Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.338
Filter
Add more filters

Publication year range
1.
Lancet ; 404(10457): 1053-1066, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39216494

ABSTRACT

Primary biliary cholangitis is a chronic, autoimmune, cholestatic disease that mainly affects women aged 40-70 years. Recent epidemiological studies have shown an increasing incidence worldwide despite geographical heterogeneity and a decrease in the female-to-male ratio of those the disease affects. Similar to other autoimmune diseases, primary biliary cholangitis occurs in genetically predisposed individuals upon exposure to environmental triggers, specifically xenobiotics, smoking, and the gut microbiome. Notably, the diversity of the intestinal microbiome is diminished in individuals with primary biliary cholangitis. The intricate interplay among immune cells, cytokines, chemokines, and biliary epithelial cells is postulated as the underlying pathogenic mechanism involved in the development and progression of primary biliary cholangitis, and extensive research has been dedicated to comprehending these complex interactions. Following the official approval of obeticholic acid as second-line treatment for patients with an incomplete response or intolerance to ursodeoxycholic acid, clinical trials have indicated that peroxisome proliferator activator receptor agonists are promising additional second-line drugs. Future dual or triple drug regimens might reach a new treatment goal of normalisation of alkaline phosphatase levels, rather than a decrease to less than 1·67 times the upper limit of normal levels, and potentially improve long-term outcomes. Improvement of health-related quality of life with better recognition and care of subjective symptoms, such as pruritus and fatigue, is also an important treatment goal. Promising clinical investigations are underway to alleviate these symptoms. Efforts to facilitate better access to medical care and dissemination of current knowledge should enable diagnosis at an earlier stage of primary biliary cholangitis and ensure access to treatments based on risk stratification for all patients.


Subject(s)
Chenodeoxycholic Acid , Liver Cirrhosis, Biliary , Aged , Female , Humans , Male , Middle Aged , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/therapeutic use , Cholagogues and Choleretics/therapeutic use , Gastrointestinal Microbiome , Liver Cirrhosis, Biliary/drug therapy , Ursodeoxycholic Acid/therapeutic use
2.
Hepatology ; 80(4): 791-806, 2024 10 01.
Article in English | MEDLINE | ID: mdl-38447019

ABSTRACT

BACKGROUND AND AIMS: The landscape in primary biliary cholangitis (PBC) has changed with the advent of second-line treatments. However, the use of obeticholic acid (OCA) and fibrates in PBC-related cirrhosis is challenging. We assessed the impact of receiving a second-line therapy as a risk factor for decompensated cirrhosis in a real-world population with cirrhosis and PBC, and identify the predictive factors for decompensated cirrhosis in these patients. APPROACH AND RESULTS: Multicenter study enrolling 388 patients with PBC-cirrhosis from the Spanish ColHai registry. Biopsy (20%), ultrasound (59%), or transient elastography (21%) defined cirrhosis, and the presence of varices and splenomegaly defined clinically significant portal hypertension (CSPH). Paris-II and PBC OCA international study of efficacy criteria determined the response to ursodeoxycholic acid (UDCA), fibrates (n=93), and OCA (n=104). The incidence of decompensated cirrhosis decreased for UDCA versus OCA or fibrates in the real-world population, but they were similar considering the propensity score-matched cohort (UDCA 3.77 vs. second-line therapy 4.5 100 persons-year, respectively), as patients on second-line therapy exhibited advanced liver disease. Consequently, GGT, albumin, platelets, clinically significant portal hypertension, and UDCA response were associated with a decompensating event. OCA response (achieved in 52% of patients) was associated with bilirubin (OR 0.21 [95% CI: 0.06-0.73]) and AST (OR 0.97 [95% CI: 0.95-0.99]), while fibrate response (achieved in 55% of patients) with AST [OR 0.96 (95% CI: 0.95-0.98]). In patients treated with OCA, drug response (sHR 0.23 [95% CI: 0.08-0.64]), diabetes (sHR 5.62 [95% CI: 2.02-15.68]), albumin (sHR 0.34 [95% CI: 0.13-0.89]), and platelets (sHR 0.99 [95% CI: 0.98-1.00]) were related to decompensation. In patients treated with fibrate, drug response (sHR 0.36 (95% CI: 0.14-0.95]), albumin (sHR 0.36 (95% CI: 0.16-0.81]), and clinically significant portal hypertension (sHR 3.70 (95% CI: 1.17-11.70]) were associated with decompensated cirrhosis. CONCLUSIONS: Advanced PBC, rather than OCA and fibrates, was found to be associated with decompensating events. Therefore, biochemical and clinical variables should be considered when making decisions about the management of these drugs. Moreover, a positive response to OCA and fibrates reduced the risk of decompensation.


Subject(s)
Chenodeoxycholic Acid , Liver Cirrhosis, Biliary , Ursodeoxycholic Acid , Humans , Male , Female , Liver Cirrhosis, Biliary/drug therapy , Liver Cirrhosis, Biliary/complications , Middle Aged , Ursodeoxycholic Acid/therapeutic use , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/therapeutic use , Aged , Hypertension, Portal/etiology , Hypertension, Portal/drug therapy , Fibric Acids/therapeutic use , Cholagogues and Choleretics/therapeutic use , Registries , Risk Factors , Liver Cirrhosis/drug therapy , Liver Cirrhosis/complications , Spain/epidemiology
3.
Nano Lett ; 24(5): 1642-1649, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38278518

ABSTRACT

Excess fat accumulation is not only associated with metabolic diseases but also negatively impacts physical appearance and emotional well-being. Bile acid, the body's natural emulsifier, is one of the few FDA-approved noninvasive therapeutic options for double chin (submental fat) reduction. Synthetic sodium deoxycholic acid (NaDCA) causes adipose cell lysis; however, its side effects include inflammation, bruising, and necrosis. Therefore, we investigated if an endogenous bile acid, chenodeoxycholic acid (CDCA), a well-known signaling molecule, can be beneficial without many of the untoward effects. We first generated CDCA-loaded nanoparticles to achieve sustained and localized delivery. Then, we injected them into the subcutaneous fat depot and monitored adipocyte size and mitochondrial function. Unlike NaDCA, CDCA did not cause cytolysis. Instead, we demonstrate that a single injection of CDCA-loaded nanoparticles into the subcutaneous fat reduced the adipocyte size by promoting fat burning and mitochondrial respiration, highlighting their potential for submental fat reduction.


Subject(s)
Chenodeoxycholic Acid , Deoxycholic Acid , Deoxycholic Acid/adverse effects , Adipocytes , Injections , Mitochondria
4.
Med Res Rev ; 44(2): 568-586, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37899676

ABSTRACT

Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/therapeutic use
5.
J Biol Chem ; 299(4): 104591, 2023 04.
Article in English | MEDLINE | ID: mdl-36894018

ABSTRACT

Bile acids are important for digestion of food and antimicrobial activity. Pathogenic Vibrio parahaemolyticus senses bile acids and induce pathogenesis. The bile acid taurodeoxycholate (TDC) was shown to activate the master regulator, VtrB, of this system, whereas other bile acids such as chenodeoxycholate (CDC) do not. Previously, VtrA-VtrC was discovered to be the co-component signal transduction system that binds bile acids and induces pathogenesis. TDC binds to the periplasmic domain of the VtrA-VtrC complex, activating a DNA-binding domain in VtrA that then activates VtrB. Here, we find that CDC and TDC compete for binding to the VtrA-VtrC periplasmic heterodimer. Our crystal structure of the VtrA-VtrC heterodimer bound to CDC revealed CDC binds in the same hydrophobic pocket as TDC but differently. Using isothermal titration calorimetry, we observed that most mutants in the binding pocket of VtrA-VtrC caused a decrease in bile acid binding affinity. Notably, two mutants in VtrC bound bile acids with a similar affinity as the WT protein but were attenuated for TDC-induced type III secretion system 2 activation. Collectively, these studies provide a molecular explanation for the selective pathogenic signaling by V. parahaemolyticus and reveal insight into a host's susceptibility to disease.


Subject(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Bile Acids and Salts/metabolism , Signal Transduction , Chenodeoxycholic Acid , Bacterial Proteins/metabolism
6.
J Biol Chem ; 299(1): 102745, 2023 01.
Article in English | MEDLINE | ID: mdl-36436558

ABSTRACT

Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting. We generated Nudt7-/- mice to further characterize the role that peroxisomal (acyl-)CoA degradation plays in the modulation of the size and composition of the acyl-CoA pool and in the regulation of hepatic lipid metabolism. Here, we show that deletion of Nudt7 alters the composition of the hepatic acyl-CoA pool in mice fed a low-fat diet, but only in males fed a Western diet does the lack of NUDT7 activity increase total liver CoA levels. This effect is driven by the male-specific accumulation of medium-chain dicarboxylic acyl-CoAs, which are produced from the ß-oxidation of dicarboxylic fatty acids. We also show that, under conditions of elevated synthesis of chenodeoxycholic acid derivatives, Nudt7 deletion promotes the production of tauromuricholic acid, decreasing the hydrophobicity index of the intestinal bile acid pool and increasing fecal cholesterol excretion in male mice. These findings reveal that NUDT7-mediated hydrolysis of acyl-CoA pathway intermediates in liver peroxisomes contributes to the regulation of dicarboxylic fatty acid metabolism and the composition of the bile acid pool.


Subject(s)
Bile Acids and Salts , Diet, Western , Animals , Male , Mice , Acyl Coenzyme A/metabolism , Bile Acids and Salts/metabolism , Chenodeoxycholic Acid , Fatty Acids/metabolism , Liver/metabolism , Oxidation-Reduction , Nudix Hydrolases
7.
Clin Gastroenterol Hepatol ; 22(10): 2062-2074.e11, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38782175

ABSTRACT

BACKGROUND & AIMS: Obeticholic acid (OCA) is the only licensed second-line therapy for primary biliary cholangitis (PBC). With novel therapeutics in advanced development, clinical tools are needed to tailor the treatment algorithm. We aimed to derive and externally validate the OCA response score (ORS) for predicting the response probability of individuals with PBC to OCA. METHODS: We used data from the Italian RECAPITULATE (N = 441) and the IBER-PBC (N = 244) OCA real-world prospective cohorts to derive/validate a score including widely available variables obtained either pre-treatment (ORS) or also after 6 months of treatment (ORS+). Multivariable Cox regressions with backward selection were applied to obtain parsimonious predictive models. The predicted outcomes were biochemical response according to POISE (alkaline phosphatase [ALP]/upper limit of normal [ULN]<1.67 with a reduction of at least 15%, and normal bilirubin), or ALP/ULN<1.67, or normal range criteria (NR: normal ALP, alanine aminotransferase [ALT], and bilirubin) up to 24 months. RESULTS: Depending on the response criteria, ORS included age, pruritus, cirrhosis, ALP/ULN, ALT/ULN, GGT/ULN, and bilirubin. ORS+ also included ALP/ULN and bilirubin after 6 months of OCA therapy. Internally validated c-statistics for ORS were 0.75, 0.78, and 0.72 for POISE, ALP/ULN<1.67, and NR response, which raised to 0.83, 0.88, and 0.81 with ORS+, respectively. The respective performances in validation were 0.70, 0.72, and 0.71 for ORS and 0.80, 0.84, and 0.78 for ORS+. Results were consistent across groups with mild/severe disease. CONCLUSIONS: We developed and externally validated a scoring system capable to predict OCA response according to different criteria. This tool will enhance a stratified second-line therapy model to streamline standard care and trial delivery in PBC.


Subject(s)
Chenodeoxycholic Acid , Humans , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/therapeutic use , Female , Male , Middle Aged , Prospective Studies , Aged , Liver Cirrhosis, Biliary/drug therapy , Treatment Outcome , Adult , Cholagogues and Choleretics/therapeutic use , Italy
8.
Biochem Biophys Res Commun ; 692: 149342, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38061283

ABSTRACT

Glucocorticoid synthesis typically occurs in adrenal cortex and is influenced by cholesterol balance, since cholesterol is the sole precursor of steroids. Bile acids as the signaling molecules, have been shown to promote steroidogenesis in steroidogenic cells. However, whether bile acids directly regulate cholesterol balance remains elusive. In this study, we prepared cholestatic mouse models and cultured human adrenocortical cells (H295R) treated with taurochenodeoxycholic acid (TCDCA) to determine transcription levels of cholesterol metabolism associated genes and cholesterol concentrations in adrenocortical cells. Results showed that common bile duct ligation (CBDL) and chenodeoxycholic acid (CDCA) feeding elevated the mRNA levels of Abca1, Cyp51, Hmgcr, Srb1, and Mc2r in adrenals of mice. Meanwhile, the concentrations of total cholesterol and cholesteryl ester in adrenals of CBDL and CDCA-fed mice were dramatically lowered. The total and phosphorylation levels of HSL in adrenal glands of CBDL mice were also enhanced. Similarly, TCDCA treatment in H295R cells decreased intracellular concentrations of total cholesterol and cholesteryl ester and increased transcription levels of SRB1, MC2R, and HSL as well. Inhibition of bile acids' receptor sphingosine 1-phosphate receptor 2 (S1PR2), extracellular signal-regulated kinase (ERK) phosphorylation, and steroidogenic factor 1 (SF-1) respectively successfully abolished effect of TCDCA on H295R cells. SF-1s was found to be phosphorylated at Thr75 in TCDCA-treated H295R cells. While a mild increase of intracellular cAMP concentration was detected upon TCDCA treatment, inhibition of PKA activity with Rp-Isomer in H295R cells failed to decrease the expression of SF-1 and its target genes. Our findings suggest that conjugated bile acids affect cholesterol balance through regulation of SF-1 in adrenocortical cells so as to provide an adequate cholesterol supply for glucocorticoid synthesis, which improves and enriches our understanding of the mechanism whereby bile acids regulate cholesterol balance to affect adrenal function.


Subject(s)
Bile Acids and Salts , Glucocorticoids , Humans , Mice , Animals , Steroidogenic Factor 1/genetics , Cholesterol Esters , Sphingosine-1-Phosphate Receptors , Cholesterol/metabolism , Steroids/metabolism , Chenodeoxycholic Acid , Taurochenodeoxycholic Acid
9.
J Pharmacol Exp Ther ; 388(2): 586-595, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37188530

ABSTRACT

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.


Subject(s)
Chenodeoxycholic Acid/analogs & derivatives , Lung Injury , Mechlorethamine , Rats , Male , Animals , Mechlorethamine/toxicity , Irritants/adverse effects , Rats, Wistar , Lung , Fibrosis , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Lung Injury/metabolism , Oxidative Stress , Lipids
10.
Genet Med ; 26(5): 101086, 2024 05.
Article in English | MEDLINE | ID: mdl-38288684

ABSTRACT

PURPOSE: Cerebrotendinous xanthomatosis (CTX) is a rare, autosomal recessive bile acid synthesis disorder. Biallelic pathogenic variants in CYP27A1, encoding for sterol 27-hydroxylase, impair cholic acid (CA) and chenodeoxycholic acid (CDCA) synthesis and lead to accumulation of cholestanol and C27 bile alcohols. Treatment with CDCA decreases the accumulation of these harmful metabolites and slows disease progression. Currently, CDCA is contraindicated for use during pregnancy based on animal studies that showed that high-dose CDCA may cause fetal harm when administered to pregnant animals. Data regarding the safety of CDCA treatment in humans are lacking. METHODS: We present a case series of 19 pregnancies in 9 women with CTX who either received CDCA treatment throughout pregnancy or did not. RESULTS: In 11 pregnancies where mothers continued CDCA treatment, no complications were reported, and newborns were born at or near full term, with normal birth weight and Apgar scores. In 8 pregnancies where mothers did not receive CDCA, 2 newborns experienced elevated bilirubin soon after birth. One woman who stopped treatment during her pregnancy deteriorated neurologically while off treatment. CONCLUSION: The data we present support the benefit of continued CDCA treatment in pregnant women with CTX for both the affected women and their offspring.


Subject(s)
Chenodeoxycholic Acid , Xanthomatosis, Cerebrotendinous , Humans , Female , Chenodeoxycholic Acid/therapeutic use , Xanthomatosis, Cerebrotendinous/drug therapy , Xanthomatosis, Cerebrotendinous/genetics , Pregnancy , Adult , Cholestanetriol 26-Monooxygenase/genetics , Pregnancy Complications/drug therapy , Pregnancy Complications/genetics , Infant, Newborn
11.
Am J Pathol ; 193(1): 11-26, 2023 01.
Article in English | MEDLINE | ID: mdl-36243043

ABSTRACT

Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.


Subject(s)
Cholestasis , Memory, Short-Term , Humans , Mice , Animals , Cholestasis/drug therapy , Chenodeoxycholic Acid/pharmacology , Bile Ducts/surgery , Liver , Ligation
12.
BMC Microbiol ; 24(1): 286, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090543

ABSTRACT

BACKGROUND: Bile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (bai) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA). RESULTS: Here, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate Clostridium scindens is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of bai genes. CDCA upregulates expression of the bai genes but the expression is greater when CA is present. In contrast, the murine isolate Extibacter muris exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content in vitro. However, E. muris was found to 7-dehydroxylate in vivo. CONCLUSIONS: The distinct expression responses amongst strains indicate that bai genes are regulated differently. CA promoted bai operon gene expression and the 7-dehydroxylating activity in C. scindens strains. Conversely, the in vitro activity of E. muris was promoted only after the addition of cecal content and the isolate did not alter bai gene expression in response to CA. The accessory gene baiJ was only upregulated in the C. scindens ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived C. scindens strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity in vitro resulting from the presence of CA and suggests distinct bai gene expression across bacterial species.


Subject(s)
Bile Acids and Salts , Cholic Acid , Cholic Acid/metabolism , Animals , Bile Acids and Salts/metabolism , Mice , Humans , Clostridium/metabolism , Clostridium/genetics , Gene Expression Regulation, Bacterial , Hydroxylation , Operon , Chenodeoxycholic Acid/metabolism , Ursodeoxycholic Acid/metabolism , Gastrointestinal Microbiome
13.
BMC Microbiol ; 24(1): 110, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570789

ABSTRACT

BACKGROUND: All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS: Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS: Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.


Subject(s)
Bile Acids and Salts , Enterococcus faecium , Bile Acids and Salts/pharmacology , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Deoxycholic Acid/pharmacology , Proteomics , Cholic Acid , Chenodeoxycholic Acid/metabolism , Enterococcus
14.
Exp Eye Res ; 246: 109992, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972445

ABSTRACT

Previous studies have shown that pharmaceutical agents such as lipoic acid have the ability to soften the lens, presenting a promising avenue for treating presbyopia. One obstacle encountered in the preclinical stage of such agents is the need for precise measurements of lens elasticity in experimental models. This study aimed to evaluate the effects of 25-hydroxycholesterol, lipoic acid, and obeticholic acid on the viscoelastic properties of mouse lenses using a custom-built elastometer system. Data were acquired on lenses from C57BL/6J female mice from two age groups: young (age: 8-10 weeks) and old (age: 32-43 weeks). OD lenses were used as the control and OS lenses were treated. Control lenses were immersed in Dulbecco's Modified Eagle Medium (DMEM) and treatment lenses were immersed in a compound solution containing 25-hydroxycholesterol (5 young and 5 old), lipoic acid at 2.35 mM (5 young and 5 old), lipoic acid at 0.66 mM (5 old), or obeticholic acid (5 old) at 37 °C for 18 h. After treatment, the mouse lenses were placed in a DMEM-filled chamber within a custom-built elastometer system that recorded the load and lens shape as the lens was compressed by 600 µm at a speed of 50 µm/s. The load was continuously recorded during compression and during stress-relaxation. The compression phase was fit with a linear function to quantify lens stiffness. The stress-relaxation phase was fit with a 3-term exponential relaxation model providing relaxation time constants (t1, t2, t3), and equilibrium load. The lens stiffness, time constants and equilibrium load were compared for the control and treated groups. Results revealed an increase in stiffness with age for the control group (young: 1.16 ± 0.11 g/mm, old: 1.29 ± 0.14 g/mm) and relaxation time constants decreased with age (young: t1 = 221.9 ± 29.0 s, t2 = 24.7 ± 3.8 s, t3 = 3.12 ± 0.87 s, old: t1 = 183.0 ± 22.0 s, t2 = 20.6 ± 2.6 s and t3 = 2.24 ± 0.43 s). Among the compounds tested, only 25-hydroxycholesterol produced statistically significant changes in the lens stiffness, relaxation time constants, and equilibrium load. In conclusion, older mouse lenses are stiffer and less viscous than young mouse lenses. Notably, no significant change in lens stiffness was observed following treatment with lipoic acid, contrary to previous findings.


Subject(s)
Chenodeoxycholic Acid , Elasticity , Lens, Crystalline , Mice, Inbred C57BL , Thioctic Acid , Animals , Mice , Lens, Crystalline/drug effects , Female , Thioctic Acid/pharmacology , Thioctic Acid/analogs & derivatives , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/pharmacology , Viscosity , Aging/physiology , Antioxidants/pharmacology , Hydroxycholesterols/pharmacology
15.
Liver Int ; 44(4): 966-978, 2024 04.
Article in English | MEDLINE | ID: mdl-38293761

ABSTRACT

BACKGROUND & AIMS: Fibrosis stage is a strong predictor of nonalcoholic steatohepatitis (NASH) outcomes. Two blinded studies evaluated the pharmacokinetics, pharmacodynamics and safety of obeticholic acid (OCA) in subjects with staged NASH fibrosis or cirrhosis. METHODS: Study 747-117 randomized 51 subjects with NASH (fibrosis stages F1-F4) to daily placebo, OCA 10 or OCA 25 mg (1:2:2) for 85 days. Study 747-118 randomized 24 subjects with NASH cirrhosis (F4; Child-Pugh [CP]-A) and normal liver control subjects matched for similar body weight to daily OCA 10 or OCA 25 mg (1:1) for 28 days. Individual and combined study data were analysed. RESULTS: No severe or serious adverse events (AEs) or AEs leading to discontinuation or death occurred. Pruritus was the most frequent AE. Plasma OCA exposure (dose-normalized area under the curve) increased with fibrosis stage but was a relatively poor predictor of hepatic OCA exposure (primary site of action), which remained constant across fibrosis stages F1-F3 and increased 1.8-fold compared with F1 in subjects with cirrhosis due to NASH. Both cohorts showed robust changes in farnesoid X receptor activation markers with OCA treatment and marked decreases in alanine transaminase, aspartate transaminase and gamma-glutamyltransferase. CONCLUSIONS: Despite higher drug exposures in subjects with NASH cirrhosis, short-term daily treatment with OCA 10 or 25 mg was generally safe and well tolerated in subjects with NASH fibrosis or NASH CP-A cirrhosis. Both cohorts experienced improvements in nonhistologic pharmacodynamic markers consistent with previously conducted OCA phase 2 and phase 3 studies in NASH fibrosis.


Subject(s)
Chenodeoxycholic Acid/analogs & derivatives , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Chenodeoxycholic Acid/adverse effects
16.
Liver Int ; 44(1): 214-227, 2024 01.
Article in English | MEDLINE | ID: mdl-37904642

ABSTRACT

BACKGROUND AND AIMS: We have previously shown in a model of hepatic ischaemia/reperfusion injury that the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) restores reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), an inverse modulator of metalloproteases (MMPs) and inhibitor of the sheddases ADAM10 and ADAM17 involved in inflammation and fibrogenesis. Here, the effects of FXR agonists OCA and INT-787 on hepatic levels of RECK, MMPs, ADAM10 and ADAM17 were compared in a diet-induced ob/ob mouse model of non-alcoholic steatohepatitis (NASH). METHODS: Lep ob/ob NASH mice fed a high-fat diet (HFD) or control diet (CD) for 9 weeks (wks) were treated with OCA or INT-787 0.05% dosed via HFD admixture (30 mg/kg/day) or HFD for further 12 wks. Serum alanine transaminase (ALT) and inflammatory cytokines, liver RECK, MMP-2 and MMP-9 activity as well as ADAM10, ADAM17, collagen deposition (Sirius red), hepatic stellate cell activation (α-SMA) and pCK+ reactive biliary cells were quantified. RESULTS: Only INT-787 significantly reduced serum ALT, IL-1ß and TGF-ß. A downregulation of RECK expression and protein levels observed in HFD groups (at 9 and 21 wks) was counteracted by both OCA and INT-787. HFD induced a significant increase in liver MMP-2 and MMP-9; OCA administration reduced both MMP-2 and MMP-9 while INT-787 markedly reduced MMP-2 expression. OCA and INT-787 reduced both ADAM10 and ADAM17 expression and number of pCK+ cells. INT-787 was superior to OCA in decreasing collagen deposition and α-SMA levels. CONCLUSION: INT-787 is superior to OCA in controlling specific cell types and clinically relevant anti-inflammatory and antifibrotic molecular mechanisms in NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/pharmacology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/pharmacology , Liver/metabolism , Chenodeoxycholic Acid/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Diet, High-Fat/adverse effects , Collagen/metabolism , Collagen/pharmacology
17.
Br J Nutr ; 131(6): 921-934, 2024 03 28.
Article in English | MEDLINE | ID: mdl-37905695

ABSTRACT

This experiment was conducted to investigate whether dietary chenodeoxycholic acid (CDCA) could attenuate high-fat (HF) diet-induced growth retardation, lipid accumulation and bile acid (BA) metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (initial weight: 4·40 (sem 0·08) g) were fed four diets: the control (105·8 g/kg lipid), HF diet (HF group, 159·6 g/kg lipid), the control supplemented with 0·9 g/kg CDCA (CDCA group) and HF diet supplemented with 0·9 g/kg CDCA (HF + CDCA group). CDCA supplemented in the HF diet significantly improved growth performance and feed utilisation of yellow catfish (P < 0·05). CDCA alleviated HF-induced increment of hepatic lipid and cholesterol contents by down-regulating the expressions of lipogenesis-related genes and proteins and up-regulating the expressions of lipololysis-related genes and proteins. Compared with the control group, CDCA group significantly reduced cholesterol level (P < 0·05). CDCA significantly inhibited BA biosynthesis and changed BA profile by activating farnesoid X receptor (P < 0·05). The contents of CDCA, taurochenodeoxycholic acid and glycochenodeoxycholic acid were significantly increased with the supplementation of CDCA (P < 0·05). HF-induced elevation of cholic acid content was significantly attenuated by the supplementation of CDCA (P < 0·05). Supplementation of CDCA in the control and HF groups could improve the liver antioxidant capacity. This study proved that CDCA could improve growth retardation, lipid accumulation and BA metabolism disorder induced by HF diet, which provided new insight into understanding the physiological functions of BA in fish.


Subject(s)
Catfishes , Diet, High-Fat , Animals , Diet, High-Fat/adverse effects , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/metabolism , Catfishes/metabolism , Lipid Metabolism/genetics , Liver/metabolism , Cholesterol/metabolism , Growth Disorders
18.
Mol Biol Rep ; 51(1): 250, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302816

ABSTRACT

BACKGROUND: The diagnosis and treatment processes of cancer are among the main challenges of medical science in recent decades. The use of different therapeutic agents is one of the most common methods frequently utilized for cancer treatment. Accumulating evidence points to a potential effect of Obeticholic acid (OCA), a specific ligand for farnesoid X receptor, on the regulation of cancer-associated pathways. In spite of tremendous efforts to introduce OCA into the clinical setting, there is a great deal of uncertainty about its impact on breast cancer treatment. This study was performed to evaluate the effects of OCA on breast cancer. METHODS AND RESULTS: In this experiment, the MCF-7 (Michigan Cancer Foundation-7) cell line was treated with 0.1 µM OCA, and cancerous characteristics of the MCF-7 cell line was evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide) assay, gelatin zymography, western blot, Real-time PCR, flow cytometry, and ELISA techniques. The results indicated that OCA increased the rate of apoptosis and the expression levels of PPARα (Peroxisome proliferator-activated receptor alpha) and TIMP-1 (tissue inhibitor of metalloproteinase-1) genes in this cell line, while it reduced the mRNA levels of MMP7 (matrix metalloproteinase 7) and Bcl-2 (B-cell lymphoma 2) genes, as well as the protein levels of the active form of AKT (protein kinase B), Erk1/2 (extracellular signal-regulated kinase 1/2) and STAT3 (Signal transducers and activators of transcription-3). Also, OCA decreased the activity of MMP9, while it increased the secretion of VEGF-A (vascular endothelial growth factor-A). CONCLUSIONS: It seems that OCA can exert anti-cancer effects on the MCF-7 cells by reducing growth, proliferation, migration, invasion, and regulation of the expression of genes involved in cancer-associated pathways. However, it should be noted that further studies are warranted to establish this concept, especially the increase of VEGF-A can be considered a challenge for the results of this study.


Subject(s)
Breast Neoplasms , Chenodeoxycholic Acid/analogs & derivatives , Vascular Endothelial Growth Factor A , Humans , Female , Vascular Endothelial Growth Factor A/genetics , MCF-7 Cells , Tissue Inhibitor of Metalloproteinase-1 , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics
19.
Exp Cell Res ; 429(2): 113670, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37290498

ABSTRACT

Butyrate (BT) is important in the prevention and inhibition of colorectal cancer (CRC). Inflammatory bowel disease, a risk factor for CRC, is associated with higher levels of proinflammatory cytokines and bile acids. The aim of this work was to investigate the interaction of these compounds in inhibiting BT uptake by Caco-2 cells, as a mechanism contributing to the link between IBD and CRC. TNF-α, IFN-γ, chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) markedly reduce 14C-BT uptake. All these compounds appear to inhibit MCT1-mediated BT cellular uptake at a posttranscriptional level, and, because their effect is not additive, they are most probably inhibiting MCT1 by a similar mechanism. Correspondingly, the antiproliferative effect of BT (MCT1-dependent) and of the proinflammatory cytokines and CDCA were not additive. In contrast, the cytotoxic effect of BT (MCT1-independent) and of the proinflammatory cytokines and CDCA were additive. In conclusion, proinflammatory cytokines (TNF-α and IFN-γ) and bile acids (DCA and CDCA) inhibit MCT1-mediated BT cellular uptake. These proinflammatory cytokines and CDCA were found to interfere with the antiproliferative effect of BT, mediated by an inhibitory effect upon MCT1-mediated cellular uptake of BT.


Subject(s)
Bile Acids and Salts , Cytokines , Humans , Bile Acids and Salts/pharmacology , Butyrates/pharmacology , Caco-2 Cells , Tumor Necrosis Factor-alpha/pharmacology , Chenodeoxycholic Acid/pharmacology
20.
Ren Fail ; 46(2): 2368090, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39108162

ABSTRACT

Acute kidney injury (AKI), a common complication of sepsis, might be caused by overactivated inflammation, mitochondrial damage, and oxidative stress. However, the mechanisms underlying sepsis-induced AKI (SAKI) have not been fully elucidated, and there is a lack of effective therapies for AKI. To this end, this study aimed to investigate whether obeticholic acid (OCA) has a renoprotective effect on SAKI and to explore its mechanism of action. Through bioinformatics analysis, our study confirmed that the mitochondria might be a critical target for the treatment of SAKI. Thus, a septic rat model was established by cecal ligation puncture (CLP) surgery. Our results showed an evoked inflammatory response via the NF-κB signaling pathway and NLRP3 inflammasome activation in septic rats, which led to mitochondrial damage and oxidative stress. OCA, an Farnesoid X Receptor (FXR) agonist, has shown anti-inflammatory effects in numerous studies. However, the effects of OCA on SAKI remain unclear. In this study, we revealed that pretreatment with OCA can inhibit the inflammatory response by reducing the synthesis of proinflammatory factors (such as IL-1ß and NLRP3) via blocking NF-κB and alleviating mitochondrial damage and oxidative stress in the septic rat model. Overall, this study provides insight into the excessive inflammation-induced SAKI caused by mitochondrial damage and evidence for the potential use of OCA in SAKI treatment.


Subject(s)
Acute Kidney Injury , Chenodeoxycholic Acid , Disease Models, Animal , Mitochondria , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Rats, Sprague-Dawley , Sepsis , Signal Transduction , Animals , Sepsis/complications , Sepsis/drug therapy , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/therapeutic use , NF-kappa B/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Signal Transduction/drug effects , Rats , Male , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Inflammasomes/metabolism , Inflammasomes/drug effects , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Interleukin-1beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL