Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.115
Filter
Add more filters

Publication year range
1.
Blood ; 136(6): 726-739, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32374849

ABSTRACT

Although the serum-abundant metal-binding protein transferrin (encoded by the Trf gene) is synthesized primarily in the liver, its function in the liver is largely unknown. Here, we generated hepatocyte-specific Trf knockout mice (Trf-LKO), which are viable and fertile but have impaired erythropoiesis and altered iron metabolism. Moreover, feeding Trf-LKO mice a high-iron diet increased their susceptibility to developing ferroptosis-induced liver fibrosis. Importantly, we found that treating Trf-LKO mice with the ferroptosis inhibitor ferrostatin-1 potently rescued liver fibrosis induced by either high dietary iron or carbon tetrachloride (CCl4) injections. In addition, deleting hepatic Slc39a14 expression in Trf-LKO mice significantly reduced hepatic iron accumulation, thereby reducing ferroptosis-mediated liver fibrosis induced by either a high-iron diet or CCl4 injections. Finally, we found that patients with liver cirrhosis have significantly lower levels of serum transferrin and hepatic transferrin, as well as higher levels of hepatic iron and lipid peroxidation, compared with healthy control subjects. Taken together, these data indicate that hepatic transferrin plays a protective role in maintaining liver function, providing a possible therapeutic target for preventing ferroptosis-induced liver fibrosis.


Subject(s)
Ferroptosis/physiology , Iron/metabolism , Liver Cirrhosis/metabolism , Liver/metabolism , Transferrin/physiology , Animals , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Cyclohexylamines/pharmacology , Cytokines/analysis , Erythropoiesis/physiology , Erythropoietin/analysis , Female , Ferroptosis/drug effects , Hepatocytes/metabolism , Homeostasis , Iron Overload/complications , Iron, Dietary/toxicity , Lipid Peroxidation , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/analysis , Phenylenediamines/pharmacology , Transferrin/analysis
2.
Am J Physiol Gastrointest Liver Physiol ; 320(3): G351-G365, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33406007

ABSTRACT

Liver fibrosis, a major cause of morbidity and mortality worldwide, leads to liver damage, seriously threatening human health. In our previous study, we demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) was upregulated in fibrotic liver tissue and involved in the migration and lamellipodia formation of hepatic stellate cells (HSCs). In this study, we evaluated PHP14 as a therapeutic target for liver fibrosis and investigated the mechanism by which it mediates liver fibrosis. AAV-shPhpt1 administration significantly attenuates CCl4-induced liver fibrosis in mice. In particular, fibrosis-associated inflammatory infiltration was significantly suppressed after PHP14 knockdown. Mechanistically, PHP14 regulated macrophage recruitment, infiltration, and migration by affecting podosome formation of macrophages. Inhibition of PHP14 decreased the expression of the fibrogenic signature at the early stage of liver fibrogenesis and the activation of HSCs in vivo. Thus, PHP14 can be considered a potential therapeutic target for liver fibrosis.NEW & NOTEWORTHY PHP14 inhibition via adeno-associated virus (AAV)-mediated gene silencing could potently attenuate carbon tetrachloride (CCl4)-induced liver fibrosis. PHP14 could regulate the migration of macrophages to the site of injury in vivo. PHP14 knockdown in vivo influenced the environment of fibrogenesis and relevant signaling pathways, subsequently affecting myofibroblast activation.


Subject(s)
Liver Cirrhosis/chemically induced , Phosphoric Monoester Hydrolases/metabolism , Adoptive Transfer , Animals , Carbon Tetrachloride Poisoning , Coculture Techniques , Drug Delivery Systems , Gene Knockdown Techniques , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Macrophages , Mice , Mice, Inbred C57BL , Phosphoric Monoester Hydrolases/genetics , RAW 264.7 Cells , Up-Regulation
3.
Biomarkers ; 26(6): 570-577, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34167403

ABSTRACT

PURPOSE: Coconut water is used in folklore medicine for oral rehydration, treatment of childhood diarrhoea, gastroenteritis and cholera, and is also known to possess antioxidant properties. OBJECTIVE: In this study, we examined the ameliorative potentials of coconut water on carbon tetrachloride (CCl4) induced toxicity in rats. MATERIALS AND METHODS: Rats were randomly assigned into separate cages according to the sex of 5 groups. Groups 2-5 were intraperitoneally injected a single dose of 1 mL/kg CCl4 diluted in olive oil. Only 3, 4 and 5 were orally given 2, 4, 6 mL/kg coconut water respectively, whereas groups 1 and 2 received distilled water. RESULTS: Treatment with coconut water significantly (p < 0.05) increased red blood cell, packed cell volume, haemoglobin, high-density lipoprotein, glutathione, superoxide dismutase, catalase, total protein, and albumin compared to the negative control in both sexes of the rats. Furthermore, platelets, white blood cells, urea, low-density lipoprotein, triglyceride, total cholesterol, malondialdehyde, bilirubin, alkaline phosphatase, alanine and aspartate transaminases decreased significantly (p < 0.05) compared to the negative control in both male and female rats. CONCLUSION: Thus, coconut water supplementation may reverse CCl4 induced toxicity and distortions on haematological parameters, lipid profile and antioxidant enzymes, liver and kidney biomarkers in rats.


Subject(s)
Carbon Tetrachloride Poisoning/prevention & control , Carbon Tetrachloride/toxicity , Cocos , Fluid Therapy/methods , Animals , Antioxidants/metabolism , Female , Lipids/blood , Male , Rats , Rats, Wistar
4.
Mol Biol Rep ; 48(11): 7153-7163, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34536190

ABSTRACT

BACKGROUND: Previous study reports that fibroblast growth factor 21 (FGF21) could ameliorate hepatic fibrosis, but its mechanisms have not been fully investigated. METHODS AND RESULTS: In this study, three models were used to investigate the mechanism by which FGF21 alleviates liver fibrosis. Hepatic fibrosis animal models were respectively induced by CCL4 and dimethylnitrosamine. Our results demonstrated that liver index and liver function were deteriorated in both models. Hematoxylin and eosin and Masson's staining showed that the damaged tissue architectonics were observed in the mice of both models. Treatment with FGF21 significantly ameliorated these changes. ELISA analysis showed that the serum levels of IL-1ß, IL-6 and TNF-α were significantly elevated in both models. However, administration of FGF21 significantly reduced these inflammatory cytokines. Real-time PCR and Western blot analysis showed that treatment with FGF21 significantly decreased mRNA and protein expressions of collagenI, α-SMA and TGF-ß. Platelet-derived growth factor-BB (PDGF-BB) stimulant was used to establish the experimental cell model in hepatic stellate cells (HSCs). Real-time PCR and Western blot analysis demonstrated that the expression of collagenI and α-SMA were significantly upregulated by this stimulant in model group. Interestingly, our results showed that mRNA and protein expressions of leptin were also significantly induced in PDGF-BB treated HSCs. Administration of FGF21 significantly reduced leptin expression in a dose dependent manner and these effects were reversed in siRNA (against ß-klotho) transfected HSCs. Furthermore, the leptin signaling pathways related protein p-ERK/t-ERK, p-STAT3/STAT3 and TGF-ß were significantly downregulated by FGF21 treatment in a dose dependent manner. The expressions of SOCS3 and Nrf-2 were enhanced by treatment with FGF21. The underlying mechanism may be that FGF21 regulates leptin-STAT3 axis via Nrf-2 and SOCS3 pathway in activated HSCs. CONCLUSIONS: FGF21 ameliorates hepatic fibrosis by multiple mechanisms.


Subject(s)
Carbon Tetrachloride Poisoning , Fibroblast Growth Factors/pharmacology , Liver Cirrhosis , Animals , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/metabolism , Gene Expression Regulation/drug effects , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred ICR , Tumor Necrosis Factor-alpha/metabolism
5.
Mol Biol Rep ; 48(6): 5305-5318, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34244886

ABSTRACT

BACKGROUND: Industrial toxicants such as Carbon tetrachloride (CCl4) are known to disrupt the oxidative-antioxidative balance, which generates excessive amounts of free radicals leading to chronic or acute liver damage. Natural antioxidants, including Ajwa, play an important role in protecting against hepatotoxicity. METHODS AND RESULTS: This study investigated the prophylactic impacts of ajwa seeds aqueous extract (ASE) against hepatic oxidative injury in rats induced by CCl4. Eighty male Wistar albino rats were equally assigned to eight groups: one group receive no treatment, four groups were received CCl4-olive oil mixture [1:1(v/v)] (0.2 ml/100 g body weight (bw), intraperitoneally) two times/week for 4 weeks/rat alone or with 200 mg Vit. C/kg bw or 5 ml ASE/rat or both, and three groups received olive oil, Vit. C, or ASE. Vitamin C and ASE were orally administrated two weeks before CCl4 injection and 4 weeks concomitant with CCl4. Lipid peroxidation, lipogenesis-related genes, hepatic histopathology, Bax immunostaining and DNA fragmentation were assessed. ASE protected hepatic damage by suppressing oxidative stress and elevating activities of antioxidant enzymes, including superoxide dismutase and catalase. ASE also regulated hepatic dyslipidemia, hepatic lipid accumulation and expression of SREBP-1 and FAS genes in CCl4-treated rats. ASE decreased apoptosis through inhibition of CCl4 induced Bax activation in hepatocytes. CONCLUSION: These observations provide evidence for the hepatoprotective potential of ASE via inhibiting hepatic lipogenesis and oxidative stress, suggesting being used as a natural product in attenuating CCl4 induced oxidative damage, hepatotoxicity and associated dysfunction.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Liver Diseases/drug therapy , Phoeniceae/metabolism , Animals , Antioxidants/metabolism , Carbon Tetrachloride/adverse effects , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Lipid Peroxidation , Liver/metabolism , Liver Diseases/metabolism , Male , Oxidative Stress/drug effects , Phytotherapy , Plant Extracts/pharmacology , Pre-Exposure Prophylaxis/methods , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
6.
Can J Physiol Pharmacol ; 99(3): 294-302, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32726558

ABSTRACT

The current study aimed to investigate linagliptin for its potential role in the prevention of liver fibrosis progression. Balb-C mice were randomly allocated into five groups (10 each): (i) control; (ii) mice were injected intraperitoneally with 50 µL carbon tetrachloride (CCl4) in corn oil in a dose of 0.6 µL/g three times per week for four weeks; (iii) linagliptin was administered orally in a daily dose of 10 mg/kg simultaneously with CCl4; (iv) silymarin was administered orally in a daily dose of 200 mg/kg concomitantly with CCl4; and (v) only linagliptin was administered. Hepatic injury was manifested in the CCl4 group by elevation of biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP)), and hepatic fibrosis was evident histopathologically by increased METAVIR score and immunostaining expression of alpha-smooth muscle actin (α-SMA), as well as increased liver tissue oxidative stress parameters, transforming growth factor-ß1 (TGF-ß1), and mammalian target of rapamycin (mTOR). Linagliptin was able to stop the progression of liver fibrosis, evident histopathologically with reduced METAVIR score and α-SMA expression. The possible mechanism may be via suppression of oxidative stress, TGF-ß1, and mTOR, which was associated with improvement of serum biochemical parameters ALT and AST. In conclusion, linagliptin might help to protect the liver against persistent injury-related consequences.


Subject(s)
Carbon Tetrachloride Poisoning/prevention & control , Chemical and Drug Induced Liver Injury/prevention & control , Hypoglycemic Agents/therapeutic use , Linagliptin/therapeutic use , Liver Cirrhosis/chemically induced , Liver Cirrhosis/prevention & control , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Liver Function Tests , Male , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/biosynthesis , Transforming Growth Factor beta1/antagonists & inhibitors
7.
Biosci Biotechnol Biochem ; 85(4): 775-785, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33686395

ABSTRACT

This research aimed to evaluate the antihepatic fibrosis effect and explore the mechanism of Qiwei Qinggan Powder (QGS-7) in vivo and in vitro. Carbon tetrachloride (CCl4)-treated rats and hepatic stellate cells (HSCs) were used. QGS-7 treatment significantly improved the liver function of rats as indicated by decreased serum enzymatic activities of alanine aminotransferase, aspartate transaminase, and alkaline phosphatase. Meanwhile, the hydroxyproline of liver was significantly decreased. Histopathological results indicated that QGS-7 alleviated liver damage and reduced the formation of fibrosis septa. Moreover, QGS-7 significantly attenuated expressions of Alpha smooth muscle actin, Collagen I, Janus kinase 2 (JAK2), phosphorylation-JAK2, signal transducer and activator of transcription 3 (STAT3), phosphorylation-STAT3 in the rat hepatic fibrosis model. QGS-7 inhibited HSC proliferation and promoted it apoptosis. QGS-7 may affect hepatic fibrosis through JAK2/STAT3 signaling pathway so as to play an antihepatic fibrosis role.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Liver Cirrhosis/drug therapy , Medicine, Mongolian Traditional , Animals , Carbon Tetrachloride Poisoning/metabolism , Cell Proliferation/drug effects , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Hydroxyproline/metabolism , Janus Kinase 2/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Function Tests , Mongolia , Phosphorylation , Powders , Rats , STAT3 Transcription Factor/metabolism
8.
Med Sci Monit ; 27: e931427, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34366426

ABSTRACT

BACKGROUND Acute chemical liver injury needs to be further explored. The present study aimed to compare the effects of intraperitoneal injection with carbon tetrachloride on acute liver toxicity after 24 h in male and female Kunming mice. MATERIAL AND METHODS In this study, female and male mice were simultaneously divided into 3 different groups. Each group was treated differently, and after 24 h, blood samples were collected to check for changes in the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were used to assess liver toxicity. Liver samples were used for hematoxylin-eosin staining, and periodic acid Schiff reagent staining was performed to detect the pathological changes of each group. The expression level of biomarker molecules in liver cells was also systematically analyzed. RESULTS Our results showed that, compared with male mice, female mice showed more serious damage: reduced glycogen and higher degree of necrosis, and the levels of heatshock protein 27 (HSP27), heat-shock protein 70 (HSP70), proliferating cell nuclear antigen (PCNA) and B cell lymphoma/lewkmia-2 (Bcl-2) were significantly lower than in the male group (P<0.05 or P<0.01), while the results of Bcl-2-associated X protein (Bax), cysteinyl aspartate specific proteinase 3 (Caspase3), and cytochrome P450 2E1 (CYP2E1) were the opposite (P<0.05 or P<0.01). CONCLUSIONS The findings from this study showed that, compared with male mice, at 24 h after CCl4 toxicity, female mice showed more severe changes of hepatocyte necrosis and PAS-positivity, with significantly reduced expression of HSP27, HSP70, PCNA, and Bcl-2, and significantly increased expression of Bax, caspase-3, and CYP2E1.


Subject(s)
Carbon Tetrachloride Poisoning/diagnosis , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/diagnosis , Animals , Carbon Tetrachloride/administration & dosage , Carbon Tetrachloride Poisoning/etiology , Carbon Tetrachloride Poisoning/pathology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Female , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Injections, Intraperitoneal , Liver/drug effects , Liver/pathology , Male , Mice , Necrosis/chemically induced , Necrosis/diagnosis , Severity of Illness Index , Sex Factors , Toxicity Tests, Acute/methods
9.
Ann Hepatol ; 26: 100560, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34653689

ABSTRACT

INTRODUCTION AND OBJECTIVES: Cirrhosis has gradually become a serious public health issue, especially the national prevalence of cirrhosis was 29.2% in northwest China. Recent evidence has revealed that intestinal barrier (IB) dysfunction results from and contributes to cirrhosis. Our previous results have indicated that insulin-like growth factors (IGF-1) improved the impaired IB function and downregulated high mobility group protein box-1 (HMGB-1). Nevertheless, the role of the IGF-1/HMGB1 axis in cirrhosis remains largely unknown. MATERIALS AND METHODS: Western blotting and qRT-PCR were used to detect protein and mRNA levels of related genes. The levels of AST, ALT, IL-1ß, and TNF-α were examined using commercial kits. Immunofluorescence was used to evaluate the expression of HMGB1 in tissues. RESULTS: In carbon tetrachloride (CCl4)-treated rat, the levels of AST (380.12 vs. 183.97), ALT (148.12 vs. 53.56), IL-1ß (155.94 vs. 55.60), and TNF-α (155.00 vs. 48.90) were significantly increased compared with the control group, while IGF-1 treatment significantly alleviated CCL4-induced inflammatory response and IB dysfunction by downregulating HMGB1-mediated the TLR4/MyD88/NF-κB signaling pathway. In vitro experiments, HMGB1 treatment promoted inflammatory cytokines secretion and reduced cell viability and tight junctions by activating the TLR4/MyD88/NF-κB signaling pathway in Caco-2 cells, but IGF-1 alleviated these effects. CONCLUSION: Our findings suggest that IGF-1 might serve as a potential therapeutic target for cirrhosis and IB dysfunction via inactivation of the TLR4/MyD88/NF-κB pathway through down-regulation HMGB1.


Subject(s)
Carbon Tetrachloride Poisoning/complications , Down-Regulation , Gene Expression Regulation , HMGB1 Protein/genetics , Insulin-Like Growth Factor I/therapeutic use , Intestinal Mucosa/metabolism , Liver Cirrhosis, Experimental/genetics , Animals , Caco-2 Cells , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/metabolism , HMGB1 Protein/biosynthesis , Humans , Intestinal Mucosa/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/therapy , Male , RNA/genetics , Rats
10.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34948151

ABSTRACT

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-ß (TGF-ß1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-ß1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-ß1/SMAD signaling and autophagy in HSCs.


Subject(s)
Autophagy/drug effects , Biphenyl Compounds/pharmacology , Carbon Tetrachloride Poisoning , Hepatic Stellate Cells , Lignans/pharmacology , Liver Cirrhosis , Liver/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice
11.
Pol Merkur Lekarski ; 49(292): 290-294, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34464371

ABSTRACT

The liver is the main organ responsible for the metabolism of different substances. At the same time it is the primary target organ for many toxic chemicals, which are metabolized there. Carbon tetrachloride is a wellknown hepatotoxin widely used to induce acute toxic liver injury in a wide range of laboratory animals. This substance induces oxidative damage, inflammation and fibrosis in the liver. AIM: The aim is to evaluate the peculiarities of nitrogen metabolism in rats on the background of acute toxic hepatitis and its correction with L-arginin and L-ornitin. MATERIALS AND METHODS: The study was performed on 40 outbred white male rats with experimental hepatitis, caused by carbon tetrachloride. The animals were divided into five groups: control group (the rats were simulated carbon tetrachloride poisoning and its correction by administering of olive oil and normal saline in equivalent doses), acute carbon tetrachloride hepatitis (single intraperitoneal injection of 50% carbon tetrachloride oil solution at the dose of 2 ml/kg-1 of body weight and simulation of treatment by administration of normal saline in equivalent doses), acute carbon tetrachloride hepatitis + L-ornithine (1000 mg×kg-1), acute carbon tetrachloride hepatitis + L-arginine (500 mg×kg-1) and acute carbon tetrachloride hepatitis + combination of substances. RESULTS: On the background of acute carbon tetrachloride intoxication, it was observed the development of toxic hepatitis in experimental animals, manifested by significant increasing of urea and creatinine levels in the blood serum of animals with a simultaneous decreasing of nitrite anion level. The administration of L-ornithine and L-arginine demonstrates positive impact on liver status and functions by stabilization of cell membranes and regeneration of functional capacity of injured cells. CONCLUSIONS: The results of our study confirm both the presence of unidirectional effects and absence of toxic influences of L-ornithine and L-arginine on liver cells under the conditions of acute carbon tetrachloride intoxication, which are the most important requirements for modern drugs for the treatment of hepato-renal syndrome.


Subject(s)
Carbon Tetrachloride Poisoning , Chemical and Drug Induced Liver Injury , Animals , Arginine , Carbon Tetrachloride/toxicity , Carbon Tetrachloride Poisoning/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Liver , Male , Nitrogen , Rats
12.
Cytokine ; 136: 155250, 2020 12.
Article in English | MEDLINE | ID: mdl-32882667

ABSTRACT

BACKGROUND: Liver fibrosis is a serious health problem which may lead to advanced liver cirrhosis and hepatocellular carcinoma. OBJECTIVE: The present study aimed to investigate the role of Wnt/ß-catenin signaling pathway and glutamine aminohydrolase enzyme (l-glutaminase) in the pathogenesis of liver fibrosis and the potential benefits of niclosamide in treating liver fibrosis. METHODS: Ninety male Albino rats were divided into 6 equal groups (n = 15) as follows: a normal control group (NC), CCl4-only treated group (Fib.) which received 1 mg/kg CCl4 two times weekly, niclosamide-treated group (Niclo.) which received 5 mg/kg of niclosamide one time daily, lithium chloride-treated group (LiCl) which received 100 mg/kg of LiCl one time daily, niclosamide-and-CCl4-treated group (Niclo. + Fib.) which received same doses of niclosamide and CCl4 given to other groups, and finally lithium chloride-and-CCl4-treated rat group (LiCl + Fib.) which received same doses of LiCl and CCl4 given to other groups. All treatments were administered orally for 8 weeks. Liver tissue was assessed for l-hydroxyproline, beta-catenin (ß-catenin), l-glutaminase activity, as well as the gene expression of transforming growth factor beta-1 (TGF-ß1) and Dishevelled-2 (Dvl2). Histopathological and immunohistochemical analyses of alpha smooth muscle actin α-SMA were performed. Serum alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin were measured. RESULTS: The group of niclosamide-and-CCl4-treated rats showed a significant decrease in total bilirubin, ALT and AST, ß-catenin, l-hydroxyproline, l-glutaminase activity, and gene expression of TGF-ß1 and Dvl2. Moreover, the liver tissue in this group of rats showed mild α-SMA reactivity compared with the rats treated with CCl4 only (fibrosis group). On the other hand, lithium chloride-and-CCl4-treated rats showed a significant increase in liver indices, TGF-ß1 expression, ß-catenin, l-hydroxyproline, and l-glutaminase activity with severe α-SMA reactivity and apoptosis in the liver tissue. CONCLUSIONS: Niclosamide protected rats against liver fibrosis by inhibiting the Wnt/ß-catenin pathway and glutaminolysis.


Subject(s)
Carbon Tetrachloride Poisoning , Drug Repositioning , Glutamic Acid/metabolism , Lithium Chloride/pharmacology , Liver Cirrhosis , Niclosamide/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Male , Rats
13.
Cytokine ; 136: 155288, 2020 12.
Article in English | MEDLINE | ID: mdl-32980687

ABSTRACT

Hepatic fibrosis is characterized by abnormal accumulation of extracellular matrix (ECM). Hepatic stellate cells (HSCs) are the primary cells that produce ECM in response to hepatic injury, and transforming growth factor-beta (TGF-ß) has been regarded as the central stimulus responsible for HSC-mediated ECM production. In the present study, we attempted to identify a critical factor in HSC activation and the underlying mechanism. By analyzing online microarray expression profiles, we found that the expression of high-affinity cationic amino acid transporter 1 (CAT1) was upregulated in hepatic fibrosis models and activated HSCs. We isolated and identified mouse HSCs (MHSCs) and found that in these cells, CAT1 was most highly upregulated by TGF-ß1 stimulation in both time- and dose-dependent manners. In vitro, CAT1 overexpression further enhanced, while CAT1 silencing inhibited, the effect of TGF-ß1 in promoting MHSC activation. In vivo, CAT1 silencing significantly improved the hepatic fibrosis induced by both CCl4 and non-alcoholic fatty liver disease (NAFLD). In summary, CAT1 was significantly upregulated in TGF-ß1-activated MHSCs and mice with hepatic fibrosis. CAT1 silencing inhibited TGF-ß1-induced MHSC activation in vitro and fibrogenic changes in vivo. CAT1 is a promising target for hepatic fibrosis treatment that requites further investigation in human cells and clinical practice.


Subject(s)
Calcium Channels/metabolism , Extracellular Matrix/metabolism , Gene Silencing , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , TRPV Cation Channels/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Calcium Channels/genetics , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Cell Line , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mice , TRPV Cation Channels/genetics , Transforming Growth Factor beta1/genetics
14.
Toxicol Appl Pharmacol ; 403: 115125, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32659284

ABSTRACT

Epithelial-mesenchymal transition (EMT) is regulated by reactive oxygen species (ROS) in liver fibrosis. p66Shc is a redox enzyme, but its role of EMT is unclear in liver fibrosis. Long noncoding RNAs (lncRNAs) have been implicated as important regulators in numerous physiological and pathological processes and generally acting as a microRNA (miRNA) sponge to regulate gene expression. The aim of the current study was to evaluate the contribution of p66Shc to EMT in liver fibrosis and the regulation of p66Shc by lncRNA sponge. In vivo, p66Shc silencing prevented carbon tetrachloride (CCl4)-induced EMT as evidenced by the upregulation of E-cadherin, downregulation of Vimentin and N-cadherin, and inhibition of oxidative stress and extracellular matrix (ECM) components. Moreover, in vitro, TGF-ß1 significantly enhanced ECM components, as well as the development of the EMT phenotype. These effects were abrogated by p66Shc downregulation and aggravated by p66Shc overexpression. Mechanistically, p66Shc contributed to EMT via mediating ROS, as evidenced by p66Shc downregulation inhibiting EMT under exogenous hydrogen peroxide (H2O2) stimulation. Furthermore, we found that molecule interacting with CasL2 (Mical2) lncRNA functioned as an endogenous miR-203a-3p sponge to regulate p66Shc expression. Both Mical2 silencing and miR-203a-3p agomiR treatment downregulated p66Shc expression, thus suppressing EMT in vivo and in vitro. Notably, the increased p66Shc and Mical2 levels and decreased miR-203a-3p levels in murine fibrosis were consistent with those in patients with liver fibrosis. In sum, our study reveals that p66Shc is critical for liver fibrosis and that Mical2, miR-203a-3p and p66Shc compose a novel regulatory pathway in liver fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Carbon Tetrachloride Poisoning , Cell Line , Down-Regulation , Gene Expression Regulation , Gene Silencing , Hepatocytes , Humans , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Male , Mice , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Random Allocation , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics
15.
Toxicol Appl Pharmacol ; 407: 115246, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32956689

ABSTRACT

Mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-ĸB signaling have been recognized for their causal connection with liver fibrosis. Hence, it is encouraging to discover drugs that can modify the interactions between these signaling cascades. It has been suggested that glucagon-like peptide-1 receptors (GLP-1Rs) might have a role in the observed hepatoprotection of dipeptidyl peptidase-4 inhibitors other than vildagliptin (VLD). Consequently, we aimed to elucidate the mechanisms underlying its potential antifibrotic activity in a CCl4-intoxicated mouse model. VLD increased the percentage of viable CCl4-intoxicated primary rat hepatocytes in vitro. It also attenuated hepatic fibrosis, improved liver function, and prolonged survival of CCl4-intoxicated mice in a dose-dependent manner. This hepatoprotection might be mediated mainly through interference with extracellular signal-regulated protein kinase 1/2 phosphorylation, the most downstream signal of the MAPK pathway. In addition, VLD hepatoprotective activity could be partially mediated through inhibition of p38α phosphorylation and phosphorylation-induced NF-ĸB activation. As a result, VLD downregulated profibrogenic mediators, such as tumor necrosis factor α, transforming growth factor ß, tissue inhibitor of metalloproteinase 1 and platelet-derived growth factor BB. Consequently, decreased expression levels of fibrosis markers, such as hydroxyproline and α smooth muscle actin, were confirmed. VLD showed a strong trend toward increasing the antioxidant defense machinery of fibrotic tissue, and we confirmed that GLP-1Rs were not implicated in the observed hepatoprotection. Since VLD poses little risk of hypoglycemia and is a safe drug for patients with liver injury, it may be a hopeful candidate for adjuvant treatment of liver fibrosis in humans.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Liver Cirrhosis/drug therapy , Signal Transduction/drug effects , Vildagliptin/pharmacology , Animals , Carbon Tetrachloride Poisoning/pathology , Cell Survival/drug effects , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dose-Response Relationship, Drug , Inflammation Mediators/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Liver Function Tests , MAP Kinase Signaling System/drug effects , Male , Mice , NF-kappa B/drug effects , Phosphorylation , Primary Cell Culture , Rats , Survival , Vildagliptin/administration & dosage , Vildagliptin/therapeutic use , p38 Mitogen-Activated Protein Kinases/drug effects
16.
FASEB J ; 33(11): 12464-12476, 2019 11.
Article in English | MEDLINE | ID: mdl-31431085

ABSTRACT

In advanced chronic liver disease (CLD), the translocation of intestinal bacteria and the resultant increase of proinflammatory cytokines in the splanchnic and systemic circulation may contribute to the progression of fibrosis. We therefore speculated that fibrosis and portal hypertension (PHT) would be attenuated in a mouse model of limited intestinal colonization with altered Schaedler flora (ASF) compared to a more complex colonization with specific pathogen-free (SPF) flora. We induced liver fibrosis in ASF and SPF mice by common bile duct ligation (BDL) or by carbon tetrachloride (CCl4) treatment. We then measured portal pressure (PP), portosystemic shunts (PSSs), and harvested tissues for further analyses. There were no differences in PP between sham-treated ASF or SPF mice. After BDL or CCl4 treatment, PP, PSSs, and hepatic collagen deposition increased in both groups. However, the increase in PP and the degree of fibrosis was significantly higher in ASF than SPF mice. Expression of fibrotic markers α-smooth muscle actin, desmin, and platelet-derived growth factor receptor ß were significantly higher in ASF than SPF mice. This was associated with higher activation of hepatic immune cells (macrophages, neutrophils) and decreased expression of the intestinal epithelial tight junction proteins (claudin-1, occludin-1). In 2 models of advanced CLD, SPF mice presented significantly attenuated liver injury, fibrosis, and PHT compared to ASF mice. In contrast to our hypothesis, these findings suggest that a complex intestinal microbiota may play a "hepato-protective" role.-Moghadamrad, S., Hassan, M., McCoy, K. D., Kirundi, J., Kellmann, P., De Gottardi, A. Attenuated fibrosis in specific pathogen-free microbiota in experimental cholestasis- and toxin-induced liver injury.


Subject(s)
Carbon Tetrachloride Poisoning/microbiology , Chemical and Drug Induced Liver Injury/microbiology , Cholestasis/microbiology , Hypertension, Portal/microbiology , Liver Cirrhosis/microbiology , Microbiota , Animals , Carbon Tetrachloride Poisoning/pathology , Chemical and Drug Induced Liver Injury/pathology , Cholestasis/chemically induced , Cholestasis/pathology , Hypertension, Portal/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Male , Mice
17.
FASEB J ; 33(3): 4610-4625, 2019 03.
Article in English | MEDLINE | ID: mdl-30576225

ABSTRACT

Liver fatty acid binding protein (L-Fabp) modulates lipid trafficking in enterocytes, hepatocytes, and hepatic stellate cells (HSCs). We examined hepatocyte vs. HSC L-Fabp deletion in hepatic metabolic adaptation and fibrotic injury. Floxed L-Fabp mice were bred to different transgenic Cre mice or injected with adeno-associated virus type 8 (AAV8) Cre and fed diets to promote steatosis and fibrosis or were subjected to either bile duct ligation or CCl4 injury. Albumin-Cre-mediated L-Fabp deletion revealed recombination in hepatocytes and HSCs; these findings were confirmed with 2 other floxed alleles. Glial fibrillary acid protein-Cre and platelet-derived growth factor receptor ß-Cre-mediated L-Fabp deletion demonstrated recombination only in HSCs. Mice with albumin promoter-driven Cre recombinase (Alb-Cre)-mediated or AAV8-mediated L-Fabp deletion were protected against food withdrawal-induced steatosis. Mice with Alb-Cre-mediated L-Fabp deletion were protected against high saturated fat-induced steatosis and fibrosis, phenocopying germline L-Fabp-/- mice. Mice with HSC-specific L-Fabp deletion exhibited retinyl ester depletion yet demonstrated no alterations in fibrosis. On the other hand, fibrogenic resolution after CCl4 administration was impaired in mice with Alb-Cre-mediated L-Fabp deletion. These findings suggest cell type-specific roles for L-Fabp in mitigating hepatic steatosis and in modulating fibrogenic injury and reversal.-Newberry, E. P., Xie, Y., Lodeiro, C., Solis, R., Moritz, W., Kennedy, S., Barron, L., Onufer, E., Alpini, G., Zhou, T., Blaner, W. S., Chen, A., Davidson, N. O. Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveal distinct roles in fibrogenic injury.


Subject(s)
Carbon Tetrachloride Poisoning/metabolism , Fatty Acid-Binding Proteins/physiology , Fatty Liver/metabolism , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Liver Cirrhosis/metabolism , Albumins/genetics , Animals , Bile Ducts , Carbon Tetrachloride Poisoning/pathology , Crosses, Genetic , Dependovirus/genetics , Dietary Fats/toxicity , Fatty Acid-Binding Proteins/deficiency , Fatty Acids/toxicity , Fatty Liver/etiology , Fatty Liver/pathology , Female , Fibrosis , Food Deprivation , Gene Deletion , Genes, Synthetic , Hepatic Stellate Cells/pathology , Hepatocytes/pathology , Integrases , Ligation , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Promoter Regions, Genetic
18.
FASEB J ; 33(11): 12435-12446, 2019 11.
Article in English | MEDLINE | ID: mdl-31419161

ABSTRACT

Fibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life. The aim of this study was to test the therapeutic effects of recently identified small molecule agonists of the human relaxin receptor, relaxin family peptide receptor 1 (RXFP1). The lead compound of this series, ML290, was selected based on its effects on the expression of fibrosis-related genes in primary human stellate cells. RNA sequencing analysis of TGF-ß1-activated LX-2 cells showed that ML290 treatment primarily affected extracellular matrix remodeling and cytokine signaling, with expression profiles indicating an antifibrotic effect of ML290. ML290 treatment in human liver organoids with LPS-induced fibrotic phenotype resulted in a significant reduction of type I collagen. The pharmacokinetics of ML290 in mice demonstrated its high stability in vivo, as evidenced by the sustained concentrations of compound in the liver. In mice expressing human RXFP1 gene treated with carbon tetrachloride, ML290 significantly reduced collagen content, α-smooth muscle actin expression, and cell proliferation around portal ducts. In conclusion, ML290 demonstrated antifibrotic effects in liver fibrosis.-Kaftanovskaya, E. M., Ng, H. H., Soula, M., Rivas, B., Myhr, C., Ho, B. A., Cervantes, B. A., Shupe, T. D., Devarasetty, M., Hu, X., Xu, X., Patnaik, S., Wilson, K. J., Barnaeva, E., Ferrer, M., Southall, N. T., Marugan, J. J., Bishop, C. E., Agoulnik, I. U., Agoulnik, A. I. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Cell Proliferation/drug effects , Liver Cirrhosis/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Peptide/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Carbon Tetrachloride Poisoning/genetics , Cell Line, Transformed , Cell Proliferation/genetics , Cytokines/genetics , Cytokines/metabolism , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mice , Mice, Transgenic , Organoids/metabolism , Organoids/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Signal Transduction/genetics
19.
Med Sci Monit ; 26: e923533, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33325451

ABSTRACT

BACKGROUND Anoectochilus roxburghii (Orchidaceae) (AR) has been widely used to treat liver injury in China, but its underlying mechanisms remain elusive. Network pharmacology was utilized to assess the hepatoprotective effects of quercetin (Que)-containing AR, and to validate the anti-liver injury effects of Que in a mouse model of liver injury. MATERIAL AND METHODS Network pharmacology analysis was performed to determine bio-active compounds in AR. The core therapeutic targets of AR against liver injury were identified using a protein-protein interaction network. Biological function and pathway enrichment were analyzed based on the identified core therapeutic targets. The hepatoprotective effects of Que in a mouse model of liver injury induced by CCl4 were assessed to verify the reliability of network pharmacology analysis. RESULTS Seven bio-active compounds of AR met drug screening criteria and 17 core therapeutic targets of AR against liver injury were identified. Biological function analysis demonstrated that the therapeutic effects of AR against liver injury were chiefly associated with the suppression of inflammation and immunity; and pathway enrichment analysis showed that nuclear factor-kappa B (NF-kappaB) and tumor necrosis factor (TNF) signaling pathways were associated with the inflammatory responses. Experimental validation in a mouse model showed that AR exerted anti-inflammatory effects by regulating the NF-kappaB signaling pathway, a finding that also confirmed the reliability of network pharmacology analysis. CONCLUSIONS The bio-active compounds identified in AR and the elucidation of their mechanisms of action against liver injury provide a theoretical basis for designing agents that can prevent or suppress liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Orchidaceae , Quercetin/pharmacology , Animals , Antioxidants/pharmacology , Carbon Tetrachloride Poisoning , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Disease Models, Animal , Drug Evaluation , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Mice , Protective Agents/pharmacology , Protein Interaction Maps
20.
Int J Mol Sci ; 21(15)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718038

ABSTRACT

The lack of Lipocalin (LCN2) provokes overwhelming endoplasmic reticulum (ER) stress responses in vitro and in acute toxic liver injury models, resulting in hepatocyte apoptosis. LCN2 is an acute phase protein produced in hepatocytes in response to acute liver injuries. In line with these findings we investigated ER stress responses of Lcn2-/- mice in chronic ER stress using a long-term repetitive carbon tetrachloride (CCl4) injection model. We found chronic CCl4 application to enhance ER stress and unfolded protein responses (UPR), including phosphorylation of eukaryotic initiation factor 2α (eIF2α), increased expression of binding immunoglobulin protein (BiP) and glucose-regulated protein 94 (GRP94). IRE1α/TRAF2/JNK signaling enhanced mitochondrial apoptotic pathways, and showed slightly higher in Lcn2-/- mice compared to the wild type counterparts, leading to increased hepatocyte apoptosis well evidenced by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Hepatocyte injuries were confirmed by significant high serum alanine transaminase (ALT) levels in CCl4-treated Lcn2-/- mice. Lcn2-/- mice furthermore developed mild hepatic steatosis, supporting our finding that ER stress promotes lipogenesis. In a previous report we demonstrated that the pharmacological agent tunicamycin (TM) induced ER stress through altered protein glycosylation and induced high amounts of C/EBP-homologous protein (CHOP), resulting in hepatocyte apoptosis. We compared TM-induced ER stress in wild type, Lcn2-/-, and Chop null (Chop-/-) primary hepatocytes and found Chop-/- hepatocytes to attenuate ER stress responses and resist ER stress-induced hepatocyte apoptosis through canonical eIF2α/GADD34 signaling, inhibiting protein synthesis. Unexpectedly, in later stages of TM incubation, Chop-/- hepatocytes resumed activation of IRE1α/JNK/c-Jun and p38/ATF2 signaling, leading to late hepatocyte apoptosis. This interesting observation indicates Chop-/- mice to be unable to absolutely prevent all types of liver injury, while LCN2 protects the hepatocytes by maintaining homeostasis under ER stress conditions.


Subject(s)
Apoptosis , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride/toxicity , Endoplasmic Reticulum Stress , Hepatocytes/metabolism , Lipocalin-2/deficiency , Unfolded Protein Response , Animals , Apoptosis/drug effects , Apoptosis/genetics , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/pathology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Hepatocytes/pathology , Lipocalin-2/metabolism , Lipogenesis/drug effects , Lipogenesis/genetics , Mice , Mice, Knockout , Signal Transduction/drug effects , Signal Transduction/genetics , Unfolded Protein Response/drug effects , Unfolded Protein Response/genetics
SELECTION OF CITATIONS
SEARCH DETAIL