Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.982
Filter
Add more filters

Publication year range
1.
Proc Biol Sci ; 291(2015): 20232563, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38290545

ABSTRACT

Ligula intestinalis (Cestoda: Diphyllobothriidae) is an emerging model organism for studies on parasite population biology and host-parasite interactions. However, a well-resolved genome and catalogue of its gene content has not been previously developed. Here, we present the first genome assembly of L. intestinalis, based on Oxford Nanopore Technologies, Illumina and Omni-C sequencing methodologies. We use transcriptome profiling to compare plerocercoid larvae and adult worms and identify differentially expressed genes (DEGs) associated with these life stages. The genome assembly is 775.3 mega (M)bp in size, with scaffold N50 value of 118 Mbp and encodes 27 256 predicted protein-coding sequences. Over 60% of the genome consists of repetitive sequences. Synteny analyses showed that the 10 largest scaffolds representing 75% of the genome display high correspondence to full chromosomes of cyclophyllidean tapeworms. Mapping RNA-seq data to the new reference genome, we identified 3922 differentially expressed genes in adults compared with plerocercoids. Gene ontology analyses revealed over-represented genes involved in reproductive development of the adult stage (e.g. sperm production) and significantly enriched DEGs associated with immune evasion of plerocercoids in their fish host. This study provides the first insights into the molecular biology of L. intestinalis and provides the most highly contiguous assembly to date of a diphyllobothriid tapeworm useful for population and comparative genomic investigations of parasitic flatworms.


Subject(s)
Cestoda , Cestode Infections , Animals , Male , Semen , Cestoda/genetics , Cestode Infections/parasitology , Fishes/genetics , Gene Expression Profiling , Transcriptome
2.
Fish Shellfish Immunol ; 149: 109580, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663464

ABSTRACT

Wild organisms are regularly exposed to a wide range of parasites, requiring the management of an effective immune response while avoiding immunopathology. Currently, our knowledge of immunoparasitology primarily derives from controlled laboratory studies, neglecting the genetic and environmental diversity that contribute to immune phenotypes observed in wild populations. To gain insight into the immunologic variability in natural settings, we examined differences in immune gene expression of two Alaskan stickleback (Gasterosteus aculeatus) populations with varying susceptibility to infection by the cestode Schistocephalus solidus. Between these two populations, we found distinct immune gene expression patterns at the population level in response to infection with fish from the high-infection population displaying signs of parasite-driven immune manipulation. Further, we found significant differences in baseline immune gene profiles between the populations, with uninfected low-infection population fish showing signatures of inflammation compared to uninfected high-infection population fish. These results shed light on divergent responses of wild populations to the same parasite, providing valuable insights into host-parasite interactions in natural ecosystems.


Subject(s)
Cestoda , Cestode Infections , Fish Diseases , Smegmamorpha , Animals , Smegmamorpha/immunology , Smegmamorpha/genetics , Smegmamorpha/parasitology , Fish Diseases/immunology , Fish Diseases/parasitology , Cestode Infections/veterinary , Cestode Infections/immunology , Cestode Infections/parasitology , Cestoda/immunology , Cestoda/physiology , Host-Parasite Interactions/immunology , Alaska , Immunity, Innate/genetics
3.
Parasitology ; 151(2): 157-167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38193283

ABSTRACT

The endemic chub Squalius tenellus (Heckel, 1843) was introduced more than 100 years ago to Lake Blidinje (Bosnia-Herzegovina). Only 1 species of enteric helminth was found in a sample of 35 chubs, the tapeworm Caryophyllaeus brachycollis (Janiszewska, 1953). The paper includes histopathological investigation with identification of innate immune cells involved in host reaction and molecular data allowed correct designation of the cestode species. Of 35 specimens of chub examined, 21 (60%) harboured individuals of C. brachycollis and a total of 1619 tapeworms were counted, the intensity of infection ranged from 1 to 390 worms per fish (46.2 ± 15.3, mean ± s.e.). Histopathological and ultrastructural investigations showed strict contact between the worm's body and the epithelia and increase in the number of mucous cells, rodlet cells among the epithelial cells. Within the tunica propria-submucosa, beneath the site of scolex attachment, numerous neutrophils and mast cells were noticed. This is the first study of the occurrence of C. brachycollis in chub from Lake Blidinje and on the response of the innate immune cells of S. tenellus to this tapeworm. Interestingly, in 3 very heavily infected chubs, perforation of the intestinal wall was documented; this is uncommon among cestodes which use fish as a definitive host.


Subject(s)
Catfishes , Cestoda , Cestode Infections , Cyprinidae , Animals , Cestode Infections/epidemiology , Cestode Infections/veterinary , Intestines
4.
Parasitology ; 151(3): 282-294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200699

ABSTRACT

The most common equine tapeworm, Anoplocephala perfoliata, has often been neglected amongst molecular investigations and has been faced with limited treatment options. However, the recent release of a transcriptome dataset has now provided opportunities for in-depth analysis of A. perfoliata protein expression. Here, global, and sub-proteomic approaches were utilized to provide a comprehensive characterization of the A. perfoliata soluble glutathione transferases (GST) (ApGST). Utilizing both bioinformatics and gel-based proteomics, GeLC and 2D-SDS PAGE, the A. perfoliata 'GST-ome' was observed to be dominated with Mu class GST representatives. In addition, both Sigma and Omega class GSTs were identified, albeit to a lesser extent and absent from affinity chromatography approaches. Moreover, 51 ApGSTs were localized across somatic (47 GSTs), extracellular vesicles (EVs) (Whole: 1 GST, Surface: 2 GSTs) and EV depleted excretory secretory product (ESP) (9 GSTs) proteomes. In related helminths, GSTs have shown promise as novel anthelmintic or vaccine targets for improved helminth control. Thus, provides potential targets for understanding A. perfoliata novel infection mechanisms, host­parasite relationships and anthelmintic treatments.


Subject(s)
Anthelmintics , Cestoda , Cestode Infections , Animals , Horses , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Proteomics , Cestode Infections/veterinary , Cestoda/genetics
5.
Parasitology ; 151(5): 523-528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571299

ABSTRACT

Dipylidium caninum is a common tapeworm of dogs. Two cases of praziquantel resistance have been described in D. caninum in the United States. No further reports have been published to the authors' knowledge. Here, the case of a dog imported to Switzerland from Spain with a history of chronic excretion of tapeworm proglottids and unresponsiveness to praziquantel treatments is reported. Clinical signs were mild (restlessness, tenesmus, anal pruritus, squashy feces) and flea infestation could be ruled out. Infection with D. caninum was confirmed through morphological and genetic parasite identification. Different subsequently applied anthelmintic compounds and protocols, including epsiprantel, did not confer the desired effects. Proglottid shedding only stopped after oral mebendazole administration of 86.2 mg kg−1 body weight for 5 consecutive days. Clinical signs resolved and the dog remained coproscopically negative during a follow-up period of 10 months after the last treatment. This case represents the first reported apparent praziquantel and epsiprantel resistance in D. caninum in Europe. Treatment was extremely challenging especially due to the limited availability of efficacious alternative compounds.


Subject(s)
Anthelmintics , Cestode Infections , Dog Diseases , Drug Resistance , Praziquantel , Animals , Praziquantel/therapeutic use , Praziquantel/pharmacology , Praziquantel/administration & dosage , Dogs , Dog Diseases/parasitology , Dog Diseases/drug therapy , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Cestode Infections/drug therapy , Cestode Infections/veterinary , Cestode Infections/parasitology , Switzerland , Cestoda/drug effects , Spain , Feces/parasitology , Male
6.
BMC Vet Res ; 20(1): 213, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769538

ABSTRACT

Despite the importance of the electric catfish (Malapterurus electricus) and the African giant catfish (Heterobranchus bidorsalis) in the foodweb of Lake Nasser, Egypt, little is known about their diseases and parasitic fauna. This work describes, for the first time, cestodiasis in M. electricus and H. bidorsalis. Corallobothrium solidum and Proteocephalus sp. were identified morphologically and molecularly from M. electricus and H. bidorsalis, respectively. Using PCR, sequencing, and phylogenetic analysis, the two cestodes shared rRNA gene sequence similarities yet were unique and the two new sequences for the proteocephalid genera were submitted to the GenBank database. The prevalence of infection was 75% and 40% for the two fish species, respectively. Infections significantly increased in the summer and spring and were higher in female fish than in male fish. The intestine was the preferred site of the two adult cestodes. However, in the case of C. solidum some larval cestodes were found outside the intestine in between the skin and abdominal musculature, attached to the mesentery, and within intestinal tunica muscularis. Desquamation of the intestinal epithelium and inflammation at the site of infection in addition to congestion of the intestinal wall of the tapeworm infected fish were evident, indicating that C. solidum and Proteocephalus sp. impacted the infected fish. The larval stages of C. solidum attempted to penetrate the intestine and sometimes they were encircled within fibrous layers infiltrated with inflammatory cells. The infected fish's musculature was free of cestode infections. Preventive measures should be implemented to prevent the spread of infections.


Subject(s)
Catfishes , Cestoda , Cestode Infections , Fish Diseases , Lakes , Phylogeny , Animals , Fish Diseases/parasitology , Fish Diseases/epidemiology , Cestoda/genetics , Cestoda/classification , Cestoda/isolation & purification , Egypt/epidemiology , Cestode Infections/veterinary , Cestode Infections/epidemiology , Cestode Infections/parasitology , Catfishes/parasitology , Female , Male
7.
BMC Vet Res ; 20(1): 148, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643141

ABSTRACT

BACKGROUND: Sparganosis is a rare zoonotic disease caused by plerocercoid larvae of the genera Spirometra or Sparganum (Cestoda: Diphyllobothriidae). The larvae of Spirometra generally do not undergo asexual reproduction, whereas those of Sparganum can induce proliferative lesions in infected tissues. This paper presents an unusual case of proliferative sparganosis due to infection with Spirometra mansoni in a cat, normally considered a definitive host of the species. CASE PRESENTATION: A 9-year-old male domestic cat was presented with a mass on the right side of the face that underwent progressive enlargement for 1 month. The morphological and histopathological examinations revealed multiple asexual proliferative cestode larvae in the lesions, suggestive of proliferative sparganosis. Next-generation sequencing analysis of formalin-fixed and paraffin-embedded specimens of surgically excised tissue indicated that the worm was Spirometra mansoni. CONCLUSION: Although S. mansoni a common tapeworm species found in the small intestine of domestic cats and dogs in Japan, proliferative sparganosis is extremely rare. This is the first confirmed case of proliferative sparganosis due to infection with S. mansoni in cat.


Subject(s)
Cat Diseases , Cestode Infections , Dog Diseases , Sparganosis , Spirometra , Male , Cats , Animals , Dogs , Spirometra/genetics , Sparganosis/diagnosis , Sparganosis/veterinary , Sparganosis/etiology , Sparganum , Cestode Infections/diagnosis , Cestode Infections/veterinary , Japan , Cat Diseases/diagnosis , Dog Diseases/diagnosis
8.
BMC Vet Res ; 20(1): 332, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039589

ABSTRACT

This study investigated the prevalence, morphology, molecular identification, and histopathological effects of larval tapeworms (plerocercoids) infecting the skeletal muscles of the Indian halibut (Psettodes erumei) collected from the coastal waters of the Arabian Gulf. Numerous oval or round blastocysts, measuring 13-26 mm, were found embedded within the muscular tissues of the Indian halibut, rendering the fish unsuitable for human consumption. Morphological and molecular analyses identified the plerocercoids as Dasyrhynchus giganteus (family Dasyrhynchidae), with an overall prevalence of 15.4%. The seasonal prevalence was the highest in summer (14.6%), followed by spring (10.6%), winter (4.4%), and autumn (3.5%). Infection rates increased with fish size. Histopathological examination revealed fibrous connective tissue capsules surrounding the larvae, causing muscular atrophy and degenerative changes, with few inflammatory eosinophilic cells. Molecular and phylogenetic analysis of the 28S rDNA gene sequences confirmed the specimens as D. giganteus, clustered closely with other sequences of D. giganteus with 100% bootstrap values. This study provided valuable insights into the parasitic infection dynamics, seasonal variation, molecular identification, and histopathological effects, highlighting the importance of monitoring fish for food safety and public health implications.


Subject(s)
Cestoda , Cestode Infections , Fish Diseases , Phylogeny , Seasons , Animals , Fish Diseases/parasitology , Fish Diseases/epidemiology , Fish Diseases/pathology , Prevalence , Cestoda/genetics , Cestoda/classification , Cestode Infections/veterinary , Cestode Infections/epidemiology , Cestode Infections/pathology , Cestode Infections/parasitology , Flounder/parasitology , Muscle, Skeletal/parasitology , Muscle, Skeletal/pathology , RNA, Ribosomal, 28S/genetics
9.
Exp Parasitol ; 258: 108714, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367946

ABSTRACT

Helminth infections pose a significant economic threat to livestock production, causing productivity declines and, in severe cases, mortality. Conventional anthelmintics, exemplified by fenbendazole, face challenges related to low solubility and the necessity for high doses. This study explores the potential of supramolecular complexes, created through mechanochemical modifications, to address these limitations. The study focuses on two key anthelmintics, praziquantel (PZQ) and fenbendazole (FBZ), employing mechanochemical techniques to enhance their solubility and efficacy. Solid dispersions (SD) of PZQ with polymers and dioctyl sulfosuccine sodium (DSS) and fenbendazole with licorice extract (ES) and DSS were prepared. The helminthicidal activity of these complexes was assessed through helminthological dissections of sheep infected with Schistosoma turkestanicum, moniesiasis, and parabronemosis. In the assessment of supramolecular complex of FBZ (SMCF) at doses ranging from 1.0 to 3.0 mg/kg for the active substance (AS), optimal efficacy was observed with the fenbendazole formulation containing arabinogalactan and polyvinylpyrrolidone at a 3.0 mg/kg dosage. At this concentration, the formulation demonstrated a remarkable 100% efficacy in treating spontaneous monieziosis in sheep, caused by Moniezia expansa (Rudolphi, 1810) and M. benedenii (Moniez, 1879). Furthermore, the SMCF, administered at doses of 1.0, 2.0, and 3.0 mg/kg, exhibited efficacy rates of 42.8%, 85.7%, and 100%, respectively, against the causative agent of parabronemosis (Parabronema skrjabini Rassowska, 1924). Mechanochemical modifications, yielding supramolecular complexes of PZQ and FBZ, present a breakthrough in anthelmintic development. These complexes address solubility issues and significantly reduce required doses, offering a practical solution for combating helminth infections in livestock. The study underscores the potential of supramolecular formulations for revolutionizing helminthiasis management, thereby enhancing the overall health and productivity of livestock.


Subject(s)
Anthelmintics , Cestode Infections , Schistosomiasis , Animals , Sheep , Fenbendazole/therapeutic use , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Praziquantel/therapeutic use , Cestode Infections/drug therapy
10.
Exp Parasitol ; 259: 108715, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336094

ABSTRACT

Hymenolepis diminuta a zoonotic tapeworm infection in human remains an important cestode model for anthelmintic study as it display common clinical symptoms like other adult human tapeworms during heavy infestation. The use of Lactobacillus as a probiotic is an alternative to drugs which have increased in research and usage considerably during the last decade. The present study aims to determine the anthelmintic efficacy of two probiotics, L. taiwanensis strain S29 and L. plantarum strain S27 against H. diminuta in infected rat. Four groups of animals, each with six numbers were randomly chosen as the negative control (Group I), positive control (infected) (Group II) and the infected treated with two probiotics Group III and Group IV respectively. Another four groups (Group V-VIII) were selected and further subdivided into four sub-groups to investigate the development of larvae to adult during probiotics treatment. Worm burden, egg per gram were determined after treatment with these two probiotics. Furthermore, hematological assays and levels of biochemical markers were estimated, tissue damage was assayed through histological study and intestinal mitochondria detection was done. Worm sustainability reduced about 70-90% and EPG count decreased by 81-94% in probiotics treated groups. A significant level of unsuccessful establishment of larvae was observed in the developmental phase. Improvement in hematological parameter along with some biochemical parameters in the host were significantly observed after treatment with probiotics. The architecture damaged caused in the intestine and mitochondria density due to parasite infection improved significantly as that of control after probiotics treatment.


Subject(s)
Anthelmintics , Cestode Infections , Hymenolepiasis , Lactobacillus plantarum , Probiotics , Humans , Rats , Animals , Hymenolepiasis/drug therapy , Hymenolepiasis/parasitology , Switzerland , Lactobacillus , Anthelmintics/therapeutic use , Cestode Infections/drug therapy , Cestode Infections/prevention & control , Probiotics/therapeutic use
11.
J Fish Dis ; 47(5): e13918, 2024 May.
Article in English | MEDLINE | ID: mdl-38235825

ABSTRACT

Detection of intestinal parasites in fish typically requires autopsy, resulting in the sacrifice of the fish. Here, we describe a non-lethal method for detecting the tapeworm Eubothrium crassum in fish using anal swabs and real-time PCR detection. Two assays were developed to detect cytochrome oxidase I (COI) mitochondrial DNA and 18S ribosomal DNA sequences of E. crassum, respectively. The assays were tested on swab samples from confirmed pathogen free Atlantic salmon (Salmo salar L.) and on samples from farmed Atlantic salmon, where the presence and intensity of parasites had been established through autopsy. The COI assay was shown to be specific to E. crassum, while the 18S assay also amplified the closely related E. salvelini, a species infecting Arctic charr (Salvelinus alpinus L.) in freshwater. The COI assay detected E. crassum in all field samples regardless of parasite load while the 18S assay failed to detect the parasite in two samples. The results thus demonstrates that this non-lethal approach can effectively detect E. crassum and can be a valuable tool in assessing the prevalence of infection in farmed salmon, aiding in treatment decisions and evaluating treatment effectiveness.


Subject(s)
Cestoda , Cestode Infections , Fish Diseases , Salmo salar , Animals , Salmo salar/genetics , Real-Time Polymerase Chain Reaction/veterinary , Fish Diseases/diagnosis , Fish Diseases/parasitology , Cestoda/genetics , Cestode Infections/diagnosis , Cestode Infections/veterinary , Cestode Infections/parasitology , Trout/parasitology
12.
Parasitol Res ; 123(6): 243, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874599

ABSTRACT

Diphyllobothriosis, a fish-borne zoonosis in South America, is mainly caused by the Pacific broad tapeworm Adenocephalus pacificus Nybelin, 1931, a parasite of considerable concern in fishery resources due to its impact on public health. A new diphyllobothrid, Diphyllobothrium sprakeri Hernández-Orts et al. Parasites Vectors 14:219, 2021, was recently described from sea lions from the Pacific Coast, but marine fish acting as intermediate hosts are unknown. The objective of this study was to confirm the presence of plerocercoid larvae of Diphyllobothriidae Lühe, 1910 (Cestoda: Diphyllobothriidea) in nine fish species of commercial importance in Peru. Of a total of 6999 fish (5861 Engraulis ringens, 853 Sciaena deliciosa, 6 Sciaena callaensis, 171 Scomber japonicus, 40 Trachurus murphyi, 40 Ariopsis seemanni, 18 Merluccius peruanus, 5 Sarda chiliensis, and 5 Coryphaena hippurus), 183 were infected with plerocercoid larvae, representing a total prevalence of 2.61% and a mean intensity of 3.2. Based on mtDNA cox1 sequences of 43 plerocercoids, a phylogenetic analysis revealed that 41 belong to A. pacificus and two to D. sprakeri. These findings are first molecular data for D. sprakeri larvae, and the infections of E. ringens and T. murphyi by plerocercoid larvae represent the first records of intermediate/paratenic hosts for this species. Hence, the findings of the current study enhance our understanding of the presence of diphyllobothriid species in commercial fish from the Southeastern Pacific Ocean and their potential impact on seafood safety for local human populations.


Subject(s)
Fish Diseases , Fishes , Larva , Animals , Peru/epidemiology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Fishes/parasitology , Prevalence , Larva/classification , Larva/growth & development , Larva/genetics , Phylogeny , Cestode Infections/veterinary , Cestode Infections/parasitology , Cestode Infections/epidemiology , Cestoda/genetics , Cestoda/classification , Cestoda/isolation & purification , Diphyllobothrium/genetics , Diphyllobothrium/classification , Diphyllobothrium/isolation & purification , Diphyllobothriasis/epidemiology , Diphyllobothriasis/parasitology , Diphyllobothriasis/veterinary , DNA, Helminth/genetics
13.
J Fish Biol ; 104(6): 1754-1763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450741

ABSTRACT

Appropriate diagnoses of parasites of apex marine predators are crucial to understand their biodiversity, host specificity, biogeography, and life cycles. Such diagnoses are also informative of ecological and biological characteristics of both host and environment in which the hosts and their parasites live. We here (i) investigate the parasite fauna of a bluntnose sixgill shark Hexanchus griseus (Bonnaterre, 1788) obtained from the Gulf of Naples (Tyrrhenian Sea), (ii) characterize molecularly all its metazoan parasites, and (iii) resurrect and report the main morphological features and phylogenetic position of Grillotia acanthoscolex, a cestode species previously synonymized with Grillotia adenoplusia. A rich parasite fauna represented by eight different taxa was found, including two monogeneans (Protocotyle grisea and Protocotyle taschenbergi), one digenean (Otodistomum veliporum), four cestodes (Crossobothrium dohrnii, Clistobothrium sp., G. acanthoscolex, and G. adenoplusia), and one copepod (Protodactylina pamelae). Sequencing of these samples accounts for an important molecular baseline to widen the knowledge on the parasitic fauna of bluntnose sixgill sharks worldwide and to reconstruct their correct food chains. The bluntnose sixgill shark was found to be a definitive host for all endoparasites found here, confirming that it occupies an apex trophic level in the Mediterranean Sea. The taxa composition of the trophic parasite fauna confirms that the bluntnose sixgill shark mostly feeds on teleost fish species. However, the occurrence of two phillobothrid cestodes (C. dohrnii and Clistobothrium sp.) suggests that it also feeds on squids. Finally, we emphasize the importance of using integrative taxonomic approaches in the study of parasites from definitive and intermediate hosts to elucidate biology and ecology of taxa generally understudied in the Mediterranean Sea.


Subject(s)
Cestoda , Fish Diseases , Phylogeny , Sharks , Animals , Sharks/parasitology , Mediterranean Sea , Cestoda/classification , Fish Diseases/parasitology , Cestode Infections/veterinary , Cestode Infections/parasitology , Italy
14.
J Helminthol ; 98: e46, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828715

ABSTRACT

A comparative analysis of taxonomic diversity on shrew cestodes among four islands in the Sea of Japan and the Sea of Okhotsk (Sakhalin, Kunashir, Hokkaido, and Moneron) was performed. Cestode species shared among the islands were identified and their host specificity was investigated. On Sakhalin Island, 33 species of the families Hymenolepididae, Dilepididae and Mesocestoididae were recorded in four shrew species (Sorex caecutiens, S. gracillimus, S. minutissimus and S. unguiculatus). In S. caecutiens, S. gracillimus, and S. unguiculatus on Kunashir Island, 22 species of the same families were found and, on Hokkaido Island, 23 species of the families Hymenolepididae and Dilepididae were recorded. On Moneron Island, three species of cestodes were registered in S. tundrensis. The Sakhalin-Hokkaido-Kunashir complex of shrew cestodes includes eastern-Palearctic, trans-Palearctic and endemic species. High endemism (~22%) of shrew tapeworms in the Sakhalin-Kunashir-Hokkaido Islands was noted as compared to continental territories. The different numbers of cestode species in S. unguiculatus (31), S. caecutiens (29), S. gracillimus (19) and S. minutissimus (1) were found. It was concluded that the cestodes species diversity of shrews of Sakhalin-Kunashir-Hokkaido depended primarily on the history of island formation, their modern physical and geographical features, the abundance of definitive and intermediate cestodes hosts and, to a lesser extent, on the size and remoteness of the islands from the mainland and the diversity of host species.


Subject(s)
Biodiversity , Cestoda , Host Specificity , Islands , Shrews , Animals , Cestoda/classification , Cestoda/isolation & purification , Cestoda/genetics , Shrews/parasitology , Japan , Cestode Infections/veterinary , Cestode Infections/parasitology , Cestode Infections/epidemiology
15.
J Helminthol ; 98: e4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167343

ABSTRACT

Via molecular and morphological analyses, we describe adult specimens of a new species of Versteria (Cestoda: Taeniidae) infecting mink and river otter (Carnivora: Mustelidae) in Western Canada, as well as larval forms from muskrat and mink. These sequences closely matched those reported from adult specimens from Colorado and Oregon, as well as larval infections in humans and a captive orangutan. We describe here a new species from British Columbia and Alberta (Canada), Versteria rafei n. sp., based upon morphological diagnostic characteristics and genetic distance and phylogeny. Versteria rafei n. sp. differs from the three other described species of the genus in the smaller scolex and cirrus sac. It also differs from V. mustelae (Eurasia) and V. cuja (South America) by having an armed cirrus, which is covered in hair-like bristles, and in the shape of its hooks, with a long thorn-like blade, and short or long handle (vs. a short sharply curved blade and no difference in handle size in previously described species). The poorly known V. brachyacantha (Central Africa) also has an armed cirrus and similarly shaped hooks. However, it differs from the new species in the number and size of hooks. Phylogenetic analysis of the cox1 and nad1 mitochondrial regions showed that our specimens clustered with isolates from undescribed adults and larval infections in North America, and separate from V. cuja, confirming them to be a distinct species from the American Clade.


Subject(s)
Cestoda , Cestode Infections , Otters , Humans , Animals , Mink , Phylogeny , Alberta
16.
Syst Parasitol ; 101(2): 15, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38225485

ABSTRACT

Examining the intestinal cestode fauna of the shark species Carcharhinus dussumieri (Müller and Henle), C. sorrah (Müller and Henle), C. leucas (Müller and Henle), and Rhizoprionodon acutus (Rüppell) from the Persian Gulf and C. macloti (Müller and Henle) from the Gulf of Oman resulted in the description of three new species of the tetraphyllidean genus Anthobothrium van Beneden, 1850, along with the establishment of new host and locality records. Anthobothrium afsanae sp. nov. and A. barsami sp. nov. were found in C. dussumieri and C. sorrah. Carcharhinus macloti was the additional host of A. barsami and new host record for A. parimae Sadeghi Kamachali and Haseli, 2022, for which a new locality record was established in the Gulf of Oman. Carcharhinus leucas is the type host of A. elenae sp. nov. and a new host record for A. lesteri Williams, Burt and Caira, 2004. A new locality record for A. lesteri is the Persian Gulf, which is far away from the type locality, Australia. Rhizoprionodon acutus is new host record for A. samae Sadeghi Kamachali and Haseli, 2022 and A. shayani Sadeghi Kamachali and Haseli, 2022. With 14 valid species of Anthobothrium and given the relatively uniform morphology of members of this genus, a key to the species of Anthobothrium is presented. The biogeographical distribution and host specificity are also discussed for the species of Anthobothrium.


Subject(s)
Cestoda , Cestode Infections , Sharks , Animals , Iran , Species Specificity , Cestode Infections/veterinary
17.
Syst Parasitol ; 101(2): 18, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38286915

ABSTRACT

Two new species of Scyphophyllidium Woodland, 1927 are described from the Hooktooth shark, Chaenogaleus macrostoma (Bleeker), from the Persian Gulf, Iran. Scyphophyllidium hormuziense n. sp. is assigned to morphological category 2 of its genus because it possesses bothridial marginal loculi and an apical sucker on each flat bothridium, and lacks bothridial facial loculi. Within category 2, it is distinguished from its congeners, except for S. janineae (Ruhnke, Healy and Shapero, 2006), by possessing, rather than lacking, a prominent cephalic peduncle. It differs from S. janineae in the distribution of the vitelline follicles. Scyphophyllidium iraniense n. sp. is assigned to morphological category 5 because its bothridia are essentially flat and lack proximal apertures, marginal loculi, facial loci and semi-circular muscle bands, and bears weakly serrate gladiate spinitriches on its distal bothridial surfaces. Within its morphological category, the presence of a long cephalic peduncle distinguishes S. iraniense n. sp. from its congeners lacking this structure or possessing a short cephalic peduncle. It further differs from S. arnoldi (Ruhnke and Thompson, 2006) and S. typicum (Subhapradha, 1955) in total length, from S. paulum (Linton, 1897) in lacking a conspicuous band of muscles along the locular periphery of the bothridia, and from S. kirstenae (Ruhnke, Healy and Shapero, 2006) in the distribution of the vitelline follicles. This study brings the number of the valid Scyphophyllidium species of the Persian Gulf to five.


Subject(s)
Cestoda , Cestode Infections , Elasmobranchii , Fish Diseases , Sharks , Animals , Indian Ocean , Iran , Species Specificity , Microscopy, Electron, Scanning
18.
J Exp Biol ; 226(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-37947155

ABSTRACT

The vertebrate immune system provides an impressively effective defense against parasites and pathogens. However, these benefits must be balanced against a range of costly side-effects including energy loss and risks of auto-immunity. These costs might include biomechanical impairment of movement, but little is known about the intersection between immunity and biomechanics. Here, we show that a fibrosis immune response to Schistocephalus solidus infection in freshwater threespine stickleback (Gasterosteus aculeatus) has collateral effects on their locomotion. Although fibrosis is effective at reducing infection, some populations of stickleback actively suppress this immune response, possibly because the costs of fibrosis outweigh the benefits. We quantified the locomotor effects of the fibrosis immune response in the absence of parasites to investigate whether there are incidental costs of fibrosis that could help explain why some fish forego this effective defense. To do this, we induced fibrosis in stickleback and then tested their C-start escape performance. Additionally, we measured the severity of fibrosis, body stiffness and body curvature during the escape response. We were able to estimate performance costs of fibrosis by including these variables as intermediates in a structural equation model. This model revealed that among control fish without fibrosis, there is a performance cost associated with increased body stiffness. However, fish with fibrosis did not experience this cost but rather displayed increased performance with higher fibrosis severity. This result demonstrates that the adaptive landscape of immune responses can be complex with the potential for wide-reaching and unexpected fitness consequences.


Subject(s)
Cestoda , Cestode Infections , Fish Diseases , Parasites , Smegmamorpha , Animals , Fish Diseases/parasitology , Fishes , Cestoda/physiology , Immunity , Host-Parasite Interactions , Cestode Infections/parasitology
19.
Parasitology ; 150(9): 831-841, 2023 08.
Article in English | MEDLINE | ID: mdl-37555338

ABSTRACT

The tapeworms of Moniezia spp. are heteroxenous parasites and their adult forms occur in ruminants' alimentary tract. They steal a significant portion of hosts' nourishment initiating monieziasis, thereby inflicting economic losses in animal rearing. Despite their high economic importance, the molecular characterization and taxonomic status of these parasites have remained poorly understood. In the present study, cestodes were isolated from the sheep and goats' intestines and were stained with Gower's carmine. Upon careful evaluation of morphological characters, 2 species Moniezia denticulata and Moniezia expansa were identified. The genomic DNA was extracted and polymerase chain reaction (PCR) amplified targeting regions of mitochondrial cytochrome c oxidase subunit 1 (cox1), small subunit ribosomal RNA (SSU rRNA) and internal transcribed spacer 1­5.8S rRNA (ITS1­5.8S rRNA) genes followed by sequencing. The partial sequences of cox1, SSU rRNA and ITS1­5.8S rRNA genes of M. denticulata generated in the present study revealed that even though they share high similarities with M. benedeni (93.2% cox1; 92.6% SSU rRNA; 84.70% ITS1­5.8S rRNA) and M. expansa (88.85% cox1; 92.27% SSU rRNA; 81.70% ITS1­5.8S rRNA), they are not identical to them. In the maximum likelihood phylogenetic trees, M. denticulata and M. expansa consistently appeared as distinct species from each other. The high values of pairwise divergence between these 2 species collected in the present study confirmed their separate identity. The present study reports the first molecular characterization of M. denticulata with reference to M. expansa infecting sheep and goats in India.


Subject(s)
Cestoda , Cestode Infections , Animals , Sheep , Goats , RNA, Ribosomal, 5.8S , Phylogeny , Cestode Infections/epidemiology , Cestode Infections/veterinary , Cestode Infections/parasitology , Ruminants , RNA, Ribosomal/genetics
20.
Exp Parasitol ; 249: 108522, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37011803

ABSTRACT

The GP526 strain of Bacillus thuringiensis has been referred as an in vitro helminthicide on various stages of Dipylidium caninum and Centrocestus formosanus. Our study addresses the in vitro ovicidal activity of GP526 strain spore-crystal complex on Taenia pisiformis eggs, evaluating induced damage microscopically. The eggs exposed to the total extract containing spores and crystals show damage after 24 hours, with loss of integrity on the eggshell, and an ovicidal activity of 33% at 1mg/ml. The destruction of the embryophore was observed after 120 h with a 72% of ovicidal activity at 1 mg/ml. The LC50 was 609.6 µg/ml, dose that causes a 50% of lethality on the hexacanth embryo, altering the oncosphere membrane. The spore-crystal proteins were extracted, and the protein profile was obtained by electrophoresis, finding a major band of 100 kDa suggestive of an S-layer protein, since an S-layer was immunodetected in both, spores and extracted proteins. The protein fraction containing the S-layer protein presents adhesion to the T. pisiformis eggs, and 0.4 mg/ml of the protein induces a lethality of 21.08% at 24 h. The characterization of molecular mechanisms of ovicidal activity will be an important contribution, so the characterization of the proteins that make up the extract of the GP526 strain, would be useful to support the biological potential for control of this cestodiasis and other parasitosis. B. thuringiensis is shown as a potent helminthicide on eggs, with useful potential for biological control of this cestodiasis.


Subject(s)
Bacillus thuringiensis , Cestode Infections , Animals , Bacillus thuringiensis/chemistry , Cysticercus/metabolism , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL