistry
12.
Environ Sci Technol ; 50(1): 126-34, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26588246

ABSTRACT

Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg).


Subject(s)
Anaerobiosis/drug effects , Anaerobiosis/physiology , Carbanilides/pharmacology , Drug Resistance, Bacterial/drug effects , Microbial Consortia/drug effects , Microbial Consortia/physiology
13.
J Cell Mol Med ; 19(7): 1614-23, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25753200

ABSTRACT

The increased migration and invasion of breast carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. CXCR4, the receptor for stromal-derived factor-1, is reportedly involved in breast carcinogenesis and invasion. In this study, we investigated a novel biphenyl urea derivate, TPD7 for its ability to affect CXCR4 expression as well as function in breast cancer cells. We demonstrated that TPD7 inhibited the breast cancer proliferation and down-regulated the CXCR4 expression on breast cancer cells both over-expressing and low-expressing HER2, an oncogene known to induce the chemokine receptor. Treatments with pharmacological proteasome inhibitors partial suppressed TPD7-induced decrease in CXCR4 expression. Real-time PCR analysis revealed that down-regulation of CXCR4 by TPD7 also occurred at the translational level. Inhibition of CXCR4 expression by TPD7 further correlated with the suppression of SDF-1α-induced migration and invasion in breast tumour cells, knockdown of CXCR4 attenuated TPD7-inhibitory effects. In addition, TPD7 treatment significantly suppressed matrix metalloproteinase (MMP)-2 and MMP-9 expression, the downstream targets of CXCR4, perhaps via inactivation of the ERK signaling pathway. Overall, our results showed that TPD7 exerted its anti-invasive effect through the down-regulation of CXCR4 expression and thus had the potential for the treatment of breast cancer.


Subject(s)
Biphenyl Compounds/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbanilides/pharmacology , Hydroxylamines/pharmacology , Receptors, CXCR4/metabolism , Biphenyl Compounds/chemistry , Breast Neoplasms/enzymology , Carbanilides/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemokine CXCL12 , Down-Regulation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydroxylamines/chemistry , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasm Invasiveness , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Receptors, CXCR4/genetics , Tumor Stem Cell Assay
14.
Bioorg Med Chem Lett ; 24(9): 2118-22, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24717153

ABSTRACT

This Letter describes our attempts to elaborate dually acting compounds possessing serotonin re-uptake transporter inhibitor and serotonin 5-HT2C receptor antagonist properties. A novel series of 1,3-diphenylureas and N-phenylbenzamides have thus been prepared and evaluated. Based on its in vitro and in vivo activities, as well as pharmacokinetic profile, compound 16a was identified as a lead compound. The synthesis and structure-activity relationship of this series of compounds is presented herein.


Subject(s)
Benzamides/chemistry , Benzamides/pharmacology , Carbanilides/chemistry , Carbanilides/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Benzamides/pharmacokinetics , Carbanilides/pharmacokinetics , Drug Design , Humans , Ligands , Mice , Models, Molecular , Serotonin 5-HT2 Receptor Antagonists/pharmacokinetics , Structure-Activity Relationship
15.
Microbiol Spectr ; 12(6): e0007124, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38700321

ABSTRACT

Novel antimicrobial agents are needed to combat antimicrobial resistance. This study tested novel pentafluorosulfanyl-containing triclocarban analogs for their potential antibacterial efficacy. Standard procedures were used to produce pentafluorosulfanyl-containing triclocarban analogs. Twenty new compounds were tested against seven Gram-positive and Gram-negative indicator strains as well as 10 clinical isolates for their antibacterial and antibiofilm activity. Mechanistic investigations focused on damage to cell membrane, oxidizing reduced thiols, iron-sulfur clusters, and oxidative stress to explain the compounds' activity. Safety profiles were assessed using cytotoxicity experiments in eukaryotic cell lines. Following screening, selected components had significantly better antibacterial and antibiofilm activity against Gram-positive bacteria in lower concentrations in comparison to ciprofloxacin and gentamycin. For instance, one compound had a minimum inhibitory concentration of <0.0003 mM, but ciprofloxacin had 0.08 mM. Mechanistic studies show that these novel compounds do not affect reduced thiol content, iron-sulfur clusters, or hydrogen peroxide pathways. Their impact comes from Gram-positive bacterial cell membrane damage. Tests on cell culture toxicity and host component safety showed promise. Novel diarylurea compounds show promise as Gram-positive antimicrobials. These compounds offer prospects for study and optimization. IMPORTANCE: The rise of antibiotic resistance among bacterial pathogens poses a significant threat to global health, underscoring the urgent need for novel antimicrobial agents. This study presents research on a promising class of novel compounds with potent antibacterial properties against Gram-positive bacteria, notably Staphylococcus aureus and MRSA. What sets these novel analogs apart is their superior efficacy at substantially lower concentrations compared with commonly used antibiotics like ciprofloxacin and gentamycin. Importantly, these compounds act by disrupting the bacterial cell membrane, offering a unique mechanism that could potentially circumvent existing resistance mechanisms. Preliminary safety assessments also highlight their potential for therapeutic use. This study not only opens new avenues for combating antibiotic-resistant infections but also underscores the importance of innovative chemical approaches in addressing the global antimicrobial resistance crisis.


Subject(s)
Anti-Bacterial Agents , Carbanilides , Gram-Positive Bacteria , Microbial Sensitivity Tests , Carbanilides/pharmacology , Carbanilides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria/drug effects , Humans , Biofilms/drug effects , Gram-Negative Bacteria/drug effects , Ciprofloxacin/pharmacology
16.
Drug Metab Dispos ; 40(1): 25-31, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21953915

ABSTRACT

Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is widely used as an antibacterial in bar soaps. During use of these soaps, a significant portion of TCC is absorbed by humans. For the elimination from the body, glucuronidation plays a key role in both biliary and renal clearance. To investigate this metabolic pathway, we performed microsomal incubations of TCC and its hydroxylated metabolites 2'-OH-TCC, 3'-OH-TCC, and 6-OH-TCC. Using a new liquid chromatography-UV-mass spectrometry method, we could show a rapid glucuronidation for all OH-TCCs by the uridine-5'-diphosphate-glucuronosyltransferases (UGT) present in liver microsomes of humans (HLM), cynomolgus monkeys (CLM), rats (RLM), and mice (MLM). Among the tested human UGT isoforms, UGT1A7, UGT1A8, and UGT1A9 showed the highest activity for the conjugation of hydroxylated TCC metabolites followed by UGT1A1, UGT1A3, and UGT1A10. Due to this broad pattern of active UGTs, OH-TCCs can be efficiently glucuronidated in various tissues, as shown for microsomes from human kidney (HKM) and intestine (HIM). The major renal metabolites in humans, TCC-N-glucuronide and TCC-N'-glucuronide, were formed at very low conversion rates (<1%) by microsomal incubations. Low amounts of N-glucuronides were generated by HLM, HIM, and HKM, as well as by MLM and CLM, but not by RLM, according to the observed species specificity of this metabolic pathway. Among the human UGT isoforms, only UGT1A9 had activity for the N-glucuronidation of TCC. These results present an anomaly where in vivo the predominant urinary metabolites of TCC are N and N'-glucuronides, but these compounds are slowly produced in vitro.


Subject(s)
Anti-Bacterial Agents/metabolism , Carbanilides/metabolism , Glucuronides/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Carbanilides/pharmacology , Female , Humans , Macaca fascicularis , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley
17.
Appl Biochem Biotechnol ; 194(10): 4930-4945, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35674922

ABSTRACT

The most prevalent malignancy among women is breast cancer. Phytochemicals and their derivatives are rapidly being recognized as possible cancer complementary therapies because they can modify signaling pathways that lead to cell cycle control or directly alter cell cycle regulatory molecules. The phytochemicals' poor bioavailability and short half-life make them unsuitable as anticancer drugs. Applying PLGA-PEG NPs improves their solubility and tolerance while also reducing drug adverse effects. According to the findings, combining anti-tumor phytochemicals can be more effective in regulating several signaling pathways linked to tumor cell development. The point of the study was to compare the anti-proliferative impacts of combined artemisinin and metformin on cell cycle arrest and expression of cyclin D1 and apoptotic genes (bcl-2, Bax, survivin, caspase-7, and caspase-3), and also hTERT genes in breast cancer cells. T-47D breast cancer cells were treated with different concentrations of metformin (MET) and artemisinin (ART) co-loaded in PLGA-PEG NPs and free form. The MTT test was applied to assess drug cytotoxicity in T47D cells. The cell cycle distribution was investigated using flow cytometry and the expression levels of cyclin D1, hTERT, Bax, bcl-2, caspase-3, and caspase-7, and survivin genes were then determined using real-time PCR. The findings of the MTT test and flow cytometry revealed that each state was cytotoxic to T47D cells in a time and dose-dependent pattern. Compared to various state of drugs (free and nano state, pure and combination state) Met-Art-PLGA/PEG NPs demonstrated the strongest anti-proliferative impact and considerably inhibited the development of T-47D cells; also, treatment with nano-formulated forms of Met-Art combination resulted in substantial downregulation of hTERT, Bcl-2, cyclin D1, survivin, and upregulation of caspase-3, caspase-7, and Bax, in the cells, as compared to the free forms, as indicated by real-time PCR findings. The findings suggested that combining an ART/MET-loaded PLGA-PEG NP-based therapy for breast cancer could significantly improve treatment effectiveness.


Subject(s)
Alkylmercury Compounds , Antineoplastic Agents , Artemisinins , Breast Neoplasms , Carbanilides , Ethylmercury Compounds , Heterocyclic Compounds , Metformin , Nanoparticles , Trimethyltin Compounds , Antineoplastic Agents/chemistry , Apoptosis , Artemisinins/pharmacology , Artemisinins/therapeutic use , Benzalkonium Compounds/pharmacology , Benzalkonium Compounds/therapeutic use , Benzoflavones/pharmacology , Benzoflavones/therapeutic use , Breast Neoplasms/metabolism , Carbanilides/pharmacology , Carbanilides/therapeutic use , Caspase 3/genetics , Caspase 7 , Cell Line, Tumor , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin D1/pharmacology , Ethylmercury Compounds/pharmacology , Ethylmercury Compounds/therapeutic use , Female , Heterocyclic Compounds/pharmacology , Humans , Metformin/pharmacology , Metformin/therapeutic use , Methacholine Compounds , Nanoparticles/chemistry , Oximes/pharmacology , Oximes/therapeutic use , Plasmalogens/pharmacology , Plasmalogens/therapeutic use , Sulfonylurea Compounds/pharmacology , Sulfonylurea Compounds/therapeutic use , Survivin/pharmacology , Survivin/therapeutic use , Trimethyltin Compounds/pharmacology , bcl-2-Associated X Protein
18.
Toxicol Appl Pharmacol ; 255(2): 200-6, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21741984

ABSTRACT

The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs.


Subject(s)
Anti-Infective Agents/pharmacology , Carbanilides/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Inflammation/drug therapy , Animals , Blood Pressure/drug effects , Cytokines/blood , Humans , Inflammation/blood , Inflammation/enzymology , Kinetics , Male , Mice , Models, Molecular , Oxylipins/blood , Random Allocation
19.
Acta Histochem ; 123(6): 151772, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34428603

ABSTRACT

Triclocarban (TCC), an antimicrobial compound commonly added to a wide range of household and personal hygiene care products, is one of the most prevalent endocrine-disrupting substances (EDS). This study was conducted to elucidate whether in utero and lactational exposure to TCC could adversely affect folliculogenesis and the onset of puberty in female rat offspring. Twenty pregnant Sprague Dawley rats were equally divided into Control and TCC dam groups (supplemented daily with drinking water enriched with 0.5 mg/L of TCC) from gestational day5 to postnatal day21 (PND21). Female offspring, 20 from control and 20 from TCC dams, were subdivided into 4 subgroups (PND21, PND28, PND35 & PND42). The day of vaginal opening and first estrous cycle were determined. Ovarian sections of the offspring were processed for H&E staining and for immunohistochemical expression of Ki67, Caspase-3 and androgen receptors (AR) on the granulosa cells of ovarian follicles. Follicular count and atretic index were assessed besides, serum estradiol, progesterone, FSH and LH, C-reactive protein (CRP), malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. TCC offspring exhibited a significant delay in the onset of puberty and impedance of normal transition of the primordial follicles to more developed ones with altered cyctoarchitecture. Also, TCC decreased follicular count, proliferation and gonado-somatic index while it increased atretic index, apoptosis and AR of the granulosa cells along with disturbance of the feminine hormonal profile and oxidant/antioxidant balance. This study highlighted the potential long-term consequences of in utero and lactational exposure to TCC on the postnatal development of the ovary in rat offspring.


Subject(s)
Carbanilides/adverse effects , Lactation/drug effects , Ovary/growth & development , Prenatal Exposure Delayed Effects/metabolism , Animals , Carbanilides/pharmacology , Female , Lactation/metabolism , Male , Ovary/pathology , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Sprague-Dawley
20.
Blood ; 112(13): 5161-70, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18820131

ABSTRACT

An attractive target for therapeutic intervention is constitutively activated, mutant FLT3, which is expressed in a subpopulation of patients with acute myelocyic leukemia (AML) and is generally a poor prognostic indicator in patients under the age of 65 years. PKC412 is one of several mutant FLT3 inhibitors that is undergoing clinical testing, and which is currently in late-stage clinical trials. However, the discovery of drug-resistant leukemic blast cells in PKC412-treated patients with AML has prompted the search for novel, structurally diverse FLT3 inhibitors that could be alternatively used to override drug resistance. Here, we report the potent and selective antiproliferative effects of the novel mutant FLT3 inhibitor NVP-AST487 on primary patient cells and cell lines expressing FLT3-ITD or FLT3 kinase domain point mutants. NVP-AST487, which selectively targets mutant FLT3 protein kinase activity, is also shown to override PKC412 resistance in vitro, and has significant antileukemic activity in an in vivo model of FLT3-ITD(+) leukemia. Finally, the combination of NVP-AST487 with standard chemotherapeutic agents leads to enhanced inhibition of proliferation of mutant FLT3-expressing cells. Thus, we present a novel class of FLT3 inhibitors that displays high selectivity and potency toward FLT3 as a molecular target, and which could potentially be used to override drug resistance in AML.


Subject(s)
Antineoplastic Agents/pharmacology , Carbanilides/pharmacology , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line , Leukemia, Myeloid, Acute/drug therapy , Mice , Mutant Proteins/antagonists & inhibitors , Protein Kinase C/antagonists & inhibitors , Staurosporine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL