Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
Add more filters

Publication year range
1.
PLoS Genet ; 19(10): e1010880, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37862332

ABSTRACT

Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.


Subject(s)
Columbidae , Genome-Wide Association Study , Animals , Columbidae/genetics , Feathers , Phenotype , Pigmentation/genetics
2.
PLoS Genet ; 19(6): e1010746, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37289658

ABSTRACT

Pigeons (Columba livia) are among a select few avian species that have developed a specialized reproductive mode wherein the parents produce a 'milk' in their crop to feed newborn squabs. Nonetheless, the transcriptomic dynamics and role in the rapid transition of core crop functions during 'lactation' remain largely unexplored. Here, we generated a de novo pigeon genome assembly to construct a high resolution spatio-temporal transcriptomic landscape of the crop epithelium across the entire breeding stage. This multi-omics analysis identified a set of 'lactation'-related genes involved in lipid and protein metabolism, which contribute to the rapid functional transitions in the crop. Analysis of in situ high-throughput chromatin conformation capture (Hi-C) sequencing revealed extensive reorganization of promoter-enhancer interactions linked to the dynamic expression of these 'lactation'-related genes between stages. Moreover, their expression is spatially localized in specific epithelial layers, and can be correlated with phenotypic changes in the crop. These results illustrate the preferential de novo synthesis of 'milk' lipids and proteins in the crop, and provides candidate enhancer loci for further investigation of the regulatory elements controlling pigeon 'lactation'.


Subject(s)
Columbidae , Transcriptome , Animals , Female , Transcriptome/genetics , Columbidae/genetics , Columbidae/metabolism , Gene Expression Profiling , Milk , Lactation
3.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37950889

ABSTRACT

The domestic pigeon's exceptional phenotypic diversity was key in developing Darwin's Theory of Evolution and establishing the concept of artificial selection. However, unlike its domestic counterpart, its wild progenitor, the rock dove Columba livia has received considerably less attention. Therefore, questions regarding its domestication, evolution, taxonomy, and conservation status remain unresolved. We generated whole-genome sequencing data from 65 historical rock doves that represent all currently recognized subspecies and span the species' original geographic distribution. Our dataset includes 3 specimens from Darwin's collection, and the type specimens of 5 different taxa. We characterized their population structure, genomic diversity, and gene-flow patterns. Our results show the West African subspecies C. l. gymnocyclus is basal to rock doves and domestic pigeons, and suggests gene-flow between the rock dove's sister species C. rupestris, and the ancestor of rock doves after its split from West African populations. These genomes allowed us to propose a model for the evolution of the rock dove in light of the refugia theory. We propose that rock dove genetic diversity and introgression patterns derive from a history of allopatric cycles and dispersion waves during the Quaternary glacial and interglacial periods. To explore the rock dove domestication history, we combined our new dataset with available genomes from domestic pigeons. Our results point to at least 1 domestication event in the Levant that gave rise to all domestic breeds analysed in this study. Finally, we propose a species-level taxonomic arrangement to reflect the evolutionary history of the West African rock dove populations.


Subject(s)
Columbidae , Genome , Animals , Columbidae/genetics
4.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717527

ABSTRACT

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Subject(s)
Columbidae , Flight, Animal , Transcriptome , Animals , Columbidae/genetics , Columbidae/physiology , Flight, Animal/physiology , Transcriptome/genetics , Gene Expression Profiling/methods , Pectoralis Muscles/metabolism , Pectoralis Muscles/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology
5.
Anim Genet ; 55(1): 110-122, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38069460

ABSTRACT

Selective breeding of meat pigeons is primarily based on growth traits, especially muscle mass (MM). Identification of functional genes and molecular markers of growth and slaughter traits through a genome-wide association study (GWAS) will help to elucidate the underlying molecular mechanisms and provide a theoretical basis for the selective breeding of meat pigeons. The phenotypic data of body weight (BW) and body size (BS) of 556 meat pigeons at 52 and 80 weeks of age were collected. In total, 160 434 high-quality single nucleotide polymorphism sites were obtained by restriction site-associated DNA sequencing. The GWAS analysis revealed that MSTN, IGF2BP3 and NCAPG/LCORL were important candidate genes affecting the growth traits of meat pigeons. IGF2BP3 and NCAPG/LCORL were highly correlated to BW and BS, which are related to overall growth and development, while MSTN was associated with pectoral thickness and BW. Phenotypic association validation with the use of two meat pigeon populations found that the MSTN mutation c.C861T determines the MM. These results provide new insights into the genetic mechanisms underlying phenotypic variations of growth traits and MM in commercial meat pigeons. The identified markers and genes provide a theoretical basis for the selective breeding of meat pigeons.


Subject(s)
Columbidae , Genome-Wide Association Study , Animals , Genome-Wide Association Study/veterinary , Columbidae/genetics , Phenotype , Meat/analysis , Body Weight/genetics , Mutation , Muscles , Polymorphism, Single Nucleotide
6.
PLoS Genet ; 17(8): e1009770, 2021 08.
Article in English | MEDLINE | ID: mdl-34460822

ABSTRACT

The eye color of birds, generally referring to the color of the iris, results from both pigmentation and structural coloration. Avian iris colors exhibit striking interspecific and intraspecific variations that correspond to unique evolutionary and ecological histories. Here, we identified the genetic basis of pearl (white) iris color in domestic pigeons (Columba livia) to explore the largely unknown genetic mechanism underlying the evolution of avian iris coloration. Using a genome-wide association study (GWAS) approach in 92 pigeons, we mapped the pearl iris trait to a 9 kb region containing the facilitative glucose transporter gene SLC2A11B. A nonsense mutation (W49X) leading to a premature stop codon in SLC2A11B was identified as the causal variant. Transcriptome analysis suggested that SLC2A11B loss of function may downregulate the xanthophore-differentiation gene CSF1R and the key pteridine biosynthesis gene GCH1, thus resulting in the pearl iris phenotype. Coalescence and phylogenetic analyses indicated that the mutation originated approximately 5,400 years ago, coinciding with the onset of pigeon domestication, while positive selection was likely associated with artificial breeding. Within Aves, potentially impaired SLC2A11B was found in six species from six distinct lineages, four of which associated with their signature brown or blue eyes and lack of pteridine. Analysis of vertebrate SLC2A11B orthologs revealed relaxed selection in the avian clade, consistent with the scenario that during and after avian divergence from the reptilian ancestor, the SLC2A11B-involved development of dermal chromatophores likely degenerated in the presence of feather coverage. Our findings provide new insight into the mechanism of avian iris color variations and the evolution of pigmentation in vertebrates.


Subject(s)
Columbidae/genetics , Eye Color/genetics , Eye Color/physiology , Animals , Biological Evolution , Evolution, Molecular , Eye/metabolism , Gene Expression Profiling/methods , Genome-Wide Association Study , Genotype , Glucose Transport Proteins, Facilitative/genetics , Iris/metabolism , Mutation , Phenotype , Phylogeny , Pigmentation/genetics
7.
PLoS Genet ; 17(2): e1009404, 2021 02.
Article in English | MEDLINE | ID: mdl-33621224

ABSTRACT

Birds exhibit striking variation in eye color that arises from interactions between specialized pigment cells named chromatophores. The types of chromatophores present in the avian iris are lacking from the integument of birds or mammals, but are remarkably similar to those found in the skin of ectothermic vertebrates. To investigate molecular mechanisms associated with eye coloration in birds, we took advantage of a Mendelian mutation found in domestic pigeons that alters the deposition of yellow pterin pigments in the iris. Using a combination of genome-wide association analysis and linkage information in pedigrees, we mapped variation in eye coloration in pigeons to a small genomic region of ~8.5kb. This interval contained a single gene, SLC2A11B, which has been previously implicated in skin pigmentation and chromatophore differentiation in fish. Loss of yellow pigmentation is likely caused by a point mutation that introduces a premature STOP codon and leads to lower expression of SLC2A11B through nonsense-mediated mRNA decay. There were no substantial changes in overall gene expression profiles between both iris types as well as in genes directly associated with pterin metabolism and/or chromatophore differentiation. Our findings demonstrate that SLC2A11B is required for the expression of pterin-based pigmentation in the avian iris. They further highlight common molecular mechanisms underlying the production of coloration in the iris of birds and skin of ectothermic vertebrates.


Subject(s)
Columbidae/genetics , Eye Color/genetics , Iris/metabolism , Pigmentation/genetics , Skin Pigmentation/genetics , Vertebrates/genetics , Animals , Chromatophores/metabolism , Columbidae/metabolism , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Genomics/methods , Glucose Transport Proteins, Facilitative/genetics , Mutation , RNA Stability/genetics , Vertebrates/metabolism , Whole Genome Sequencing/methods
8.
PLoS Genet ; 16(5): e1008274, 2020 05.
Article in English | MEDLINE | ID: mdl-32433666

ABSTRACT

Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons.


Subject(s)
Columbidae/genetics , DNA Copy Number Variations/physiology , Feathers/metabolism , Pigmentation/genetics , Alleles , Animals , Color , Columbidae/metabolism , Female , Genetic Association Studies/veterinary , Genetic Loci , Genetics, Population , Heterozygote , Male , Phenotype , Polymorphism, Single Nucleotide
9.
Anim Biotechnol ; 34(9): 4927-4937, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37199180

ABSTRACT

This study was to investigate the correlations of myogenic differentiation 1 (MYOD1) gene polymorphisms with carcass traits and its expression with breast muscle development in pigeons. Four SNPs were found in the pigeon MYOD1 gene. Correlation analysis showed that individuals with AA genotype at both SNPs g.2967A > G (p < .01) and g.3044G > A (p < .05) have significantly higher live weight (LW), carcass weight (CW), semi-eviscerated weight (SEW), eviscerated weight (EW) and breast muscle weight (BMW). Moreover, the two SNPs also had the same significant effects on MYOD1 mRNA expression levels in breast muscle of pigeons, ie, the AA genotype showed higher MYOD1 mRNA expression levels. The diameter and cross-section area of muscle fibers continuously increased from 0w to 4w (p < .05), accompanied with the increasing expression of MYOD1 gene, while the density decreased (p < .05) dramatically from 0w to 1w and continuously fell over in the next few weeks (p > .05). What's more, the expression level of MYOD1 gene was positively correlated with a diameter (r = 0.937, p < .05) and cross-sectional area (r = 0.956, p < .01) of myofiber, and negatively correlated with density (r = -0.769, p < .01). The results showed that individuals with AA genotype at both SNPs g.2967A > G and g.3044G > A have showed higher carcass traits (LW, CW, SEW, EW, and BMW) and higher MYOD1 mRNA expression level in breast muscle than AB and BB genotypes. Moreover, the expression level of MYOD1 gene was closely correlated with muscle characteristic traits, indicating variants of MYOD1 gene was closely related to muscle development and could be a potential candidate gene in marker-assisted selection of pigeons.


Subject(s)
Columbidae , Meat , Humans , Animals , Columbidae/genetics , Phenotype , Genotype , Muscles , RNA, Messenger , Polymorphism, Single Nucleotide/genetics
10.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003649

ABSTRACT

Trichomonas gallinae (T. gallinae) has a great influence on the pigeon industry. Pigeons display different resistance abilities to T. gallinae, so the study of the molecular mechanism of resistance is necessary in breeding disease resistant lines. MiRNA plays important roles in the immune response, but there are still no reports of miRNA regulating trichomonosis resistance. We used small RNA sequencing technology to characterize miRNA profiles in different groups. T. gallinae was nasally inoculated in one day old squabs, and according to the infection status, the groups were divided into control (C), susceptible (S) and tolerant (T) groups. We identified 2429 miRNAs in total, including 1162 known miRNAs and 1267 new miRNAs. In a comparison among the C, S and T groups, the target genes of differentially expressed miRNAs were analyzed via GO and KEGG annotation. The results showed that the target genes were enriched in immune-response-related pathways. This indicated that the differentially expressed miRNAs had a critical influence on T. gallinae infection. Novel_miR_741, which could inhibit the expression of PRKCQ, was down-regulated in the T group compared to the C group. It was proven that a decreased novel_miR_741 expression would increase the expression of PRKCQ and increase the immune response. This study brings new insights into understanding the mechanism of trichomonosis resistance.


Subject(s)
Bird Diseases , MicroRNAs , Trichomonas Infections , Trichomonas , Animals , Trichomonas/genetics , Columbidae/genetics , MicroRNAs/genetics , Protein Kinase C-theta , Bird Diseases/genetics , Trichomonas Infections/veterinary
11.
Br Poult Sci ; 64(1): 100-109, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36069156

ABSTRACT

1. The objective of this study was to examine the keratin composition of crop milk, the variation of epithelial thickness and keratin (K) gene expression in samples from young pigeon during incubation and chick rearing.2. Crop milk was collected from 1-, 3- and 5-day-old squab crops for keratin content analysis. Results showed that K4 accounted for the highest proportion of all detected keratins.3. In total, 42 pairs of adult pigeons were allocated to seven groups according to different stages to collect crop samples. Gene expression studies showed that the K3 gene expression was maximised at rearing Day 15 (15) and R1 in males and females, respectively. K6a gene level was the greatest at R15 in females, whereas it peaked at incubation Day 4 (I4) in males. The K12, K13, K23 and K80 gene levels were inhibited at the peak period of crop milk formation in comparison with I4. In females, K cochleal expression peaked at I10, whereas it was the greatest at R25 in males. K4 and K14 gene expression was the highest at I10 in females, while K4 and K14 were minimised at I17 and R7 in males, respectively. Gene expressions of K5, K8, K19 and K20 in males and K19 in females were maximised at R1. The K5, K20 and K75 gene levels in females peaked at R7. K75 and K8 expressions in males and females reached a maximum value at R25 and I17, respectively.4. The epithelial thickness of male and female crops reached their greatest levels at R1 and had the highest correlation with K19.5. These results emphasised the importance of keratinisation in crop milk formation, and different keratins probably play various roles during this period. The K19 was probably a marker for pigeon crop epithelium development. The sex of the parent pigeon affected keratin gene expression profiles.


Subject(s)
Columbidae , Keratins , Male , Female , Animals , Keratins/genetics , Keratins/analysis , Columbidae/genetics , Milk/chemistry , Chickens/genetics , Gene Expression
12.
Mol Biol Evol ; 38(12): 5376-5390, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34459920

ABSTRACT

The iris of the eye shows striking color variation across vertebrate species, and may play important roles in crypsis and communication. The domestic pigeon (Columba livia) has three common iris colors, orange, pearl (white), and bull (dark brown), segregating in a single species, thereby providing a unique opportunity to identify the genetic basis of iris coloration. We used comparative genomics and genetic mapping in laboratory crosses to identify two candidate genes that control variation in iris color in domestic pigeons. We identified a nonsense mutation in the solute carrier SLC2A11B that is shared among all pigeons with pearl eye color, and a locus associated with bull eye color that includes EDNRB2, a gene involved in neural crest migration and pigment development. However, bull eye is likely controlled by a heterogeneous collection of alleles across pigeon breeds. We also found that the EDNRB2 region is associated with regionalized plumage depigmentation (piebalding). Our study identifies two candidate genes for eye colors variation, and establishes a genetic link between iris and plumage color, two traits that vary widely in the evolution of birds and other vertebrates.


Subject(s)
Columbidae , Eye Color , Alleles , Animals , Cattle , Columbidae/genetics , Eye Color/genetics , Genomics , Male , Plant Breeding
13.
Mol Phylogenet Evol ; 166: 107333, 2022 01.
Article in English | MEDLINE | ID: mdl-34688879

ABSTRACT

Chalcophaps is a morphologically conserved genus of ground-walking doves distributed from India to mainland China, south to Australia, and across the western Pacific to Vanuatu. Here, we reconstruct the evolutionary history of this genus using DNA sequence data from two nuclear genes and one mitochondrial gene, sampled from throughout the geographic range of Chalcophaps. We find support for three major evolutionary lineages in our phylogenetic reconstruction, each corresponding to the three currently recognized Chalcophaps species. Despite this general concordance, we identify discordant mitochondrial and nuclear ancestries in the subspecies C. longirostris timorensis, raising further questions about the evolutionary history of this Timor endemic population. Within each of the three species, we find evidence for isolation by distance or hierarchical population structure, indicating an important role for geography in the diversification of this genus. Despite being distributed broadly across a highly fragmented geographic region known as a hotspot for avian diversification, the Chalcophaps doves show modest levels of phenotypic and genetic diversity, a pattern potentially explained by strong population connectivity owing to high overwater dispersal capability.


Subject(s)
Columbidae , DNA, Mitochondrial , Animals , Columbidae/genetics , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Genetic Variation , Phylogeny , Phylogeography
14.
J Eukaryot Microbiol ; 69(2): e12888, 2022 03.
Article in English | MEDLINE | ID: mdl-35007363

ABSTRACT

Blastocystis is an anaerobic intestinal protozoan parasite found in humans and many kinds of animals that mainly causes diarrhea, abdominal pain, and other clinical symptoms. At present, research on the prevalence and subtype diversity of Blastocystis in domestic pigeons is very limited. The purpose of this study was to detect the infection rate and gene subtype distribution of Blastocystis in domestic pigeons in Henan Province, Central China, to provide a foundation for preventing and controlling Blastocystis in domestic pigeons. Fecal DNA was extracted from 504 fresh fecal samples of pigeons collected from four areas in Henan Province, Central China. All DNA samples were investigated by polymerase chain reaction, and positive samples were sequenced to analyze the gene subtypes based on small ribosomal subunit (SSU rRNA) gene. The overall infection rate of Blastocystis in pigeons in Henan Province was 7.7% (39/504). Four subtypes (STs) of Blastocystis were identified including ST1 (2/39, 5.1%), ST3 (16/39, 41%), ST4 (1/39, 2.6%), and ST7 (20/39, 51.3%), all of which belonged to zoonotic subtypes, and ST7 was the dominant gene subtype. The results show that Blastocystis infection is common in domestic pigeons in Henan Province, Central China, and the pathogens were zoonotic subtypes. Particular attention should be given to reducing the risk of transmission of Blastocystis from domestic pigeons to humans.


Subject(s)
Blastocystis Infections , Blastocystis , Animals , Blastocystis/genetics , Blastocystis Infections/epidemiology , Blastocystis Infections/parasitology , Blastocystis Infections/veterinary , China/epidemiology , Columbidae/genetics , DNA, Protozoan/genetics , Feces/parasitology , Genetic Variation , Phylogeny , Prevalence , Zoonoses/parasitology
15.
Reprod Fertil Dev ; 34(9): 689-697, 2022 May.
Article in English | MEDLINE | ID: mdl-35366957

ABSTRACT

To identify the dominant genes controlling follicular maturation, ovulation and regression for pigeon, we used RNA-seq to explore the gene expression profiles of pre- and post-ovulatory follicles of pigeon. We obtained total of 4.73million (96% of the raw data) high-quality clean reads, which could be aligned with 20282 genes. Gene expression profile analysis identified 1461 differentially expressed genes (DEGs) between the pre- (P4) and post-ovulatory follicles (P5). Of these, 843 genes were upregulated, and 618 genes were down-regulated. Furthermore, many DEGs were significantly enriched in some pathways closely related to follicle maturation, ovulation and regression, such as ECM-receptor interaction, vascular smooth muscle contraction, progesterone-mediated oocyte maturation, phagosome. Importantly, the DGEs in ECM-receptor interaction pathway included COL1A1 , COL1A2 , COL4A1 , COL4A2 , ITGA11 , ITGB3 and SDC3 , in the progesterone-mediated oocyte maturation pathway involved CDK1 , CDC25A , CCNB3 , CDC20 and Plk1 , and in the vascular smooth muscle contraction covered CALD1 , KCNMA1 , KCNMB1 , CACNA1 , ACTA2 , MYH10 , MYL3 , MYL6 , MYL9 , closely related to promoting follicular maturation and ovulation in pre-ovulatory follicles. Moreover, it seems that the lysosomal cathepsin family has a decisive role in the regression of early stage of post-ovulatory follicle. Taken together, these data enrich the research of molecular mechanisms of pigeon follicular activities at the transcriptional level and provide novel insight of breeding-related physiology for birds.


Subject(s)
Columbidae , Progesterone , Animals , Columbidae/genetics , Female , Gene Expression Profiling , Ovarian Follicle/metabolism , Ovulation/metabolism , Progesterone/metabolism , Transcriptome
16.
Anim Biotechnol ; 33(6): 1003-1013, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33439093

ABSTRACT

The wedge-tailed green pigeon (Treron sphenurus) has a protective value in the evolution of the family Columbidae. In this study, the complete mitogenome of T. sphenurus from Baise City, China, which represents the first sequenced species of the genus Treron in Tribe Treronini, is reported. This was accomplished using PCR-based methods and a primer-walking sequencing strategy with genus-specific primers. The mitogenome was found to be 18,919 bp in length comprising 37 genes, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one control region. In terms of structure and composition, many similarities were found between the T. sphenurus and Hemiphaga novaeseelandiae (New Zealand pigeon) mitogenomes. This was further supported by phylogenetic analysis showing that T. sphenurus has a close evolutionary relationship with H. novaeseelandiae. The complete mitogenome of T. sphenurus reported here is expected to provide valuable molecular information for further studies on the phylogeny of the genus Treron and for analyses of the taxonomic status of the family Columbidae.


Subject(s)
Columbidae , Genome, Mitochondrial , Animals , Phylogeny , Columbidae/genetics , Genome, Mitochondrial/genetics , Columbiformes/genetics , Base Composition , Genomics
17.
Genomics ; 113(1 Pt 1): 257-264, 2021 01.
Article in English | MEDLINE | ID: mdl-33338630

ABSTRACT

Sperm motility is one of the most important indicators to evaluate poultry fertility. In order to explore key molecular regulation roles related to sperm motility, we employed testicular RNA sequencing of pigeon. A total of 705 known and 385 novel microRNAs were identified. Compared with the low sperm motility group, four upregulated and two downregulated miRNAs in the high sperm motility group were identified. A total of 3567 target mRNAs were predicted and four target mRNAs were selected to validate by qPCR. The miRNA-mRNA interaction network analysis, indicated that mmu-miR-183-5p /FOXO1 and PC-3p-244994_31/CHDH pairs might affect sperm motility. GO and KEGG annotation analysis showed that target genes of differentially expressed miRNAs were related to serine/threonine kinase activity, ATP binding, Wnt and MAPK signaling pathway. The study provided a global miRNAs transcriptome of pigeon and a novel insight into the expression of the miRNAs in testes that associated with sperm motility.


Subject(s)
Columbidae/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Sperm Motility/genetics , Testis/metabolism , Animals , Columbidae/physiology , Male , MicroRNAs/metabolism , RNA, Messenger/metabolism , Testis/cytology
18.
Mol Biol Evol ; 37(1): 134-148, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31501895

ABSTRACT

The homing pigeon was selectively bred from the domestic pigeon for a homing ability over long distances, a very fascinating but complex behavioral trait. Here, we generate a total of 95 whole genomes from diverse pigeon breeds. Comparing the genomes from the homing pigeon population with those from other breeds identifies candidate positively selected genes, including many genes involved in the central nervous system, particularly spatial learning and memory such as LRP8. Expression profiling reveals many neuronal genes displaying differential expression in the hippocampus, which is the key organ for memory and navigation and exhibits significantly larger size in the homing pigeon. In addition, we uncover a candidate gene GSR (encoding glutathione-disulfide reductase) experiencing positive selection in the homing pigeon. Expression profiling finds that GSR is highly expressed in the wattle and visual pigment cell layer, and displays increased expression levels in the homing pigeon. In vitro, a magnetic field stimulates increases in calcium ion concentration in cells expressing pigeon GSR. These findings support the importance of the hippocampus (functioning in spatial memory and navigation) for homing ability, and the potential involvement of GSR in pigeon magnetoreception.


Subject(s)
Columbidae/genetics , Homing Behavior/physiology , Selection, Genetic , Animals , Glutathione Reductase/genetics , Hippocampus/physiology , Spatial Memory
19.
Mol Biol Evol ; 37(9): 2465-2476, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32344429

ABSTRACT

Understanding the genetic basis of similar phenotypes shared between lineages is a long-lasting research interest. Even though animal evolution offers many examples of parallelism, for many phenotypes little is known about the underlying genes and mutations. We here use a combination of whole-genome sequencing, expression analyses, and comparative genomics to study the parallel genetic origin of ptilopody (Pti) in chicken. Ptilopody (or foot feathering) is a polygenic trait that can be observed in domesticated and wild avian species and is characterized by the partial or complete development of feathers on the ankle and feet. In domesticated birds, ptilopody is easily selected to fixation, though extensive variation in the type and level of feather development is often observed. By means of a genome-wide association analysis, we identified two genomic regions associated with ptilopody. At one of the loci, we identified a 17-kb deletion affecting PITX1 expression, a gene known to encode a transcription regulator of hindlimb identity and development. Similarly to pigeon, at the second loci, we observed ectopic expression of TBX5, a gene involved in forelimb identity and a key determinant of foot feather development. We also observed that the trait evolved only once as foot-feathered birds share the same haplotype upstream TBX5. Our findings indicate that in chicken and pigeon ptilopody is determined by the same set of genes that affect similar molecular pathways. Our study confirms that ptilopody has evolved through parallel evolution in chicken and pigeon.


Subject(s)
Biological Evolution , Chickens/genetics , Feathers/growth & development , Paired Box Transcription Factors/genetics , T-Box Domain Proteins/genetics , Animals , Chickens/growth & development , Chickens/metabolism , Columbidae/genetics , Foot , Haplotypes , Multifactorial Inheritance , Paired Box Transcription Factors/metabolism , T-Box Domain Proteins/metabolism , Whole Genome Sequencing
20.
Evol Dev ; 23(6): 477-495, 2021 11.
Article in English | MEDLINE | ID: mdl-34914861

ABSTRACT

Deciphering the genetic basis of vertebrate craniofacial variation is a longstanding biological problem with broad implications in evolution, development, and human pathology. One of the most stunning examples of craniofacial diversification is the adaptive radiation of birds, in which the beak serves essential roles in virtually every aspect of their life histories. The domestic pigeon (Columba livia) provides an exceptional opportunity to study the genetic underpinnings of craniofacial variation because of its unique balance of experimental accessibility and extraordinary phenotypic diversity within a single species. We used traditional and geometric morphometrics to quantify craniofacial variation in an F2 laboratory cross derived from the straight-beaked Pomeranian Pouter and curved-beak Scandaroon pigeon breeds. Using a combination of genome-wide quantitative trait locus scans and multi-locus modeling, we identified a set of genetic loci associated with complex shape variation in the craniofacial skeleton, including beak shape, braincase shape, and mandible shape. Some of these loci control coordinated changes between different structures, while others explain variation in the size and shape of specific skull and jaw regions. We find that in domestic pigeons, a complex blend of both independent and coupled genetic effects underlie three-dimensional craniofacial morphology.


Subject(s)
Columbidae , Skull , Animals , Columbidae/genetics , Genetic Variation , Head
SELECTION OF CITATIONS
SEARCH DETAIL