Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.904
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 299(7): 104911, 2023 07.
Article in English | MEDLINE | ID: mdl-37311534

ABSTRACT

Reversible lysine-63 (K63) polyubiquitination regulates proinflammatory signaling in vascular smooth muscle cells (SMCs) and plays an integral role in atherosclerosis. Ubiquitin-specific peptidase 20 (USP20) reduces NFκB activation triggered by proinflammatory stimuli, and USP20 activity attenuates atherosclerosis in mice. The association of USP20 with its substrates triggers deubiquitinase activity; this association is regulated by phosphorylation of USP20 on Ser334 (mouse) or Ser333 (human). USP20 Ser333 phosphorylation was greater in SMCs of atherosclerotic segments of human arteries as compared with nonatherosclerotic segments. To determine whether USP20 Ser334 phosphorylation regulates proinflammatory signaling, we created USP20-S334A mice using CRISPR/Cas9-mediated gene editing. USP20-S334A mice developed ∼50% less neointimal hyperplasia than congenic WT mice after carotid endothelial denudation. WT carotid SMCs showed substantial phosphorylation of USP20 Ser334, and WT carotids demonstrated greater NFκB activation, VCAM-1 expression, and SMC proliferation than USP20-S334A carotids. Concordantly, USP20-S334A primary SMCs in vitro proliferated and migrated less than WT SMCs in response to IL-1ß. An active site ubiquitin probe bound to USP20-S334A and USP20-WT equivalently, but USP20-S334A associated more avidly with TRAF6 than USP20-WT. IL-1ß induced less K63-linked polyubiquitination of TRAF6 and less downstream NFκB activity in USP20-S334A than in WT SMCs. Using in vitro phosphorylation with purified IRAK1 and siRNA-mediated gene silencing of IRAK1 in SMCs, we identified IRAK1 as a novel kinase for IL-1ß-induced USP20 Ser334 phosphorylation. Our findings reveal novel mechanisms regulating IL-1ß-induced proinflammatory signaling: by phosphorylating USP20 Ser334, IRAK1 diminishes the association of USP20 with TRAF6 and thus augments NFκB activation, SMC inflammation, and neointimal hyperplasia.


Subject(s)
Atherosclerosis , Inflammation , Interleukin-1 Receptor-Associated Kinases , Interleukin-1beta , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phosphoserine , Ubiquitin Thiolesterase , Animals , Humans , Mice , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Hyperplasia/metabolism , Hyperplasia/pathology , Inflammation/metabolism , Inflammation/pathology , Interleukin-1 Receptor-Associated Kinases/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phosphorylation , Phosphoserine/metabolism , TNF Receptor-Associated Factor 6/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism , NF-kappa B/metabolism , Carotid Arteries/metabolism , Carotid Arteries/pathology , Interleukin-1beta/metabolism , Ubiquitination
2.
J Cell Physiol ; 239(4): e31175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214142

ABSTRACT

Carotid body tumor (CBT) is a rare neck tumor located at the adventitia of the common carotid artery bifurcation. The prominent pathological features of CBT are high vascularization and abnormal proliferation. However, single-cell transcriptome analysis of the microenvironment composition and molecular complexity in CBT has yet to be performed. In this study, we performed single-cell RNA sequencing (scRNA-seq) analysis on human CBT to define the cells that contribute to hypervascularization and chronic hyperplasia. Unbiased clustering analysis of transcriptional profiles identified 16 distinct cell populations including endothelial cells (ECs), smooth muscle cells (SMCs), neuron cells, macrophage cells, neutrophil cells, and T cells. Within the ECs population, we defined subsets with angiogenic capacity plus clear signs of later endothelial progenitor cells (EPCs) to normal ECs. Two populations of macrophages were detectable in CBT, macrophage1 showed enrichment in hypoxia-inducible factor-1 (HIF-1) and as well as an early EPCs cell-like population expressing CD14 and vascular endothelial growth factor. In addition to HIF-1-related transcriptional protein expression, macrophages1 also display a neovasculogenesis-promoting phenotype. SMCs included three populations showing platelet-derived growth factor receptor beta and vimentin expression, indicative of a cancer-associated fibroblast phenotype. Finally, we identified three types of neuronal cells, including chief cells and sustentacular cells, and elucidated their distinct roles in the pathogenesis of CBT and abnormal proliferation of tumors. Overall, our study provided the first comprehensive characterization of the transcriptional landscape of CBT at scRNA-seq profiles, providing novel insights into the mechanisms underlying its formation.


Subject(s)
Carotid Body Tumor , Endothelial Progenitor Cells , Neovascularization, Pathologic , Humans , Carotid Arteries/pathology , Carotid Body Tumor/blood supply , Single-Cell Analysis , Single-Cell Gene Expression Analysis , Transcriptome/genetics , Tumor Microenvironment/genetics , Vascular Endothelial Growth Factor A , Neovascularization, Pathologic/diagnosis , Neovascularization, Pathologic/genetics
3.
Am J Physiol Heart Circ Physiol ; 326(4): H877-H899, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38214900

ABSTRACT

Cardiovascular aging is strongly associated with increased risk of cardiovascular disease and mortality. Moreover, health and lifestyle factors may accelerate age-induced alterations, such as increased arterial stiffness and wall dilation, beyond chronological age, making the clinical assessment of cardiovascular aging an important prompt for preventative action. Carotid flow waveforms contain information about age-dependent cardiovascular properties, and their ease of measurement via noninvasive Doppler ultrasound (US) makes their analysis a promising tool for the routine assessment of cardiovascular aging. In this work, the impact of different aging processes on carotid waveform morphology and derived indexes is studied in silico, with the aim of establishing the clinical potential of a carotid US-based assessment of cardiovascular aging. One-dimensional (1-D) hemodynamic modeling was employed to generate an age-specific virtual population (VP) of N = 5,160 realistic carotid hemodynamic waveforms. The resulting VP was statistically validated against in vivo aging trends in waveforms and indexes from the literature, and simulated waveforms were studied in relation to age and underlying cardiovascular parameters. In our study, the carotid flow augmentation index (FAI) significantly increased with age (with a median increase of 50% from the youngest to the oldest age group) and was strongly correlated to local arterial stiffening (r = 0.94). The carotid pulsatility index (PI), which showed less pronounced age variation, was inversely correlated with the reflection coefficient at the carotid branching (r = -0.88) and directly correlated with carotid net forward wave energy (r = 0.90), corroborating previous literature where it was linked to increased risk of cerebrovascular damage in the elderly. There was a high correlation between corrected carotid flow time (ccFT) and cardiac output (CO) (r = 0.99), which was not affected by vascular age. This study highlights the potential of carotid waveforms as a valuable tool for the assessment of cardiovascular aging.NEW & NOTEWORTHY An age-specific virtual population was generated based on a 1-D model of the arterial circulation, including newly defined literature-based specific age variations in carotid vessel properties. Simulated carotid flow/velocity waveforms, indexes, and age trends were statistically validated against in vivo data from the literature. A comprehensive study of the impact of aging on carotid flow waveform morphology was performed, and the mechanisms influencing different carotid indexes were elucidated. Notably, flow augmentation index (FAI) was found to be a strong indicator of local carotid stiffness.


Subject(s)
Aging , Cardiovascular Diseases , Humans , Aged , Carotid Arteries/diagnostic imaging , Hemodynamics , Ultrasonography
4.
Am J Physiol Heart Circ Physiol ; 327(1): H80-H88, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38787379

ABSTRACT

This study investigated the sensitivity and specificity of identifying heart failure with reduced ejection fraction (HFrEF) from measurements of the intensity and timing of arterial pulse waves. Previously validated methods combining ultrafast B-mode ultrasound, plane-wave transmission, singular value decomposition (SVD), and speckle tracking were used to characterize the compression and decompression ("S" and "D") waves occurring in early and late systole, respectively, in the carotid arteries of outpatients with left ventricular ejection fraction (LVEF) < 40%, determined by echocardiography, and signs and symptoms of heart failure, or with LVEF ≥ 50% and no signs or symptoms of heart failure. On average, the HFrEF group had significantly reduced S-wave intensity and energy, a greater interval between the R wave of the ECG and the S wave, a reduced interval between the S and D waves, and an increase in the S-wave shift (SWS), a novel metric that characterizes the shift in timing of the S wave away from the R wave of the ECG and toward the D wave (all P < 0.01). Receiver operating characteristics (ROCs) were used to quantify for the first time how well wave metrics classified individual participants. S-wave intensity and energy gave areas under the ROC of 0.76-0.83, the ECG-S-wave interval gave 0.85-0.88, and the S-wave shift gave 0.88-0.92. Hence the methods, which are simple to use and do not require complex interpretation, provide sensitive and specific identification of HFrEF. If similar results were obtained in primary care, they could form the basis of techniques for heart failure screening.NEW & NOTEWORTHY We show that heart failure with reduced ejection fraction can be detected with excellent sensitivity and specificity in individual patients by using B-mode ultrasound to detect altered pulse wave intensity and timing in the carotid artery.


Subject(s)
Heart Failure , Pulse Wave Analysis , Stroke Volume , Humans , Heart Failure/physiopathology , Heart Failure/diagnostic imaging , Female , Male , Aged , Middle Aged , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiopathology , Ventricular Function, Left , Predictive Value of Tests , Electrocardiography , Echocardiography , ROC Curve
5.
Am J Physiol Heart Circ Physiol ; 326(6): H1446-H1461, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38578237

ABSTRACT

Clinical failure of arteriovenous neointimal hyperplasia (NIH) fistulae (AVF) is frequently due to juxta-anastomotic NIH (JANIH). Although the mouse AVF model recapitulates human AVF maturation, previous studies focused on the outflow vein distal to the anastomosis. We hypothesized that the juxta-anastomotic area (JAA) has increased NIH compared with the outflow vein. AVF was created in C57BL/6 mice without or with chronic kidney disease (CKD). Temporal and spatial changes of the JAA were examined using histology and immunofluorescence. Computational techniques were used to model the AVF. RNA-seq and bioinformatic analyses were performed to compare the JAA with the outflow vein. The jugular vein to carotid artery AVF model was created in Wistar rats. The neointima in the JAA shows increased volume compared with the outflow vein. Computational modeling shows an increased volume of disturbed flow at the JAA compared with the outflow vein. Endothelial cells are immediately lost from the wall contralateral to the fistula exit, followed by thrombus formation and JANIH. Gene Ontology (GO) enrichment analysis of the 1,862 differentially expressed genes (DEG) between the JANIH and the outflow vein identified 525 overexpressed genes. The rat jugular vein to carotid artery AVF showed changes similar to the mouse AVF. Disturbed flow through the JAA correlates with rapid endothelial cell loss, thrombus formation, and JANIH; late endothelialization of the JAA channel correlates with late AVF patency. Early thrombus formation in the JAA may influence the later development of JANIH.NEW & NOTEWORTHY Disturbed flow and focal endothelial cell loss in the juxta-anastomotic area of the mouse AVF colocalizes with acute thrombus formation followed by late neointimal hyperplasia. Differential flow patterns between the juxta-anastomotic area and the outflow vein correlate with differential expression of genes regulating coagulation, proliferation, collagen metabolism, and the immune response. The rat jugular vein to carotid artery AVF model shows changes similar to the mouse AVF model.


Subject(s)
Arteriovenous Shunt, Surgical , Hyperplasia , Jugular Veins , Mice, Inbred C57BL , Neointima , Rats, Wistar , Thrombosis , Animals , Thrombosis/physiopathology , Thrombosis/pathology , Thrombosis/genetics , Thrombosis/etiology , Thrombosis/metabolism , Male , Jugular Veins/metabolism , Jugular Veins/pathology , Jugular Veins/physiopathology , Disease Models, Animal , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Carotid Arteries/metabolism , Carotid Arteries/surgery , Mice , Rats , Regional Blood Flow , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Endothelium, Vascular/pathology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology
6.
Am J Physiol Heart Circ Physiol ; 326(5): H1138-H1145, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38426867

ABSTRACT

Daylight saving time (DST) is a Western biannual time transition, setting the clock back 1 h in the fall and forward 1 h in the spring. There is an epidemiological link between DST and acute myocardial infarction risk in the first week following the spring shift; however, the mechanisms underlying the effect of DST on cardiovascular function remain unclear. The purpose of this study was to explore the short-term cardiovascular changes induced by fall and spring shifts in DST in a convenience sample of healthy adults. We hypothesized that spring, but not fall, DST shifts would acutely increase central pulse wave velocity, the gold standard measurement of central arterial stiffness. Twenty-one individuals (fall: n = 10; spring: n = 11) participated in four visits, occurring 1 wk before and at +1, +3, and +5 days after spring and fall time transitions. Central, brachial, and radial pulse wave velocity as well as carotid augmentation index were assessed with applanation tonometry. Sleep quality and memory function were assessed via questionnaire and the Mnemonic Similarities Task, respectively. Neither fall or spring transition resulted in changes to cardiovascular variables (carotid-femoral pulse wave velocity, carotid-brachial pulse wave velocity, carotid-radial pulse wave velocity, heart rate, mean arterial pressure, or augmentation index), sleep quality, or cognitive function (all P > 0.05). Our findings do not provide evidence that DST shifts influence cardiovascular outcomes in healthy adults. This study emphasizes the need for further research to determine the mechanisms of increased cardiovascular disease risk with DST that help explain epidemiological trends.NEW & NOTEWORTHY The debate of whether to abolish daylight savings time (DST) is, in part, motivated by the population-level increase in all-cause mortality and incidence of cardiovascular events following DST; however, there is an absence of data to support a physiological basis for risk. We found no changes in pulse wave velocity or augmentation index during the subacute window of DST. Large multisite trials are necessary to address the small, but meaningful, effects brought on by a societal event.


Subject(s)
Myocardial Infarction , Vascular Stiffness , Adult , Humans , Pulse Wave Analysis , Arterial Pressure/physiology , Carotid Arteries/physiology , Brachial Artery/physiology , Vascular Stiffness/physiology , Blood Pressure/physiology
7.
Am J Physiol Heart Circ Physiol ; 326(5): H1279-H1290, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38517225

ABSTRACT

The circulating milieu, bioactive molecules in the bloodstream, is altered with aging and interfaces constantly with the vasculature. This anatomic juxtaposition suggests that circulating factors may actively modulate arterial function. Here, we developed a novel, translational experimental model that allows for direct interrogation of the influence of the circulating milieu on age-related arterial dysfunction (aortic stiffening and endothelial dysfunction). To do so, we exposed young and old mouse arteries to serum from young and old mice and young and midlife/older (ML/O) adult humans. We found that old mouse and ML/O adult human, but not young, serum stiffened young mouse aortic rings, assessed via elastic modulus (mouse and human serum, P = 0.003 vs. young serum control), and impaired carotid artery endothelial function, assessed by endothelium-dependent dilation (EDD) (mouse serum, P < 0.001; human serum, P = 0.006 vs. young serum control). Furthermore, young mouse and human, but not old, serum reduced aortic elastic modulus (mouse serum, P = 0.009; human serum, P < 0.001 vs. old/MLO serum control) and improved EDD (mouse and human serum, P = 0.015 vs. old/MLO serum control) in old arteries. In human serum-exposed arteries, in vivo arterial function assessed in the human donors correlated with circulating milieu-modulated arterial function in young mouse arteries (aortic stiffness, r = 0.634, P = 0.005; endothelial function, r = 0.609, P = 0.004) and old mouse arteries (aortic stiffness, r = 0.664, P = 0.001; endothelial function, r = 0.637, P = 0.003). This study establishes novel experimental approaches for directly assessing the effects of the circulating milieu on arterial function and implicates changes in the circulating milieu as a mechanism of in vivo arterial aging.NEW & NOTEWORTHY Changes in the circulating milieu with advancing age may be a mechanism underlying age-related arterial dysfunction. Ex vivo exposure of young mouse arteries to the circulating milieu from old mice or midlife/older adults impairs arterial function whereas exposure of old mouse arteries to the circulating milieu from young mice or young adults improves arterial function. These findings establish that the circulating milieu directly influences arterial function with aging.


Subject(s)
Aging , Endothelium, Vascular , Mice, Inbred C57BL , Vascular Stiffness , Vasodilation , Animals , Humans , Male , Adult , Middle Aged , Female , Endothelium, Vascular/physiopathology , Aged , Age Factors , Mice , Aorta/physiopathology , Carotid Arteries/physiopathology , Young Adult , Elastic Modulus
8.
Biochem Biophys Res Commun ; 705: 149736, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38447392

ABSTRACT

BACKGROUND: Orosomucoid (ORM) has been reported as a biomarker of carotid atherosclerosis, but the role of ORM 2, a subtype of ORM, in carotid atherosclerotic plaque formation and the underlying mechanism have not been established. METHODS: Plasma was collected from patients with carotid artery stenosis (CAS) and healthy participants and assessed using mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) technology to identify differentially expressed proteins. The key proteins and related pathways were identified via western blotting, immunohistochemistry, and polymerase chain reaction of carotid artery plaque tissues and in vitro experiments involving vascular smooth muscle cells (VSMCs). RESULTS: We screened 33 differentially expressed proteins out of 535 proteins in the plasma. Seventeen proteins showed increased expressions in the CAS groups relative to the healthy groups, while 16 proteins showed decreased expressions during iTRAQ and bioinformatic analysis. The reactive oxygen species metabolic process was the most common enrichment pathway identified by Gene Ontology analysis, while ORM2, PRDX2, GPX3, HP, HBB, ANXA5, PFN1, CFL1, and S100A11 were key proteins identified by STRING and MCODE analysis. ORM2 showed increased expression in patients with CAS plaques, and ORM2 was accumulated in smooth muscle cells. Oleic acid increased the lipid accumulation and ORM2 and PRDX6 expressions in the VSMCs. The recombinant-ORM2 also increased the lipid accumulation and reactive oxygen species (ROS) in the VSMCs. The expressions of ORM2 and PRDX-6 were correlated, and MJ33 (an inhibitor of PRDX6-PLA2) decreased ROS production and lipid accumulation in VSMCs. CONCLUSION: ORM2 may be a biomarker for CAS; it induced lipid accumulation and ROS production in VSMCs during atherosclerosis plaque formation. However, the relationships between ORM2 and PRDX-6 underlying lipid accumulation-induced plaque vulnerability require further research.


Subject(s)
Atherosclerosis , Carotid Stenosis , Plaque, Atherosclerotic , Humans , Carotid Stenosis/metabolism , Reactive Oxygen Species/metabolism , Orosomucoid/metabolism , Muscle, Smooth, Vascular/metabolism , Atherosclerosis/metabolism , Plaque, Atherosclerotic/metabolism , Biomarkers/metabolism , Carotid Arteries/metabolism , Myocytes, Smooth Muscle/metabolism , Lipids , Profilins/metabolism
9.
Am Heart J ; 272: 96-105, 2024 06.
Article in English | MEDLINE | ID: mdl-38484963

ABSTRACT

BACKGROUND: Preeclampsia is associated with a two-fold increase in a woman's lifetime risk of developing atherosclerotic cardiovascular disease (ASCVD), but the reasons for this association are uncertain. The objective of this study was to examine the associations between vascular health and a hypertensive disorder of pregnancy among women ≥ 2 years postpartum. METHODS: Pre-menopausal women with a history of either a hypertensive disorder of pregnancy (cases: preeclampsia or gestational hypertension) or a normotensive pregnancy (controls) were enrolled. Participants were assessed for standard ASCVD risk factors and underwent vascular testing, including measurements of blood pressure, endothelial function, and carotid artery ultrasound. The primary outcomes were blood pressure, ASCVD risk, reactive hyperemia index measured by EndoPAT and carotid intima-medial thickness. The secondary outcomes were augmentation index normalized to 75 beats per minute and pulse wave amplitude measured by EndoPAT, and carotid elastic modulus and carotid beta-stiffness measured by carotid ultrasound. RESULTS: Participants had a mean age of 40.7 years and were 5.7 years since their last pregnancy. In bivariate analyses, cases (N = 68) were more likely than controls (N = 71) to have hypertension (18% vs 4%, P = .034), higher calculated ASCVD risk (0.6 vs 0.4, P = .02), higher blood pressures (systolic: 118.5 vs 111.6 mm Hg, P = .0004; diastolic: 75.2 vs 69.8 mm Hg, P = .0004), and higher augmentation index values (7.7 vs 2.3, P = .03). They did not, however, differ significantly in carotid intima-media thickness (0.5 vs 0.5, P = .29) or reactive hyperemia index (2.1 vs 2.1, P = .93), nor in pulse wave amplitude (416 vs 326, P = .11), carotid elastic modulus (445 vs 426, P = .36), or carotid beta stiffness (2.8 vs 2.8, P = .86). CONCLUSION: Women with a prior hypertensive disorder of pregnancy had higher ASCVD risk and blood pressures several years postpartum, but did not have more endothelial dysfunction or subclinical atherosclerosis.


Subject(s)
Carotid Intima-Media Thickness , Hypertension, Pregnancy-Induced , Vascular Stiffness , Humans , Female , Pregnancy , Adult , Hypertension, Pregnancy-Induced/physiopathology , Hypertension, Pregnancy-Induced/epidemiology , Vascular Stiffness/physiology , Blood Pressure/physiology , Risk Factors , Atherosclerosis/physiopathology , Atherosclerosis/epidemiology , Atherosclerosis/diagnosis , Atherosclerosis/complications , Pulse Wave Analysis , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiopathology , Pre-Eclampsia/physiopathology , Pre-Eclampsia/epidemiology , Pre-Eclampsia/diagnosis , Case-Control Studies , Endothelium, Vascular/physiopathology
10.
J Transl Med ; 22(1): 247, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454421

ABSTRACT

BACKGROUND: Currently, noninvasive imaging techniques and circulating biomarkers are still insufficient to accurately assess carotid plaque stability, and an in-depth understanding of the molecular mechanisms that contribute to plaque instability is still lacking. METHODS: We established a clinical study cohort containing 182 patients with carotid artery stenosis. After screening, 39 stable and 49 unstable plaques were included in the discovery group, and quantitative proteomics analysis based on data independent acquisition was performed for these plaque samples. Additionally, 35 plaques were included in the validation group to validate the proteomics results by immunohistochemistry analysis. RESULTS: A total of 397 differentially expressed proteins were identified in stable and unstable plaques. These proteins are primarily involved in ferroptosis and lipid metabolism-related functions and pathways. Plaque validation results showed that ferroptosis- and lipid metabolism-related proteins had different expression trends in stable plaques versus unstable fibrous cap regions and lipid core regions. Ferroptosis- and lipid metabolism-related mechanisms in plaque stability were discussed. CONCLUSIONS: Our results may provide a valuable strategy for revealing the mechanisms affecting plaque stability and will facilitate the discovery of specific biomarkers to broaden the therapeutic scope.


Subject(s)
Plaque, Atherosclerotic , Humans , Proteome , Carotid Arteries , Biomarkers , Mass Spectrometry
11.
J Transl Med ; 22(1): 18, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178198

ABSTRACT

OBJECT: Patients with type 2 diabetes mellitus (T2DM) are at higher risk of developing atherosclerosis. Previous studies have analyzed the factors associated with diabetic macrovascular disease, although whether these factors are applicable to T2DM patients with carotid atherosclerosis remains unclear. Therefore, the aim of this study was to investigate the risk factors for the formation of carotid atherosclerotic plaque in hospitalized T2DM patients and to provide a theoretical basis for early prevention and treatment of carotid atherosclerosis in these patients. METHODS: A total of 949 patients with T2DM were included in the study. Carotid ultrasound identified 531 patients with carotid atherosclerotic plaque. The waist-to-hip ratio (WHR), blood glucose, liver and kidney function, blood lipid profile, islet function, and other indicators were measured at the same time to identify the risk factors and predictive significance of T2DM carotid plaque. RESULTS: The proportions of men, diabetes nephropathy (DN) and hypertension in T2DM patients with carotid plaque are higher than those without carotid plaque(P < 0.05). Age, duration of diabetes, WHR, Postprandial glucose (PPG), lipoprotein (a) [Lip (a)], carcinoembryonic antigen(CEA) and estimated glomerular filtration rate (eGFR) in T2DM patients with carotid plaque were higher than those without plaque (P < 0.05). Age, WHR, duration of diabetes, hypertension, males, and Lip (a) were independent risk factors for T2DM patients with carotid plaque. Age, WHR, duration of diabetes, and Lip (a) had a higher AUC to predict T2DM with carotid artery plaque (AUC: 0.750, 0.640, 0.678, 0.552 respectively; P all < 0.001). After constructing the logit (P) value of the above risk factors, the area under the ROC curve was 0.816 (0.789-0.842, P < 0.001). CONCLUSION: Age, WHR, duration of diabetes, hypertension, males, and Lip (a) levels are the main risk factors for the formation of carotid plaque in T2DM patients. Combining the above risk factors provides a better prediction of carotid plaque formation in T2DM.


Subject(s)
Carotid Artery Diseases , Diabetes Mellitus, Type 2 , Hypertension , Plaque, Atherosclerotic , Male , Humans , Diabetes Mellitus, Type 2/complications , Plaque, Atherosclerotic/complications , Risk Factors , Carotid Arteries/diagnostic imaging , Carotid Artery Diseases/complications , Hypertension/complications , Carotid Intima-Media Thickness
12.
Magn Reson Med ; 92(3): 1095-1103, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38576077

ABSTRACT

PURPOSE: To develop a method that achieves simultaneous brain and neck time-of-flight (ToF) magnetic resonance angiography (MRA) within feasible scan timeframes. METHODS: Localized quadratic (LQ) encoding is efficient for both signal-to-noise ratio (SNR) and in-flow enhancement. We proposed a spiral multiband LQ method to enable simultaneous intracranial and carotid ToF-MRA within a single scan. To address the venous signal contamination that becomes a challenge with multiband (MB) ToF, tilt-optimized non-saturated excitation (TONE) and partial-Fourier slice selection (PFSS) were further introduced in the LQ framework to mitigate the venous signal and improve artery contrast. A sequential spiral MB and LQ reconstruction pipeline was employed to obtain the brain-and-neck image volumes. RESULTS: The proposed MB method was able to achieve simultaneous brain and neck ToF-MRA within a 2:50-min scan. The complementarily boosted SNR-efficiency by MB and LQ acquisitions allows for the increased spatial coverage without increase in scan time or noticeable compromise in SNR. The incorporation of both TONE and PFSS effectively alleviated the venous contamination with improved small vessel sensitivity. Selection of scan parameters such as the LQ factor and flip angle reflected the trade-off among SNR, blood contrast, and venous suppression. CONCLUSIONS: A novel MB spiral LQ approach was proposed to enable fast intracranial and carotid ToF-MRA with minimized venous corruption. The method has shown promise in MRA applications where large spatial coverage is necessary.


Subject(s)
Brain , Magnetic Resonance Angiography , Neck , Signal-To-Noise Ratio , Humans , Magnetic Resonance Angiography/methods , Neck/diagnostic imaging , Brain/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods , Carotid Arteries/diagnostic imaging , Adult , Male
13.
Magn Reson Med ; 91(1): 190-204, 2024 01.
Article in English | MEDLINE | ID: mdl-37794847

ABSTRACT

PURPOSE: Neurovascular MRI suffers from a rapid drop in B1 + into the neck when using transmit head coils at 7 T. One solution to improving B1 + magnitude in the major feeding arteries in the neck is to use custom RF shims on parallel-transmit head coils. However, calculating such shims requires robust multichannel B1 + maps in both the head and the neck, which is challenging due to low RF penetration into the neck, limited dynamic range of multichannel B1 + mapping techniques, and B0 sensitivity. We therefore sought a robust, large-dynamic-range, parallel-transmit field mapping protocol and tested whether RF shimming can improve carotid artery B1 + magnitude in practice. METHODS: A pipeline is presented that combines B1 + mapping data acquired using circularly polarized (CP) and CP2-mode RF shims at multiple voltages. The pipeline was evaluated by comparing the predicted and measured B1 + for multiple random transmit shims, and by assessing the ability of RF shimming to increase B1 + in the carotid arteries. RESULTS: The proposed method achieved good agreement between predicted and measured B1 + in both the head and the neck. The B1 + magnitude in the carotid arteries can be increased by 43% using tailored RF shims or by 37% using universal RF shims, while also improving the RF homogeneity compared with CP mode. CONCLUSION: B1 + in the neck can be increased using RF shims calculated from multichannel B1 + maps in both the head and the neck. This can be achieved using universal phase-only RF shims, facilitating easy implementation in existing sequences.


Subject(s)
Head , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Head/diagnostic imaging , Neck/diagnostic imaging , Carotid Arteries/diagnostic imaging , Radio Waves , Phantoms, Imaging
14.
Am J Pathol ; 193(5): 638-653, 2023 05.
Article in English | MEDLINE | ID: mdl-37080662

ABSTRACT

Vascular smooth muscle cells (VSMC) play a critical role in the development and pathogenesis of intimal hyperplasia indicative of restenosis and other vascular diseases. Fragile-X related protein-1 (FXR1) is a muscle-enhanced RNA binding protein whose expression is increased in injured arteries. Previous studies suggest that FXR1 negatively regulates inflammation, but its causality in vascular disease is unknown. In the current study, RNA-sequencing of FXR1-depleted VSMC identified many transcripts with decreased abundance, most of which were associated with proliferation and cell division. mRNA abundance and stability of a number of these transcripts were decreased in FXR1-depleted hVSMC, as was proliferation (P < 0.05); however, increases in beta-galactosidase (P < 0.05) and γH2AX (P < 0.01), indicative of senescence, were noted. Further analysis showed increased abundance of senescence-associated genes with FXR1 depletion. A novel SMC-specific conditional knockout mouse (FXR1SMC/SMC) was developed for further analysis. In a carotid artery ligation model of intimal hyperplasia, FXR1SMC/SMC mice had significantly reduced neointima formation (P < 0.001) after ligation, as well as increases in senescence drivers p16, p21, and p53 compared with several controls. These results suggest that in addition to destabilization of inflammatory transcripts, FXR1 stabilized cell cycle-related genes in VSMC, and absence of FXR1 led to induction of a senescent phenotype, supporting the hypothesis that FXR1 may mediate vascular disease by regulating stability of proliferative mRNA in VSMC.


Subject(s)
Muscle, Smooth, Vascular , Vascular Diseases , Animals , Mice , Carotid Arteries/metabolism , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Hyperplasia/pathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , RNA, Messenger/metabolism , Vascular Diseases/pathology
15.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R230-R241, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38223938

ABSTRACT

Although body fluid volume control by the kidneys may be classified as a long-term arterial pressure (AP) control system, it does not necessarily follow that the urine flow (UF) response to changes in AP is slow. We quantified the dynamic characteristics of the UF response to short-term AP changes by changing mean AP between 60 mmHg and 100 mmHg every 10 s according to a binary white noise sequence in anesthetized rats (n = 8 animals). In a baro-on trial (the carotid sinus baroreflex was enabled), the UF response represented the combined synergistic effects of pressure diuresis (PD) and neurally mediated antidiuresis (NMA). In a baro-fix trial (the carotid sinus pressure was fixed at 100 mmHg), the UF response mainly reflected the effect of PD. The UF step response was quantified using the sum of two exponential decay functions. The fast and slow components had time constants of 6.5 ± 3.6 s and 102 ± 85 s (means ± SD), respectively, in the baro-on trial. Although the gain of the fast component did not differ between the two trials (0.49 ± 0.21 vs. 0.66 ± 0.22 µL·min-1·kg-1·mmHg-1), the gain of the slow component was greater in the baro-on than in the baro-fix trial (0.51 ± 0.14 vs. 0.09 ± 0.39 µL·min-1·kg-1·mmHg-1, P = 0.023). The magnitude of NMA relative to PD was calculated to be 32.2 ± 29.8%. In conclusion, NMA contributed to the slow component, and its magnitude was approximately one-third of that of the effect of PD.NEW & NOTEWORTHY We quantified short-term dynamic characteristics of the urine flow (UF) response to arterial pressure (AP) changes using white noise analysis. The UF step response approximated the sum of two exponential decay functions with time constants of ∼6.5 s and 102 s. The neurally mediated antidiuretic (NMA) effect contributed to the slow component of the UF step response, with the magnitude of approximately one-third of that of the pressure diuresis (PD) effect.


Subject(s)
Arterial Pressure , Baroreflex , Animals , Rats , Baroreflex/physiology , Blood Pressure/physiology , Carotid Arteries , Diuresis
16.
Cardiovasc Diabetol ; 23(1): 240, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978031

ABSTRACT

BACKGROUND: Metabolism is increasingly recognized as a key regulator of the function and phenotype of the primary cellular constituents of the atherosclerotic vascular wall, including endothelial cells, smooth muscle cells, and inflammatory cells. However, a comprehensive analysis of metabolic changes associated with the transition of plaque from a stable to a hemorrhaged phenotype is lacking. METHODS: In this study, we integrated two large mRNA expression and protein abundance datasets (BIKE, n = 126; MaasHPS, n = 43) from human atherosclerotic carotid artery plaque to reconstruct a genome-scale metabolic network (GEM). Next, the GEM findings were linked to metabolomics data from MaasHPS, providing a comprehensive overview of metabolic changes in human plaque. RESULTS: Our study identified significant changes in lipid, cholesterol, and inositol metabolism, along with altered lysosomal lytic activity and increased inflammatory activity, in unstable plaques with intraplaque hemorrhage (IPH+) compared to non-hemorrhaged (IPH-) plaques. Moreover, topological analysis of this network model revealed that the conversion of glutamine to glutamate and their flux between the cytoplasm and mitochondria were notably compromised in hemorrhaged plaques, with a significant reduction in overall glutamate levels in IPH+ plaques. Additionally, reduced glutamate availability was associated with an increased presence of macrophages and a pro-inflammatory phenotype in IPH+ plaques, suggesting an inflammation-prone microenvironment. CONCLUSIONS: This study is the first to establish a robust and comprehensive GEM for atherosclerotic plaque, providing a valuable resource for understanding plaque metabolism. The utility of this GEM was illustrated by its ability to reliably predict dysregulation in the cholesterol hydroxylation, inositol metabolism, and the glutamine/glutamate pathway in rupture-prone hemorrhaged plaques, a finding that may pave the way to new diagnostic or therapeutic measures.


Subject(s)
Carotid Artery Diseases , Glutamic Acid , Glutamine , Macrophages , Metabolic Networks and Pathways , Phenotype , Plaque, Atherosclerotic , Humans , Glutamine/metabolism , Glutamic Acid/metabolism , Macrophages/metabolism , Macrophages/pathology , Carotid Artery Diseases/metabolism , Carotid Artery Diseases/pathology , Carotid Artery Diseases/genetics , Rupture, Spontaneous , Carotid Arteries/pathology , Carotid Arteries/metabolism , Metabolomics , Databases, Genetic , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Energy Metabolism , Datasets as Topic , Male
17.
J Vasc Res ; 61(1): 38-49, 2024.
Article in English | MEDLINE | ID: mdl-38061338

ABSTRACT

INTRODUCTION: The aim of the study was to evaluate characteristics and provide the normal values of wall shear stress (WSS) and flow turbulence (Tur), and the relationship between them in the carotid bifurcation based on an ultrasound vector flow imaging (V Flow) in healthy adults. METHODS: Max and mean WSS and Tur values at three segments (initial segments of internal and external carotid arteries [IICA and IECA]; distal segment of common carotid artery [DCCA]), both in anterior and posterior walls, were successfully obtained in 56 healthy adults, using ultrasound V Flow function. Relationship between mean WSS and Tur was further explored. RESULTS: The mean WSS value was 0.71 Pa, 0.86 Pa, and 0.96 Pa at IICA, IECA, and DCCA, respectively (IICA < IECA < DCCA, p < 0.05). The mean Tur value was 13.85%, 5.46%, and 4.17% at IICA, IECA, and DCCA, respectively (IICA > IECA > DCCA, p < 0.05). A cutoff value (WSS = 0.4 Pa) was selected and Tur values were significantly higher in group with WSS cutoff value <0.4 Pa than group with WSS cutoff value ≥0.4 Pa (p < 0.01). CONCLUSION: WSS and Tur are moderately negatively correlated, which can be used in the quantitative evaluation of carotid bifurcation and could be a potential dual-parameter tool in the clinical research for early detection of carotid atherosclerosis.


Subject(s)
Carotid Arteries , Carotid Artery Diseases , Adult , Humans , Carotid Arteries/diagnostic imaging , Ultrasonography , Carotid Artery Diseases/diagnostic imaging , Stress, Mechanical , Computer Simulation , Blood Flow Velocity
18.
J Vasc Surg ; 79(1): 71-80.e1, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37678641

ABSTRACT

OBJECTIVE: It is unclear whether patients with prior neck radiation therapy (RT) are at high risk for carotid artery stenting (CAS). We aimed to delineate 30-day perioperative and 3-year long-term outcomes in patients treated for radiation-induced stenotic lesions by the transfemoral carotid artery stenting (TFCAS) or transcarotid artery revascularization (TCAR) approach to determine comparative risk and to ascertain the optimal intervention in this cohort. METHODS: Data were extracted from the Vascular Quality Initiative CAS registry for patients with prior neck radiation who had undergone either TCAR or TFCAS. The Student t-test and the χ2 test were used to compare baseline patient characteristics. Multivariable logistic regression and Cox Hazard Proportional analysis were used to compare perioperative and long-term differences between patients with and without prior neck radiation following TCAR and TFCAS. Kaplan-Meier estimator was used to determine the incidence of 3-year adverse events. RESULTS: A total of 72,656 patients (TCAR, 40,879; TFCAS, 31,777) were included in the analysis. Of these, 4151 patients had a history of neck radiation. Patients with a history of neck radiation were more likely to be younger, white, and have fewer comorbidities than patients with no neck radiation history. After adjustment for confounding factors, there was no difference in relative risk of 30-day perioperative stroke (P = .11), death (P = .36), or myocardial infarction (MI) (P = .61) between TCAR patients with or without a history of neck radiation. The odds of stroke/death (P = .10) and stroke/death/MI (P = .07) were also not statistically significant. In patients with prior neck radiation, TCAR had lower odds for in-hospital stroke/death/MI (odds ratio, 0.59; 95% confidence interval [CI], 0.35-0.99; P = .05) and access site complications than TFCAS. At year 3, patients with prior neck radiation had an increased hazard for mortality after TCAR (hazard ratio [HR], 1.24; 95% CI, 1.02-1.51; P = .04) and TFCAS (HR, 1.33; 95% CI, 1.12-1.58; P = .001). Patients with prior neck radiation also experienced an increased hazard for reintervention after TCAR (HR, 2.16; 95% CI, 1.45-3.20; P < .001) and TFCAS (HR, 1.67; 95% CI, 1.02-2.73; P<.001). CONCLUSIONS: Patients with prior neck radiation had a similar relative risk of 30-day perioperative adverse events as patients with no neck radiation after adjustment for baseline demographics and disease characteristics. In these patients, TCAR was associated with reduced odds of perioperative stroke/death/MI as compared with TFCAS. However, patients with prior neck radiation were at increased risk for 3-year mortality and reintervention.


Subject(s)
Carotid Stenosis , Endovascular Procedures , Myocardial Infarction , Stroke , Humans , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/surgery , Risk Factors , Risk Assessment , Treatment Outcome , Stents/adverse effects , Stroke/etiology , Myocardial Infarction/etiology , Femoral Artery , Carotid Arteries , Retrospective Studies , Endovascular Procedures/adverse effects
19.
J Vasc Surg ; 79(2): 280-286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37804953

ABSTRACT

OBJECTIVE: Current societal guidelines recommend duplex ultrasound (DUS) surveillance beyond 30 days after carotid endarterectomy (CEA) for patients with risk factors for restenosis or who underwent primary closure. However, the appropriate duration of this surveillance has not yet been identified, and the rate at which DUS surveillance prompts intervention is unknown. Multiple calls for decreasing health care spending that does not provide value, including unnecessary testing, have been made. The purpose of this study was to examine the rate of intervention prompted by surveillance DUS on the ipsilateral or contralateral carotid artery after CEA and determine the value of continued surveillance by determining the rate of DUS-prompted intervention. METHODS: A single-center, retrospective chart review of all patients older than 18 years who had undergone CEA from August 2009 to July 2022 was performed. Patients with at least one postoperative duplex in our Intersocietal Accreditation Council-accredited ultrasound lab were included. Exclusion criteria were patients with incomplete medical charts or patients who underwent a concomitant procedure. The primary end point was return to the operating room for subsequent intervention based on abnormal surveillance DUS findings. Secondary end points were the number of postoperative surveillance duplexes, duration of surveillance, and incidence of perioperative stroke. The study participant data were queried for patients who had a diagnosis of stroke that occurred following their procedure. RESULTS: A total 767 patients, accounting for 771 procedures, were included in this study, which resulted in 2145 ultrasound scans. A total of 40 (5.2%) patients required 44 subsequent interventions that were prompted by DUS surveillance scans. The average number of ultrasound scans per patient was 2.8 (range: 0-14), and the average duration of surveillance was 26.4 months (range: 0-155 months). Of the 767 patients, 669 (87.2%) had a unilateral CEA. A total of 62 of 767 (8.1%) patients had planned endarterectomies on the contralateral side based on initial imaging, not prompted by interval DUS surveillance scans. Of 767 patients, 28 (3.7%) patients who underwent CEA had a subsequent procedure for progression of contralateral disease, which was prompted by duplex surveillance scans. The average duration between index CEA and intervention on contralateral carotid was 29.57 months (range: 3-81 months). A total of 11 patients, accounting for 12 procedures, underwent a subsequent procedure for restenosis of their ipsilateral carotid, prompted by duplex surveillance scans. The average duration between index CEA and reintervention on the ipsilateral carotid was 17.9 months (range: 4-70 months). Three of 767 (0.4%) patients in total were identified as having a perioperative stroke. CONCLUSIONS: The overall rate of ipsilateral reintervention after CEA is low. A small percentage of patients will progress their contralateral disease, ultimately requiring surgical intervention. These data suggest that regular duplex surveillance after CEA is warranted for patients with at least moderate contralateral disease; however, the yield is low for ipsilateral restenosis after 36 months based on this single institution study. Further study is needed to better delineate which patients need follow-up to decrease unnecessary testing while still targeting patients most at risk of restenosis or contralateral progression of disease.


Subject(s)
Carotid Stenosis , Endarterectomy, Carotid , Stroke , Humans , Endarterectomy, Carotid/adverse effects , Endarterectomy, Carotid/methods , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/surgery , Carotid Stenosis/complications , Retrospective Studies , Carotid Arteries , Stroke/etiology , Risk Factors , Ultrasonography, Doppler, Duplex , Treatment Outcome
20.
J Vasc Surg ; 79(2): 287-296.e1, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38179993

ABSTRACT

OBJECTIVES: The relationship between baseline Modified Rankin Scale (mRS) in patients with prior stroke and optimal timing of carotid revascularization is unclear. Therefore, we evaluated the timing of transfemoral carotid artery stenting (tfCAS), transcarotid artery revascularization (TCAR), and carotid endarterectomy (CEA) after prior stroke, stratified by preoperative mRS. METHODS: We identified patients with recent stroke who underwent tfCAS, TCAR, or CEA between 2012 and 2021. Patients were stratified by preoperative mRS (0-1, 2, 3-4, or 5) and days from symptom onset to intervention (time to intervention; ≤2 days, 3-14 days, 15-90 days, and 91-180 days). First, we performed univariate analyses comparing in-hospital outcomes between separate mRS or time-to-intervention cohorts for all carotid intervention methods. Afterward, multivariable logistic regression was used to adjust for demographics and comorbidities across groups, and outcomes between the various intervention methods were compared. Primary outcome was the in-hospital stroke/death rate. RESULTS: We identified 4260 patients who underwent tfCAS, 3130 patients who underwent TCAR, and 20,012 patients who underwent CEA. Patients were most likely to have minimal disability (mRS, 0-1 [61%]) and least likely to have severe disability (mRS, 5 [1.5%]). Patients most often underwent revascularization in 3 to 14 days (45%). Across all intervention methods, increasing preoperative mRS was associated with higher procedural in-hospital stroke/death (all P < .03), whereas increasing time to intervention was associated with lower stroke/death rates (all P < .01). After adjustment for demographics and comorbidities, undergoing tfCAS was associated with higher stroke/death compared with undergoing CEA (adjusted odds ratio, 1.6; 95% confidence interval, 1.3-1.9; P < .01) or undergoing TCAR (adjusted odds ratio, 1.3; 95% confidence interval, 1.0-1.8; P = .03). CONCLUSIONS: In patients with preoperative stroke, optimal timing for carotid revascularization varies with stroke severity. Increasing preoperative mRS was associated with higher procedural in-hospital stroke/death rates, whereas increasing time to-intervention was associated with lower stroke/death rates. Overall, patients undergoing CEA were associated with lower in-hospital stroke/deaths. To determine benefit for delayed intervention, these results should be weighed against the risk of recurrent stroke during the interval before intervention.


Subject(s)
Carotid Stenosis , Endarterectomy, Carotid , Endovascular Procedures , Stroke , Humans , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/surgery , Endovascular Procedures/adverse effects , Risk Factors , Risk Assessment , Time Factors , Stents , Stroke/diagnosis , Endarterectomy, Carotid/adverse effects , Carotid Arteries , Treatment Outcome , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL