Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38261339

ABSTRACT

Various methods have been proposed to reconstruct admixture histories by analyzing the length of ancestral chromosomal tracts, such as estimating the admixture time and number of admixture events. However, available methods do not explicitly consider the complex admixture structure, which characterizes the joining and mixing patterns of different ancestral populations during the admixture process, and instead assume a simplified one-by-one sequential admixture model. In this study, we proposed a novel approach that considers the non-sequential admixture structure to reconstruct admixture histories. Specifically, we introduced a hierarchical admixture model that incorporated four ancestral populations and developed a new method, called HierarchyMix, which uses the length of ancestral tracts and the number of ancestry switches along genomes to reconstruct the four-way admixture history. By automatically selecting the optimal admixture model using the Bayesian information criterion principles, HierarchyMix effectively estimates the corresponding admixture parameters. Simulation studies confirmed the effectiveness and robustness of HierarchyMix. We also applied HierarchyMix to Uyghurs and Kazakhs, enabling us to reconstruct the admixture histories of Central Asians. Our results highlight the importance of considering complex admixture structures and demonstrate that HierarchyMix is a useful tool for analyzing complex admixture events.


Subject(s)
Central Asian People , Genetics, Population , Humans , Bayes Theorem , Central Asian People/genetics , Computer Simulation , Chromosomes/genetics , Genetics, Population/methods
2.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39293802

ABSTRACT

Sex-biased gene expression differs across human populations; however, the underlying genetic basis and molecular mechanisms remain largely unknown. Here, we explore the influence of ancestry on sex differences in the human transcriptome and its genetic effects on a Eurasian admixed population: Uyghurs living in Xinjiang (XJU), by analyzing whole-genome sequencing data and transcriptome data of 90 XJU and 40 unrelated Han Chinese individuals. We identified 302 sex-biased expressed genes and 174 sex-biased cis-expression quantitative loci (sb-cis-eQTLs) in XJU, which were enriched in innate immune-related functions, indicating sex differences in immunity. Notably, approximately one-quarter of the sb-cis-eQTLs showed a strong correlation with ancestry composition; i.e. populations of similar ancestry tended to show similar patterns of sex-biased gene expression. Our analysis further suggested that genetic admixture induced a moderate degree of sex-biased gene expression. Interestingly, analysis of chromosome interactions revealed that the X chromosome acted on autosomal immunity-associated genes, partially explaining the sex-biased phenotypic differences. Our work extends the knowledge of sex-biased gene expression from the perspective of genetic admixture and bridges the gap in the exploration of sex-biased phenotypes shaped by autosome and X-chromosome interactions. Notably, we demonstrated that sex chromosomes cannot fully explain sex differentiation in immune-related phenotypes.


Subject(s)
Central Asian People , East Asian People , Quantitative Trait Loci , Female , Humans , Male , China , Chromosomes, Human, X/genetics , Gene Expression Profiling/methods , Gene Expression Regulation , Genetics, Population , Sex Characteristics , Transcriptome , East Asian People/genetics , Central Asian People/genetics
3.
BMC Res Notes ; 17(1): 187, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970104

ABSTRACT

OBJECTIVE: This study assesses the accuracy of the IrisPlex system, a genetic eye color prediction tool for forensic analysis, in the Kazakh population. The study compares previously published genotypes of 515 Kazakh individuals from varied geographical and ethnohistorical contexts with phenotypic data on their eye color, introduced for the first time in this research. RESULTS: The IrisPlex panel's effectiveness in predicting eye color in the Kazakh population was validated. It exhibited slightly lower accuracy than in Western European populations but was higher than in Siberian populations. The sensitivity was notably high for brown-eyed individuals (0.99), but further research is needed for blue and intermediate eye colors. This study establishes IrisPlex as a useful predictive tool in the Kazakh population and provides a basis for future investigations into the genetic basis of phenotypic variations in this diverse population.


Subject(s)
Eye Color , Humans , Eye Color/genetics , Genetic Variation , Genetics, Population , Genotype , Kazakhstan , Phenotype , Central Asian People/genetics
4.
BMC Res Notes ; 17(1): 51, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38369539

ABSTRACT

OBJECTIVES: The collection of genotype data was conducted as an essential part of a pivotal research project with the goal of examining the genetic variability of skin, hair, and iris color among the Kazakh population. The data has practical application in the field of forensic DNA phenotyping (FDA). Due to the limited size of forensic databases from Central Asia (Kazakhstan), it is practically impossible to obtain an individual identification result based on forensic profiling of short tandem repeats (STRs). However, the pervasive use of the FDA necessitates validation of the currently employed set of genetic markers in a variety of global populations. No such data existed for the Kazakhs. The Phenotype Expert kit (DNA Research Center, LLC, Russia) was used for the first time in this study to collect data. DATA DESCRIPTION: The present study provides genotype data for a total of 60 SNP genetic markers, which were analyzed in a sample of 515 ethnic Kazakhs. The dataset comprises a total of 41 single nucleotide polymorphisms (SNPs) obtained from the HIrisPlex-S panel. Additionally, there are 4 SNPs specifically related to the AB0 gene, 1 marker associated with the AMELX/Y genes, and 14 SNPs corresponding to the primary haplogroups of the Y chromosome. The aforementioned data could prove valuable to researchers with an interest in investigating genetic variability and making predictions about phenotype based on eye color, hair color, skin color, AB0 blood group, gender, and biogeographic origin within the male lineage.


Subject(s)
ABO Blood-Group System , Central Asian People , Chromosomes, Human, Y , Haplotypes , Pigmentation , Humans , Male , ABO Blood-Group System/genetics , Central Asian People/genetics , Chromosomes, Human, Y/genetics , DNA/genetics , Genetic Markers , Genetics, Population , Genotype , Hair , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , Skin Pigmentation/genetics , Pigmentation/genetics , Genetic Variation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL