Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.634
Filter
Add more filters

Publication year range
1.
Cell ; 184(21): 5405-5418.e16, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34619078

ABSTRACT

Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Lyme Disease/drug therapy , Animals , Borrelia burgdorferi/drug effects , Calibration , Cinnamates/chemistry , Cinnamates/pharmacology , Cinnamates/therapeutic use , Drug Evaluation, Preclinical , Feces/microbiology , Female , HEK293 Cells , Hep G2 Cells , Humans , Hygromycin B/analogs & derivatives , Hygromycin B/chemistry , Hygromycin B/pharmacology , Hygromycin B/therapeutic use , Lyme Disease/microbiology , Mice , Microbial Sensitivity Tests , Microbiota/drug effects
2.
Cell ; 178(4): 949-963.e18, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31353221

ABSTRACT

Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor Antagonists/pharmacology , Fulvestrant/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/pharmacology , Drug Resistance, Neoplasm , Estrogen Receptor Antagonists/therapeutic use , Female , Fulvestrant/therapeutic use , HEK293 Cells , Heterografts , Humans , Indazoles/pharmacology , Ligands , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Polymorphism, Single Nucleotide , Proteolysis/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects
3.
Nat Immunol ; 15(11): 1055-1063, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25282159

ABSTRACT

TRPV1 is a Ca(2+)-permeable channel studied mostly as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here we found that TRPV1 was functionally expressed in CD4(+) T cells, where it acted as a non-store-operated Ca(2+) channel and contributed to T cell antigen receptor (TCR)-induced Ca(2+) influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promoted colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4(+) T cells recapitulated the phenotype of mouse Trpv1(-/-) CD4(+) T cells. Our findings suggest that inhibition of TRPV1 could represent a new therapeutic strategy for restraining proinflammatory T cell responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Inflammation/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , TRPV Cation Channels/genetics , Anilides/pharmacology , Animals , CD4-Positive T-Lymphocytes/cytology , Calcium/metabolism , Calcium Channels/immunology , Calcium Signaling/drug effects , Calcium Signaling/immunology , Capsaicin/pharmacology , Cells, Cultured , Cinnamates/pharmacology , Colitis/immunology , Humans , Interleukin-10/genetics , Intestines/immunology , Intestines/pathology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Sensory System Agents/pharmacology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/biosynthesis
4.
Plant Physiol ; 194(3): 1370-1382, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37773018

ABSTRACT

Lignin is an abundant polymer in plant secondary cell walls. Prototypical lignins derive from the polymerization of monolignols (hydroxycinnamyl alcohols), mainly coniferyl and sinapyl alcohol, via combinatorial radical coupling reactions and primarily via the endwise coupling of a monomer with the phenolic end of the growing polymer. Hydroxycinnamaldehyde units have long been recognized as minor components of lignins. In plants deficient in cinnamyl alcohol dehydrogenase, the last enzyme in the monolignol biosynthesis pathway that reduces hydroxycinnamaldehydes to monolignols, chain-incorporated aldehyde unit levels are elevated. The nature and relative levels of aldehyde components in lignins can be determined from their distinct and dispersed correlations in 2D 1H-13C-correlated nuclear magnetic resonance (NMR) spectra. We recently became aware of aldehyde NMR peaks, well resolved from others, that had been overlooked. NMR of isolated low-molecular-weight oligomers from biomimetic radical coupling reactions involving coniferaldehyde revealed that the correlation peaks belonged to hydroxycinnamaldehyde-derived benzofuran moieties. Coniferaldehyde 8-5-coupling initially produces the expected phenylcoumaran structures, but the derived phenolic radicals undergo preferential disproportionation rather than radical coupling to extend the growing polymer. As a result, the hydroxycinnamaldehyde-derived phenylcoumaran units are difficult to detect in lignins, but the benzofurans are now readily observed by their distinct and dispersed correlations in the aldehyde region of NMR spectra from any lignin or monolignol dehydrogenation polymer. Hydroxycinnamaldehydes that are coupled to coniferaldehyde can be distinguished from those coupled with a generic guaiacyl end-unit. These benzofuran peaks may now be annotated and reported and their structural ramifications further studied.


Subject(s)
Acrolein/analogs & derivatives , Benzofurans , Cinnamates , Lignin , Lignin/metabolism , Aldehydes , Polymers
5.
Plant Physiol ; 195(2): 1728-1744, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38441888

ABSTRACT

Rosmarinic acid (RA) is an important medicinal metabolite and a potent food antioxidant. We discovered that exposure to high light intensifies the accumulation of RA in the leaves of perilla (Perilla frutescens (L.) Britt). However, the molecular mechanism underlying RA synthesis in response to high light stress remains poorly understood. To address this knowledge gap, we conducted a comprehensive analysis employing transcriptomic sequencing, transcriptional activation, and genetic transformation techniques. High light treatment for 1 and 48 h resulted in the upregulation of 592 and 1,060 genes, respectively. Among these genes, three structural genes and 93 transcription factors exhibited co-expression. Notably, NAC family member PfNAC2, GBF family member PfGBF3, and cinnamate-4-hydroxylase gene PfC4H demonstrated significant co-expression and upregulation under high light stress. Transcriptional activation analysis revealed that PfGBF3 binds to and activates the PfNAC2 promoter. Additionally, both PfNAC2 and PfGBF3 bind to the PfC4H promoter, thereby positively regulating PfC4H expression. Transient overexpression of PfNAC2, PfGBF3, and PfC4H, as well as stable transgenic expression of PfNAC2, led to a substantial increase in RA accumulation in perilla. Consequently, PfGBF3 acts as a photosensitive factor that positively regulates PfNAC2 and PfC4H, while PfNAC2 also regulates PfC4H to promote RA accumulation under high light stress. The elucidation of the regulatory mechanism governing RA accumulation in perilla under high light conditions provides a foundation for developing a high-yield RA system and a model to understand light-induced metabolic accumulation.


Subject(s)
Cinnamates , Depsides , Gene Expression Regulation, Plant , Light , Plant Proteins , Rosmarinic Acid , Depsides/metabolism , Cinnamates/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Perilla frutescens/genetics , Perilla frutescens/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects , Promoter Regions, Genetic/genetics
6.
Plant J ; 115(2): 470-479, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37036146

ABSTRACT

Chemical inhibitors are often implemented for the functional characterization of genes to overcome the limitations associated with genetic approaches. Although it is well established that the specificity of the compound is key to success of a pharmacological approach, off-target effects are often overlooked or simply neglected in a complex biological setting. Here we illustrate the cause and implications of such secondary effects by focusing on piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H) that is frequently used to investigate the involvement of lignin during plant growth and development. When supplied to plants, we found that PA is recognized as a substrate by GRETCHEN HAGEN 3.6 (GH3.6), an amido synthetase involved in the formation of the indole-3-acetic acid (IAA) conjugate IAA-Asp. By competing for the same enzyme, PA interferes with IAA conjugation, resulting in an increase in IAA concentrations in the plant. In line with the broad substrate specificity of the GH3 family of enzymes, treatment with PA increased not only IAA levels but also those of other GH3-conjugated phytohormones, namely jasmonic acid and salicylic acid. Finally, we found that interference with the endogenous function of GH3s potentially contributes to phenotypes previously observed upon PA treatment. We conclude that deregulation of phytohormone homeostasis by surrogate occupation of the conjugation machinery in the plant is likely a general phenomenon when using chemical inhibitors. Our results hereby provide a novel and important basis for future reference in studies using chemical inhibitors.


Subject(s)
Indoleacetic Acids , Plant Growth Regulators , Indoleacetic Acids/pharmacology , Benzoates , Mixed Function Oxygenases/genetics , Cinnamates/pharmacology , Gene Expression Regulation, Plant
7.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L126-L139, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38771153

ABSTRACT

Loss of proteostasis and cellular senescence have been previously established as characteristics of aging; however, their interaction in the context of lung aging and potential contributions to aging-associated lung remodeling remains understudied. In this study, we aimed to characterize endoplasmic reticulum (ER) stress response, cellular senescence, and their interaction in relation to extracellular matrix (ECM) production in lung fibroblasts from young (25-45 yr) and old (>60 yr) humans. Fibroblasts from young and old patients without significant preexisting lung disease were exposed to vehicle, MG132, etoposide, or salubrinal. Afterward, cells and cell lysates or supernatants were analyzed for ER stress, cellular senescence, and ECM changes using protein analysis, proliferation assay, and senescence-associated beta-galactosidase (SA-ß-Gal) staining. At baseline, fibroblasts from aging individuals showed increased levels of ER stress (ATF6 and PERK), senescence (p21 and McL-1), and ECM marker (COL1A1) compared to those from young individuals. Upon ER stress induction and etoposide exposure, fibroblasts showed an increase in senescence (SA-ß-Gal, p21, and Cav-1), ER stress (PERK), and ECM markers (COL1A1 and LUM) compared to vehicle. Additionally, IL-6 and IL-8 levels were increased in the supernatants of MG132- and etoposide-treated fibroblasts, respectively. Finally, the ER stress inhibitor salubrinal decreased the expression of p21 compared to vehicle and MG132 treatments; however, salubrinal inhibited COL1A1 but not p21 expression in MG132-treated fibroblasts. Our study suggests that ER stress response plays an important role in establishment and maintenance of a senescence phenotype in lung fibroblasts and therefore contributes to altered remodeling in the aging lung.NEW & NOTEWORTHY The current study establishes functional links between endoplasmic reticulum (ER) stress and cellular senescence per se in the specific context of aging human lung fibroblasts. Recognizing that the process of aging per se is complex, modulated by the myriad of lifelong and environmental exposures, it is striking to note that chronic ER stress may play a crucial role in the establishment and maintenance of cellular senescence in lung fibroblasts.


Subject(s)
Cellular Senescence , Endoplasmic Reticulum Stress , Fibroblasts , Lung , Humans , Cellular Senescence/drug effects , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Middle Aged , Lung/metabolism , Lung/pathology , Lung/drug effects , Adult , Aged , Male , Female , Extracellular Matrix/metabolism , Thiourea/pharmacology , Thiourea/analogs & derivatives , Cells, Cultured , Cinnamates/pharmacology , Activating Transcription Factor 6/metabolism , Cell Proliferation/drug effects , Etoposide/pharmacology , Collagen Type I/metabolism , Aging/metabolism , Aging/pathology , Collagen Type I, alpha 1 Chain/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , eIF-2 Kinase/metabolism
8.
Biochem Biophys Res Commun ; 724: 150230, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865813

ABSTRACT

The SARS-CoV-2 coronavirus is characterized by high mutation rates and significant infectivity, posing ongoing challenges for therapeutic intervention. To address potential challenges in the future, the continued development of effective drugs targeting SARS-CoV-2 remains an important task for the scientific as well as the pharmaceutical community. The main protease (Mpro) of SARS-CoV-2 is an ideal therapeutic target for COVID-19 drug development, leading to the introduction of various inhibitors, both covalent and non-covalent, each characterized by unique mechanisms of action and possessing inherent strengths and limitations. Natural products, being compounds naturally present in the environment, offer advantages such as low toxicity and diverse activities, presenting a viable source for antiviral drug development. Here, we identified a natural compound, rosmarinic acid, which exhibits significant inhibitory effects on the Mpro of the SARS-CoV-2. Through detailed structural biology analysis, we elucidated the precise crystal structure of the complex formed between rosmarinic acid and SARS-CoV-2 Mpro, revealing the molecular basis of its inhibitory mechanism. These findings not only enhance our understanding of the antiviral action of rosmarinic acid, but also provide valuable structural information and mechanistic insights for the further development of therapeutic strategies against SARS-CoV-2.


Subject(s)
Antiviral Agents , Cinnamates , Coronavirus 3C Proteases , Depsides , Rosmarinic Acid , SARS-CoV-2 , Depsides/chemistry , Depsides/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Models, Molecular , Crystallography, X-Ray , COVID-19 Drug Treatment , COVID-19/virology , Binding Sites , Protein Binding
9.
BMC Plant Biol ; 24(1): 650, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977959

ABSTRACT

Modern intensive cropping systems often contribute to the accumulation of phenolic acids in the soil, which promotes the development of soilborne diseases. This can be suppressed by intercropping. This study analyzed the effects of intercropping on Fusarium wilt based on its effect on photosynthesis under stress by the combination of Fusarium commune and cinnamic acid. The control was not inoculated with F. commune, while the faba bean plants (Vicia faba L.) were inoculated with this pathogen in the other treatments. The infected plants were also treated with cinnamic acid. This study examined the development of Fusarium wilt together with its effects on the leaves, absorption of nutrients, chlorophyll fluorescence parameters, contents of photosynthetic pigments, activities of photosynthetic enzymes, gas exchange parameters, and the photosynthetic assimilates of faba bean from monocropping and intercropping systems. Under monocropping conditions, the leaves of the plants inoculated with F. commune grew significantly less, and there was enhanced occurrence of the Fusarium wilt compared with the control. Compared with the plants solely inoculated with F. commune, the exogenous addition of cinnamic acid to the infected plants significantly further reduced the growth of faba bean leaves and increased the occurrence of Fusarium wilt. A comparison of the combination of F. commune and cinnamic acid in intercropped wheat and faba bean compared with monocropping showed that intercropping improved the absorption of nutrients, increased photosynthetic pigments and its contents, electron transport, photosynthetic enzymes, and photosynthetic assimilates. The combination of these factors reduced the occurrence of Fusarium wilt in faba bean and increased the growth of its leaves. These results showed that intercropping improved the photosynthesis, which promoted the growth of faba bean, thus, reducing the development of Fusarium wilt following the stress of infection by F. commune and cinnamic acid. This research should provide more information to enhance sustainable agriculture.


Subject(s)
Cinnamates , Fusarium , Photosynthesis , Plant Diseases , Vicia faba , Fusarium/physiology , Vicia faba/microbiology , Vicia faba/physiology , Cinnamates/metabolism , Cinnamates/pharmacology , Plant Diseases/microbiology , Stress, Physiological , Plant Leaves/microbiology , Crop Production/methods , Chlorophyll/metabolism , Crops, Agricultural/microbiology
10.
BMC Plant Biol ; 24(1): 798, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39179969

ABSTRACT

BACKGROUND: In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS: Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS: These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.


Subject(s)
Cinnamates , Depsides , Rosmarinic Acid , Salt Tolerance , Salvia officinalis , Signal Transduction , Salvia officinalis/metabolism , Salvia officinalis/physiology , Salvia officinalis/drug effects , Salvia officinalis/genetics , Depsides/metabolism , Cinnamates/metabolism , Abietanes/metabolism , Hydrogen Peroxide/metabolism , Lasers , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Gene Expression Regulation, Plant
11.
Bioconjug Chem ; 35(4): 499-516, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38546823

ABSTRACT

Nanodroplet formation is important to achieve supersaturation of active pharmaceutical ingredients (APIs) in an amorphous solid dispersion. The aim of the current study was to explore how polymer composition, architecture, molar mass, and surfactant concentration affect polymer-drug nanodroplet morphology with the breast cancer API, GDC-0810. The impact of nanodroplet size and morphology on dissolution efficacy and drug loading capacity was explored using polarized light microscopy, dynamic light scattering, and cryogenic transmission electron microscopy. Poly(N-isopropylacrylamide-stat-N,N-dimethylacrylamide) (PND) was synthesized as two linear derivatives and two bottlebrush derivatives with carboxylated or PEGylated end-groups. Hydroxypropyl methylcellulose acetate succinate grade MF (HPMCAS-MF) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) were included as commercial polymer controls. We report the first copolymerization synthesis of a PVPVA bottlebrush copolymer, which was the highest performing excipient in this study, maintaining 688 µg/mL GDC-0810 concentration at 60 wt % drug loading. This is likely due to strong polymer-drug noncovalent interactions and the compaction of GDC-0810 along the PVPVA bottlebrush backbone. Overall, it was observed that the most effective formulations had a hydrodynamic radius less than 25 nm with tightly compacted nanodroplet morphologies.


Subject(s)
Cinnamates , Indazoles , Polymers , Povidone/analogs & derivatives , Solubility
12.
Exp Eye Res ; 244: 109944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797260

ABSTRACT

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Subject(s)
Aspergillosis , Aspergillus fumigatus , Autophagy , Cinnamates , Depsides , Eye Infections, Fungal , Macrophages , Reactive Oxygen Species , Rosmarinic Acid , Depsides/pharmacology , Animals , Autophagy/drug effects , Mice , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillosis/metabolism , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/drug therapy , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cinnamates/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/metabolism , Disease Models, Animal , RAW 264.7 Cells , Cytokines/metabolism , Phagocytosis/drug effects
13.
Chem Res Toxicol ; 37(8): 1344-1355, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39095321

ABSTRACT

This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 µM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.


Subject(s)
Molecular Docking Simulation , PPAR gamma , PPAR gamma/agonists , PPAR gamma/metabolism , Humans , Obesity/drug therapy , Obesity/metabolism , Cinnamates/pharmacology , Cinnamates/chemistry , Molecular Structure , Keratinocytes/drug effects , Keratinocytes/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Sunscreening Agents/pharmacology , Sunscreening Agents/chemistry , Ultraviolet Rays
14.
Microb Cell Fact ; 23(1): 69, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419048

ABSTRACT

We are interested in converting second generation feedstocks into styrene, a valuable chemical compound, using the solvent-tolerant Pseudomonas putida DOT-T1E as a chassis. Styrene biosynthesis takes place from L-phenylalanine in two steps: firstly, L-phenylalanine is converted into trans-cinnamic acid (tCA) by PAL enzymes and secondly, a decarboxylase yields styrene. This study focuses on designing and synthesizing a functional trans-cinnamic acid decarboxylase in Pseudomonas putida. To achieve this, we utilized the "wholesale" method, involving deriving two consensus sequences from multi-alignments of homologous yeast ferulate decarboxylase FDC1 sequences with > 60% and > 50% identity, respectively. These consensus sequences were used to design Pseudomonas codon-optimized genes named psc1 and psd1 and assays were conducted to test the activity in P. putida. Our results show that the PSC1 enzyme effectively decarboxylates tCA into styrene, whilst the PSD1 enzyme does not. The optimal conditions for the PSC1 enzyme, including pH and temperature were determined. The L-phenylalanine DOT-T1E derivative Pseudomonas putida CM12-5 that overproduces L-phenylalanine was used as the host for expression of pal/psc1 genes to efficiently convert L-phenylalanine into tCA, and the aromatic carboxylic acid into styrene. The highest styrene production was achieved when the pal and psc1 genes were co-expressed as an operon in P. putida CM12-5. This construction yielded styrene production exceeding 220 mg L-1. This study serves as a successful demonstration of our strategy to tailor functional enzymes for novel host organisms, thereby broadening their metabolic capabilities. This breakthrough opens the doors to the synthesis of aromatic hydrocarbons using Pseudomonas putida as a versatile biofactory.


Subject(s)
Carboxy-Lyases , Cinnamates , Pseudomonas putida , Styrene/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Pseudomonas putida/metabolism , Phenylalanine/metabolism
15.
Bioorg Med Chem Lett ; 111: 129894, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39043264

ABSTRACT

Drug repurposing and rescuing have been widely explored as cost-effective approaches to expand the portfolio of chemotherapeutic agents. Based on the reported antitumor properties of both trans-cinnamic acids and quinacrine, an antimalarial aminoacridine, we explored the antiproliferative properties of two series of N-cinnamoyl-aminoacridines recently identified as multi-stage antiplasmodial leads. The compounds were evaluated in vitro against three cancer cell lines (MKN-28, Huh-7, and HepG2), and human primary dermal fibroblasts. One of the series displayed highly selective antiproliferative activity in the micromolar range against the three cancer cell lines tested, without any toxicity to non-carcinogenic cells.


Subject(s)
Antimalarials , Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Cell Line, Tumor , Drug Repositioning , Molecular Structure , Aminoacridines/pharmacology , Aminoacridines/chemistry , Aminoacridines/chemical synthesis , Dose-Response Relationship, Drug , Cinnamates/pharmacology , Cinnamates/chemistry , Cinnamates/chemical synthesis
16.
Physiol Plant ; 176(4): e14453, 2024.
Article in English | MEDLINE | ID: mdl-39091124

ABSTRACT

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 µM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.


Subject(s)
Antioxidants , Hydrogen Peroxide , Melatonin , Phenols , Rosmarinus , Ultraviolet Rays , Melatonin/pharmacology , Melatonin/metabolism , Rosmarinus/metabolism , Rosmarinus/drug effects , Rosmarinus/radiation effects , Antioxidants/metabolism , Phenols/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Stress, Physiological/radiation effects , Stress, Physiological/drug effects , Rosmarinic Acid , Cinnamates/metabolism , Cinnamates/pharmacology , Depsides/metabolism
17.
Inorg Chem ; 63(16): 7464-7472, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38598182

ABSTRACT

Uranium accumulation in the kidneys and bones following internal contamination results in severe damage, emphasizing the pressing need for the discovery of actinide decorporation agents with efficient removal of uranium and low toxicity. In this work, cinnamic acid (3-phenyl-2-propenoic acid, CD), a natural aromatic carboxylic acid, is investigated as a potential uranium decorporation ligand. CD demonstrates markedly lower cytotoxicity than that of diethylenetriaminepentaacetic acid (DTPA), an actinide decorporation agent approved by the FDA, and effectively removes approximately 44.5% of uranyl from NRK-52E cells. More importantly, the results of the prompt administration of the CD solution remove 48.2 and 27.3% of uranyl from the kidneys and femurs of mice, respectively. Assessments of serum renal function reveal the potential of CD to ameliorate uranyl-induced renal injury. Furthermore, the single crystal of CD and uranyl compound (C9H7O2)2·UO2 (denoted as UO2-CD) reveals the formation of uranyl dimers as secondary building units. Thermodynamic analysis of the solution shows that CD coordinates with uranyl to form a 2:1 molar ratio complex at a physiological pH of 7.4. Density functional theory (DFT) calculations further show that CD exhibits a significant 7-fold heightened affinity for uranyl binding in comparison to DTPA.


Subject(s)
Cinnamates , Uranium , Cinnamates/chemistry , Cinnamates/pharmacology , Animals , Ligands , Mice , Uranium/chemistry , Uranium/metabolism , Uranium/toxicity , Kidney/drug effects , Kidney/metabolism , Cell Line , Density Functional Theory , Rats , Molecular Structure , Cell Survival/drug effects , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/chemical synthesis
18.
Fish Shellfish Immunol ; 150: 109655, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796044

ABSTRACT

High proportions of soybean meal in aquafeed have been confirmed to induce various intestinal pathologies. This study aims to investigate the regulatory effects of rosmarinic acid (RA), an antioxidant with anti-inflammatory and antimicrobial properties, when added to high soybean meal feeds in different doses, (0, 0.5, 1, and 4 g/kg). During the 56-day feeding trial, results indicated that, compared to the control group without RA (0 g/kg), the 1 g/kg and 4 g/kg RA groups increased bullfrog survival rates and total weight gain while reducing feed coefficient. Additionally, these doses markedly suppressed the expression of key intestinal inflammatory markers (tlr5, myd88, tnfα, il1ß, cxcl8, cxcl12) and the activity and content of intestinal antioxidants (CAT, MDA, GSH, GPX). Concurrently, RA significantly downregulated the transcription levels of antioxidant-related genes (cat, gpx5, cyba, cybb, mgst, gclc, gsta, gstp), suggesting RA's potential to alleviate intestinal inflammation and oxidative stress induced by high soybean meal and to help downregulate and restore normal expression of antioxidant enzyme genes. However, the 0.5 g/kg RA group did not show a significant improvement in survival rates; instead, it upregulated the transcription of some antioxidant genes (cat, gpx5, cyba, cybb), revealing the complexity and dose-dependency of RA's antioxidant action. Furthermore, RA supplementation significantly reshaped the intestinal microbial community structure and relative abundance in bullfrogs, particularly affecting the genera Hafnia, Phascolarctobacterium, and Lactococcus. Notably, high doses of RA (1 g/kg, 4 g/kg) were able to downregulate pathways associated with the enrichment of gut microbiota in diseases such as Parkinson's, Staphylococcus aureus infection, and Systemic lupus erythematosus, suggesting its potential in anti-inflammatory action and health maintenance to prevent potential diseases.


Subject(s)
Animal Feed , Cinnamates , Depsides , Diet , Dietary Supplements , Glycine max , Oxidative Stress , Rana catesbeiana , Rosmarinic Acid , Animals , Depsides/pharmacology , Depsides/administration & dosage , Glycine max/chemistry , Cinnamates/pharmacology , Cinnamates/administration & dosage , Animal Feed/analysis , Diet/veterinary , Oxidative Stress/drug effects , Rana catesbeiana/immunology , Dietary Supplements/analysis , Inflammation/veterinary , Dose-Response Relationship, Drug , Intestines/drug effects , Intestines/immunology , Random Allocation , Fish Diseases/immunology , Gastrointestinal Microbiome/drug effects , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage
19.
J Toxicol Environ Health B Crit Rev ; 27(2): 55-72, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38146151

ABSTRACT

Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.


Subject(s)
Cosmetics , Sunscreening Agents , Sunscreening Agents/toxicity , Sunscreening Agents/radiation effects , Cinnamates/toxicity , Ultraviolet Rays/adverse effects
20.
Bioorg Med Chem ; 104: 117714, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38582046

ABSTRACT

4,9-diaminoacridines with reported antiplasmodial activity were coupled to different trans-cinnamic acids, delivering a new series of conjugates inspired by the covalent bitherapy concept. The new compounds were more potent than primaquine against hepatic stages of Plasmodium berghei, although this was accompanied by cytotoxic effects on Huh-7 hepatocytes. Relevantly, the conjugates displayed nanomolar activities against blood stage P. falciparum parasites, with no evidence of hemolytic effects below 100 µM. Moreover, the new compounds were at least 25-fold more potent than primaquine against P. falciparum gametocytes. Thus, the new antiplasmodial hits disclosed herein emerge as valuable templates for the development of multi-stage antiplasmodial drug candidates.


Subject(s)
Antimalarials , Cinnamates , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Primaquine/pharmacology , Disclosure , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Plasmodium berghei
SELECTION OF CITATIONS
SEARCH DETAIL