Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters

Publication year range
1.
J Invertebr Pathol ; 184: 107636, 2021 09.
Article in English | MEDLINE | ID: mdl-34116033

ABSTRACT

The spread, emergence, and adaptation of pathogens causing marine disease has been problematic to fisheries and aquaculture industries for the last several decades creating the need for strategic management and biosecurity practices. The Pacific oyster (Crassostrea gigas), a highly productive species globally, has been a target of disease and mortality caused by a viral pathogen, the Ostreid herpesvirus 1 (OsHV-1) and its microvariants (OsHV-1 µvars). During routine surveillance to establish health history at a shellfish aquaculture nursery system in San Diego, California, the presence of OsHV-1 in Pacific oyster juveniles was detected. Quantification of OsHV-1 in tissues of oysters revealed OsHV-1 viral loads > 106 copies/mg. We characterized and identified the OsHV-1 variant by sequencing of ORFs 4 (C2/C6) and 43 (IA1/IA2), which demonstrated that this variant is a novel OsHV-1 microvariant: OsHV-1 µvar SD. A pilot transmission study indicates that OsHV-1 µvar SD is infectious with high viral loads ~ 7.57 × 106 copies/mg detected in dead individuals. The detection of OsHV-1 µvar SD in a large port mirrors previous studies conducted in Australia where aquaculture farms and feral populations near port locations may be at a higher risk of OsHV-1 emergence. Further research is needed to understand the impacts of OsHV-1 µvar SD, such as transmission studies focusing on potential vectors and characterization of virulence as compared to other OsHV-1 µvars. To increase biosecurity of the global aquaculture industry, active and passive surveillance may be necessary to reduce spread of pathogens and make appropriate management decisions.


Subject(s)
Crassostrea/virology , DNA Viruses/isolation & purification , Animals , California , DNA Viruses/genetics , DNA Viruses/pathogenicity , Viral Load , Virulence
2.
J Invertebr Pathol ; 183: 107601, 2021 07.
Article in English | MEDLINE | ID: mdl-33964304

ABSTRACT

French commercial hatcheries are massively producing Crassostrea gigas selected for their higher resistance to OsHV-1, and soon should also implement selection for increasing resistance to Vibrio aestuarianus. The first objective of this study was to optimize the breeding programs for dual resistance to OsHV-1 and V. aestuarianus to determine the earliest life stage for which oysters are able to develop disease resistance. Wild stocks and selected families were tested using experimental infections by both pathogens at the larval, spat and juvenile stages. Oyster families could be evaluated for OsHV-1 as soon as the larval stage by a bath method, but this only highlighted the most resistant families; those that showed the highest resistance to V. aestuarianus could be determined using the cohabitation method at the juvenile stage. The second objective of this study was to determine if selection to increase/decrease the resistance to OsHV-1 and V. aestuarianus could have an impact on other major pathogens currently detected in hatchery at the larval stage, and in nursery and field at the spat/juveniles stages (V. coralliilyticus, V. crassostreae, V. tasmaniensis, V. neptunius, V. europaeus, V. harveyi, V. chagasi). No relationship was found between mortality caused by V. aestuarianus/OsHV-1 and the mortality caused by the other virulent bacterial strains tested regardless the stages, except between OsHV-1 and V. tasmaniensis at the juvenile stage. Finally, miscellaneous findings were evidenced such as (1) bath for bacterial challenges was not adapted for spat, (2) the main pathogens at the larval stage were OsHV-1 and V. coralliilyticus using bath, while it was V. coralliilyticus, V. europaeus, and V. neptunius at the juvenile stage by injection, and (4) variation in mortality was observed among families/wild controls for all pathogens at larval and juvenile stages, except for V. harveyi for larvae.


Subject(s)
Crassostrea/microbiology , DNA Viruses/isolation & purification , Vibrio/isolation & purification , Animals , Aquaculture , Crassostrea/growth & development , Crassostrea/virology , Larva/growth & development , Larva/microbiology , Larva/virology
3.
BMC Genomics ; 21(1): 599, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32867668

ABSTRACT

BACKGROUND: Vibriosis has been implicated in major losses of larvae at shellfish hatcheries. However, the species of Vibrio responsible for disease in aquaculture settings and their associated virulence genes are often variable or undefined. Knowledge of the specific nature of these factors is essential to developing a better understanding of the environmental and biological conditions that lead to larvae mortality events in hatcheries. We tested the virulence of 51 Vibrio strains towards Pacific Oyster (Crassostreae gigas) larvae and sequenced draft genomes of 42 hatchery-associated vibrios to determine groups of orthologous genes associated with virulence and to determine the phylogenetic relationships among pathogens and non-pathogens of C. gigas larvae. RESULTS: V. coralliilyticus strains were the most prevalent pathogenic isolates. A phylogenetic logistic regression model identified over 500 protein-coding genes correlated with pathogenicity. Many of these genes had straightforward links to disease mechanisms, including predicted hemolysins, proteases, and multiple Type 3 Secretion System genes, while others appear to have possible indirect roles in pathogenesis and may be more important for general survival in the host environment. Multiple metabolism and nutrient acquisition genes were also identified to correlate with pathogenicity, highlighting specific features that may enable pathogen survival within C. gigas larvae. CONCLUSIONS: These findings have important implications on the range of pathogenic Vibrio spp. found in oyster-rearing environments and the genetic determinants of virulence in these populations.


Subject(s)
Crassostrea/virology , Genes, Viral , Vibrio/genetics , Animals , Phylogeny , Vibrio/classification , Vibrio/pathogenicity , Virulence/genetics
4.
BMC Genomics ; 21(1): 620, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32912133

ABSTRACT

BACKGROUND: Since 2008, the aquaculture production of Crassostrea gigas was heavily affected by mass mortalities associated to Ostreid herpesvirus 1 (OsHV-1) microvariants worldwide. Transcriptomic studies revealed the major antiviral pathways of the oyster immune response while other findings suggested that also small non-coding RNAs (sncRNA) such as microRNAs might act as key regulators of the oyster response against OsHV-1. To explore the explicit connection between small non-coding and protein-coding transcripts, we performed paired whole transcriptome analysis of sncRNA and messenger RNA (mRNA) in six oysters selected for different intensities of OsHV-1 infection. RESULTS: The mRNA profiles of the naturally infected oysters were mostly governed by the transcriptional activity of OsHV-1, with several differentially expressed genes mapping to the interferon, toll, apoptosis, and pro-PO pathways. In contrast, miRNA profiles suggested more complex regulatory mechanisms, with 15 differentially expressed miRNAs (DE-miRNA) pointing to a possible modulation of the host response during OsHV-1 infection. We predicted 68 interactions between DE-miRNAs and oyster 3'-UTRs, but only few of them involved antiviral genes. The sncRNA reads assigned to OsHV-1 rather resembled mRNA degradation products, suggesting the absence of genuine viral miRNAs. CONCLUSIONS: We provided data describing the miRNAome during OsHV-1 infection in C. gigas. This information can be used to understand the role of miRNAs in healthy and diseased oysters, to identify new targets for functional studies and, eventually to disentangle cause and effect relationships during viral infections in marine mollusks.


Subject(s)
Crassostrea/genetics , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Messenger/genetics , Animals , Crassostrea/virology , DNA Viruses/pathogenicity , Disease Resistance , MicroRNAs/metabolism , RNA, Messenger/metabolism , Transcriptome
5.
Appl Environ Microbiol ; 86(12)2020 06 02.
Article in English | MEDLINE | ID: mdl-32303551

ABSTRACT

Noroviruses (NoV) are responsible for many shellfish outbreaks. Purification processes may be applied to oysters before marketing to decrease potential fecal pollution. This step is rapidly highly effective in reducing Escherichia coli; nevertheless, the elimination of virus genomes has been described to be much slower. It is therefore important to identify (i) the purification conditions that optimize virus removal and (ii) the mechanism involved. To this end, the effects of oyster stress, nutrients, and the presence of a potential competitor to NoV adhesion during purification were investigated using naturally contaminated oysters. Concentrations of NoV (genomes) and of the viral indicator F-specific RNA bacteriophage (FRNAPH; genomes and infectious particles) were regularly monitored. No significant differences were observed under the test conditions. The decrease kinetics of both virus genomes were similar, again showing the potential of FRNAPH as an indicator of NoV behavior during purification. The T90 (time to reduce 90% of the initial titer) values were 47.8 days for the genogroup I NoV genome, 26.7 days for the genogroup II NoV genome, and 43.9 days for the FRNAPH-II genome. Conversely, monitoring of the viral genomes could not be used to determine the behavior of infectious viruses because the T90 values were more than two times lower for infectious FRNAPH (20.6 days) compared to their genomes (43.9 days). Finally, this study highlighted that viruses are primarily inactivated in oysters rather than released in the water during purification processes.IMPORTANCE This study provides new data about the behavior of viruses in oysters under purification processes and about their elimination mechanism. First, a high correlation has been observed between F-specific RNA bacteriophages of subgroup II (FRNAPH-II) and norovirus (NoV) in oysters impacted by fecal contamination when both are detected using molecular approaches. Second, when using reverse transcription-quantitative PCR and culture to detect FRNAPH-II genomes and infectious FRNAPH in oysters, respectively, it appears that genome detection provides limited information about the presence of infectious particles. The comparison of both genomes and infectious particles highlights that the main mechanism of virus elimination in oysters is inactivation. Finally, this study shows that none of the conditions tested modify virus removal.


Subject(s)
Crassostrea/virology , RNA Phages/physiology , Virus Inactivation , Virus Shedding , Animals , Citric Acid/analysis , Norovirus/physiology , Nutrients/analysis , Stress, Physiological
6.
Anim Genet ; 51(2): 249-257, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31999002

ABSTRACT

In genomic selection (GS), genome-wide SNP markers are used to generate genomic estimated breeding values for selection candidates. The application of GS in shellfish looks promising and has the potential to help in dealing with one of the main issues currently affecting Pacific oyster production worldwide, which is the 'summer mortality syndrome'. This causes periodic mass mortality in farms worldwide and has mainly been attributed to a specific variant of the ostreid herpesvirus (OsHV-1). In the current study, we evaluated the potential of genomic selection for host resistance to OsHV-1 in Pacific oysters, and compared it with pedigree-based approaches. An OsHV-1 disease challenge was performed using an immersion-based virus exposure treatment for oysters for 7 days. A total of 768 samples were genotyped using the medium-density SNP array for oysters. A GWAS was performed for the survival trait using a GBLUP approach in blupf90 software. Heritability ranged from 0.25 ± 0.05 to 0.37 ± 0.05 (mean ± SE) based on pedigree and genomic information respectively. Genomic prediction was more accurate than pedigree prediction, and SNP density reduction had little impact on prediction accuracy until marker densities dropped below approximately 500 SNPs. This demonstrates the potential for GS in Pacific oyster breeding programmes, and importantly, demonstrates that a low number of SNPs might suffice to obtain accurate genomic estimated breeding values, thus potentially making the implementation of GS more cost effective.


Subject(s)
Crassostrea/genetics , DNA Viruses/physiology , Genome , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Crassostrea/virology
7.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32917059

ABSTRACT

The Ostreid herpesvirus 1 species affects shellfish, contributing significantly to high economic losses during production. To counteract the threat related to mortality, there is a need for the development of novel point-of-care testing (POCT) that can be implemented in aquaculture production to prevent disease outbreaks. In this study, a simple, rapid and specific colorimetric loop-mediated isothermal amplification (LAMP) assay has been developed for the detection of Ostreid herpesvirus1 (OsHV-1) and its variants infecting Crassostrea gigas (C. gigas). The LAMP assay has been optimized to use hydroxynaphthol blue (HNB) for visual colorimetric distinction of positive and negative templates. The effect of an additional Tte UvrD helicase enzyme used in the reaction was also evaluated with an improved reaction time of 10 min. Additionally, this study provides a robust workflow for optimization of primers for uncultured viruses using designed target plasmid when DNA availability is limited.


Subject(s)
DNA Viruses/isolation & purification , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Animals , Crassostrea/virology , DNA Helicases , Naphthalenesulfonates
8.
BMC Genet ; 20(1): 96, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31830898

ABSTRACT

BACKGROUND: Variants of the Ostreid herpesvirus 1 (OsHV-1) cause high losses of Pacific oysters globally, including in Tomales Bay, California, USA. A suite of new variants, the OsHV-1 microvariants (µvars), cause very high mortalities of Pacific oysters in major oyster-growing regions outside of the United States. There are currently no known Pacific oysters in the United States that are resistant to OsHV-1 as resistance has yet to be evaluated in these oysters. As part of an effort to begin genetic selection for resistance to OsHV-1, 71 families from the Molluscan Broodstock Program, a US West Coast Pacific oyster breeding program, were screened for survival after exposure to OsHV-1 in Tomales Bay. They were also tested in a quarantine laboratory in France where they were exposed to a French OsHV-1 microvariant using a plate assay, with survival recorded from three to seven days post-infection. RESULTS: Significant heritability for survival were found for all time points in the plate assay and in the survival phenotype from a single mortality count in Tomales Bay. Genetic correlations between survival against the French OsHV-1 µvar in the plate assay and the Tomales Bay variant in the field trait were weak or non-significant. CONCLUSIONS: Future breeding efforts will seek to validate the potential of genetic improvement for survival to OsHV-1 through selection using the Molluscan Broodstock Program oysters. The lack of a strong correlation in survival between OsHV-1 variants under this study's exposure conditions may require independent selection pressure for survival to each variant in order to make simultaneous genetic gains in resistance.


Subject(s)
Crassostrea/growth & development , DNA Viruses/genetics , Disease Resistance , Animals , Breeding , California , Crassostrea/genetics , Crassostrea/virology , DNA Viruses/classification , France , Genetic Variation , Mortality , Selection, Genetic
9.
J Exp Biol ; 222(Pt 17)2019 09 09.
Article in English | MEDLINE | ID: mdl-31439650

ABSTRACT

Food provisioning influences disease risk and outcome in animal populations in two ways. On the one hand, unrestricted food supply improves the physiological condition of the host and lowers its susceptibility to infectious disease, reflecting a trade-off between immunity and other fitness-related functions. On the other hand, food scarcity limits the resources available to the pathogen and slows the growth and metabolism of the host on which the pathogen depends to proliferate. Here, we investigated how food availability, growth rate and energetic reserves drive the outcome of a viral disease affecting an ecologically relevant model host, the Pacific oyster, Crassostrea gigas We selected fast- and slow-growing animals, and we exposed them to high and low food rations. We evaluated their energetic reserves, challenged them with a pathogenic virus, monitored daily survival and developed a mortality risk model. Although high food levels and oyster growth were associated with a higher risk of mortality, energy reserves were associated with a lower risk. Food availability acts both as an enabling factor for mortality by increasing oyster growth and as a limiting factor by increasing their energy reserves. This study clarifies how food resources have an impact on susceptibility to disease and indicates how the host's physiological condition could mitigate epidemics. Practically, we suggest that growth should be optimized rather than maximized, considering that trade-offs occur with disease resistance or tolerance.


Subject(s)
Crassostrea/physiology , DNA Viruses/physiology , Host-Pathogen Interactions , Animals , Crassostrea/growth & development , Crassostrea/virology , Diet
10.
Arch Virol ; 164(12): 3035-3043, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31602543

ABSTRACT

Seasonally recurrent outbreaks of mass mortality in Pacific oysters (Crassostrea gigas) caused by microvariant genotypes of ostreid herpesvirus 1 (OsHV-1) occur in Europe, New Zealand and Australia. The incubation period for OsHV-1 under experimental conditions is 48-72 hours and depends on water temperature, as does the mortality. An in vivo growth curve for OsHV-1 was determined by quantifying OsHV-1 DNA at 10 time points between 2 and 72 hours after exposure to OsHV-1. The peak replication rate was the same at 18 °C and 22 °C; however, there was a longer period of amplification leading to a higher peak concentration at 22 °C (2.34 × 107 copies/mg at 18 hours) compared to 18 °C (1.38 × 105 copies/mg at 12 hours). The peak viral concentration preceded mortality by 72 hours and 20 hours at 18 °C and 22 °C, respectively. Cumulative mortality to day 14 was 45.9% at 22 °C compared to 0.3% at 18 °C. The prevalence of OsHV-1 infection after 14 days at 18 °C was 33.3%. No mortality from OsHV-1 occurred when the water temperature in tanks of oysters challenged at 18 °C was increased to 22 °C for 14 days. The influence of water temperature prior to exposure to OsHV-1 and during the initial virus replication is an important determinant of the outcome of infection in C. gigas.


Subject(s)
Crassostrea/physiology , Crassostrea/virology , DNA Viruses/growth & development , Shellfish/virology , Animals , Crassostrea/growth & development , DNA Viruses/genetics , DNA, Viral/genetics , Temperature
11.
J Invertebr Pathol ; 166: 107222, 2019 09.
Article in English | MEDLINE | ID: mdl-31356818

ABSTRACT

Ostreid herpesvirus 1 (OsHV-1) is a DNA virus of the genus Ostreavirus (Malacoherpesviridae family, Herpesvirales order). Worldwide, OsHV-1 and its microvariants have been associated with increased mortality of Pacific oysters, Crassostrea gigas. Adult asymptomatic oysters also have shown a high prevalence of viral infection. As a consequence, surveillance is needed to better describe OsHV-1 diversity, pathogenicity, clinical signs, and geographical distribution. We examined Crassostrea gigas sampled in October 2017 from the inner zone of the Bahía Blanca Estuary, Argentina, and found that 8 of 30 specimens (26.7%) presented macroscopic lesions in mantle tissues. Histological analysis revealed abnormal presentation of mantle epithelial cells and connective tissues. Conventional and real-time PCR conducted on the oyster samples revealed 70% to be positive for presence of OsHV-1 DNA. The nucleotide sequence of the amplicon obtained from one sample using the primer pair IA1/IA2 (targeting ORF 42/43) was 99% identical to OsHV-1 reference as well as µVar strains B and A (KY271630, KY242785.1), sequenced from France and Ireland. This finding represents the first detection of OsHV-1 DNA in a wild population of C. gigas in Argentina in association with gross mantle lesions.


Subject(s)
Crassostrea/virology , DNA Viruses/genetics , Shellfish/virology , Animals , Argentina , DNA, Viral/analysis , Introduced Species , Phylogeny
12.
Rev Sci Tech ; 38(2): 491-509, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31866680

ABSTRACT

Mollusc farming is the third most productive aquaculture activity in the world, and the Pacific oyster (Crassostrea gigas) is one of the most important farmed species. Since 2008, mass mortalities in C. gigas due to ostreid herpesvirus 1 microvariants have challenged the viability of this industry in Europe, New Zealand and Australia. Ten years after the emergence of this disease, there is evidence that the industry has become consolidated into fewer, larger companies, with the displacement of small farming enterprises and loss of employment in coastal communities. Rather than seeking technical solutions, the industry has turned to compensatory production strategies, such as increasing the number of spat placed on farms, higher market prices for table oysters and direct marketing, which appear to have allowed profitability. Biosecurity policies and responses to outbreaks, including those from within the industry, have had unintended consequences for hatcheries and farmers in areas free of disease, mainly caused by restrictions on animal movements, and have not prevented global spread. There may be opportunities for better coordination of industry and government responses to epizootic disease emergence in aquaculture. There is certainly a need for increased adoption of technical advances from research, once these solutions have been adequately verified.


L'élevage de mollusques occupe le troisième rang mondial parmi les activités de l'aquaculture en termes de production ; l'une des principales espèces élevées est l'huître creuse (Crassostrea gigas). Depuis 2008, la rentabilité des élevages de C. gigas en Europe, en Nouvelle-Zélande et en Australie a été fortement compromise par une mortalité massive due à des microvariants du virus herpétique Ostreid herpesvirus 1. Dix ans après l'émergence de cette maladie, on observe une forte concentration du secteur autour d'entreprises moins nombreuses mais de plus grande envergure qui ont remplacé l'ancien tissu d'exploitations artisanales et occasionné un déclin de l'emploi dans les communautés littorales. Au lieu de rechercher des solutions techniques, le secteur a eu recours à des stratégies de compensation axées sur la production, par exemple en augmentant le nombre de naissains mis en place dans les fermes, en augmentant le prix des huîtres de consommation ou en développant la vente directe, stratégies dont l'impact sur la rentabilité semble avoir été positif. En revanche, les mesures de biosécurité mises en place et les réponses apportées aux foyers, y compris celles introduites par le secteur lui-même ont eu des conséquences imprévues pour les écloseries et les éleveurs des zones indemnes de maladie, principalement en raison des restrictions imposées aux transferts d'animaux, sans pour autant prévenir la propagation de la maladie à l'échelle mondiale. Une meilleure coordination des réponses sectorielles et publiques face à l'émergence des maladies épizootiques affectant l'aquaculture devrait être possible. Il sera également indispensable de recourir davantage aux avancées techniques mises au point par la recherche dès que ces solutions auront été dûment validées.


La producción de moluscos es la tercera actividad acuícola más productiva del mundo, y la ostra japonesa (o del Pacífico) (Crassostrea gigas) ocupa un lugar destacado entre las principales especies cultivadas. Desde 2008, la viabilidad de esta industria en Europa, Nueva Zelanda y Australia está amenazada por episodios de mortandad masiva de C. gigas causados por microvariantes del herpesvirus de los ostreidos 1 (ostreid herpesvirus 1). Diez años después de la aparición de la enfermedad, lo que se observa es que la industria se ha ido concentrando en unas pocas empresas de grandes dimensiones, que han desplazado a las pequeñas empresas ostrícolas y causado la pérdida de numerosos empleos en las comunidades costeras. En lugar de buscar soluciones técnicas, la industria ha optado más bien por estrategias de producción compensatorias (como aumentar el número de semillas de ostra por explotación, subir los precios de mercado de las ostras de mesa o recurrir a la comercialización directa) que parecen haber deparado rentabilidad. Las políticas de seguridad biológica y la respuesta a los brotes, incluida la del propio sector, han tenido consecuencias imprevistas para los viveros y acuicultores situados en zonas libres de la enfermedad, debido sobre todo a las restricciones impuestas a los desplazamientos de animales, sin que ello haya servido para impedir la diseminación mundial de esta patología. Puede haber margen para coordinar más eficazmente las respectivas respuestas de la industria y de los poderes públicos ante la aparición de enfermedades epizoóticas en la acuicultura. Lo que sin ninguna duda es necesario es incorporar en mayor medida los adelantos técnicos resultantes de la investigación, una vez contrastada debidamente cada solución.


Subject(s)
DNA Viruses/pathogenicity , Mollusca/virology , Animals , Australia , Crassostrea/virology , Europe , Host-Pathogen Interactions , New Zealand
13.
J Gen Virol ; 99(5): 693-703, 2018 05.
Article in English | MEDLINE | ID: mdl-29580370

ABSTRACT

The surveillance activities for abnormal bivalve mortality events in Italy include the diagnosis of ostreid herpesvirus type 1 (OsHV-1) in symptomatic oysters. OsHV-1-positive oysters (Crassostrea gigas) were used as a source for in vivo virus propagation and a virus-rich sample was selected to perform shotgun sequencing based on Illumina technology. Starting from this unpurified supernatant sample from gills and mantle, we generated 3.5 million reads (2×300 bp) and de novo assembled the whole genome of an Italian OsHV-1 microvariant (OsHV-1-PT). The OsHV-1-PT genome encodes 125 putative ORFs, 7 of which had not previously been predicted in other sequenced Malacoherpesviridae. Overall, OsHV-1-PT displays typical microvariant OsHV-1 genome features, while few polymorphisms (0.08 %) determine its uniqueness. As little is known about the genetic determinants of OsHV-1 virulence, comparing complete OsHV-1 genomes supports a better understanding of the virus pathogenicity and provides new insights into virus-host interactions.


Subject(s)
Crassostrea/virology , DNA Viruses/classification , Genome, Viral , Animals , DNA Viruses/isolation & purification , DNA Viruses/pathogenicity , DNA, Viral/isolation & purification , Italy , Open Reading Frames , Phylogeny , Polymorphism, Genetic
14.
Vet Res ; 49(1): 34, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636093

ABSTRACT

Marine herpesviruses are responsible for epizootics in economically, ecologically and culturally significant taxa. The recent emergence of microvariants of Ostreid herpesvirus 1 (OsHV-1) in Pacific oysters Crassostrea gigas has resulted in socioeconomic losses in Europe, New Zealand and Australia however, there is no information on their origin or mode of transmission. These factors need to be understood because they influence the way the disease may be prevented and controlled. Mortality data obtained from experimental populations of C. gigas during natural epizootics of OsHV-1 disease in Australia were analysed qualitatively. In addition we compared actual mortality data with those from a Reed-Frost model of direct transmission and analysed incubation periods using Sartwell's method to test for the type of epizootic, point source or propagating. We concluded that outbreaks were initiated from an unknown environmental source which is unlikely to be farmed oysters in the same estuary. While direct oyster-to-oyster transmission may occur in larger oysters if they are in close proximity (< 40 cm), it did not explain the observed epizootics, point source exposure and indirect transmission being more common and important. A conceptual model is proposed for OsHV-1 index case source and transmission, leading to endemicity with recurrent seasonal outbreaks. The findings suggest that prevention and control of OsHV-1 in C. gigas will require multiple interventions. OsHV-1 in C. gigas, which is a sedentary animal once beyond the larval stage, is an informative model when considering marine host-herpesvirus relationships.


Subject(s)
Crassostrea/virology , DNA Viruses/physiology , Host-Pathogen Interactions , Animals , Australia , Models, Biological
15.
Fish Shellfish Immunol ; 77: 156-163, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29567138

ABSTRACT

Since 2008, juvenile Crassostrea gigas oysters have suffered from massive mortalities in European farming areas. This disease of complex etiology is still incompletely understood. Triggered by an elevated seawater temperature, it has been associated to infections by a herpes virus named OsHV-1 as well as pathogenic vibrios of the Splendidus clade. Ruling out the complexity of the disease, most of our current knowledge has been acquired in controlled experiments. Among the many unsolved questions, it is still ignored what role immunity plays in the capacity oysters have to survive an infectious episode. Here we show that juvenile oysters susceptible to the disease mount an inefficient immune response associated with microbial permissiveness and death. We found that, in contrast to resistant adult oysters having survived an earlier episode of mortality, susceptible juvenile oysters never exposed to infectious episodes died by more than 90% in a field experiment. Susceptible oysters were heavily colonized by OsHV-1 herpes virus as well as bacteria including vibrios potentially pathogenic for oysters, which proliferated in oyster flesh and body fluids during the mortality event. Nonetheless, susceptible oysters were found to sense microbes as indicated by an overexpression of immune receptors and immune signaling pathways. However, they did not express important immune effectors involved in antimicrobial immunity and apoptosis and showed repressed expression of genes involved in ROS and metal homeostasis. This contrasted with resistant oysters, which expressed those important effectors, controlled bacterial and viral colonization and showed 100% survival to the mortality event. Altogether, our results demonstrate that the immune response mounted by susceptible oysters lacks some important immune functions and fails in controlling microbial proliferation. This study opens the way to more holistic studies on the "mass mortality syndrome", which are now required to decipher the sequence of events leading to oyster mortalities and determine the relative weight of pathogens, oyster genetics and oyster-associated microbiota in the disease.


Subject(s)
Crassostrea/immunology , Immunity, Innate , Animals , Crassostrea/microbiology , Crassostrea/virology , France , Herpesviridae/physiology , Seawater , Temperature , Vibrio/physiology
16.
Fish Shellfish Immunol ; 80: 71-79, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29859311

ABSTRACT

Temperature triggers marine diseases by changing host susceptibility and pathogen virulence. Oyster mortalities associated with the Ostreid herpesvirus type 1 (OsHV-1) have occurred seasonally in Europe when the seawater temperature range reaches 16-24 °C. Here we assess how temperature modulates oyster susceptibility to OsHV-1 and pathogen virulence. Oysters were injected with OsHV-1 suspension incubated at 21 °C, 26 °C and 29 °C and were placed in cohabitation with healthy oysters (recipients) at these three temperatures according to a fractional factorial design. Survival was followed for 14 d and recipients were sampled for OsHV-1 DNA quantification and viral gene expression. The oysters were all subsequently placed at 21 °C to evaluate the potential for virus reactivation, before being transferred to oyster farms to evaluate their long-term susceptibility to the disease. Survival of recipients at 29 °C (86%) was higher than at 21 °C (52%) and 26 °C (43%). High temperature (29 °C) decreased the susceptibility of oysters to OsHV-1 without altering virus infectivity and virulence. At 26 °C, the virulence of OsHV-1 was enhanced. Differences in survival persisted when the recipients were all placed at 21 °C, suggesting that OsHV-1 did not reactivate. Additional oyster mortality followed the field transfer, but the overall survival of oysters infected at 29 °C remained higher.


Subject(s)
Crassostrea/immunology , Crassostrea/virology , DNA Viruses/pathogenicity , Disease Susceptibility , Temperature , Animals , DNA Viruses/genetics , DNA, Viral/analysis , Female , Gene Expression , Herpesviridae Infections/veterinary , Male , Virulence
17.
Fish Shellfish Immunol ; 81: 233-241, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30010017

ABSTRACT

Long noncoding RNAs (lncRNAs) may play widespread roles in various biological processes. However, systematic profiles of lncRNAs in the biological responses of Pacific Oyster (Crassostrea gigas) to pathogen infection have not yet been demonstrated. Here, we have conducted an exhaustive comparative transcriptome analysis using a bioinformatics approach to exam the functions of lncRNAs response to Ostreid herpesvirus 1µVar (OsHV-1µVar) challenge. In total, 101 differentially expressed lncRNAs (DE-lncRNA) during OsHV-1µVar infections were identified. Compared with differentially expressed mRNAs (DE-mRNA), DE-lncRNAs are shorter in terms of overall length but longer in terms of exon length. These lncRNAs shared similar characteristics with previously reported invertebrate lncRNAs, such as relatively low GC content, low exon number and low sequence conservation, but low expression level were not observed. 20 DE-lncRNAs are typically co-expressed with their neighboring genes annotated as GO terms (GO: 0044237), indicating that these lncRNAs are involved in binding and cellular process functions in cis mode. The weighted gene co-expression network (WGCNA) analysis resulted in 15 modules. The highlighted blue module was specifically demonstrated a co-expression relationship between 14 DE-lncRNAs and 17 immune-related DE-mRNAs (IR-DE-mRNA). Three hub lncRNAs within this module were co-expressed with one hub IR-DE-mRNA involved in fibrinogen-related protein. It was speculated that lncRNAs is extensively involved in oyster antiviral innate immune system. The present study will facilitate subsequently experimental studies to unravel the function of lncRNAs in marine invertebrate response to pathogen infection.


Subject(s)
Crassostrea/genetics , Crassostrea/immunology , RNA, Long Noncoding/immunology , Animals , Crassostrea/virology , DNA Viruses , RNA, Messenger , Sequence Analysis, RNA
18.
Parasitology ; 145(8): 1095-1104, 2018 07.
Article in English | MEDLINE | ID: mdl-29262879

ABSTRACT

The Pacific oyster Crassostrea gigas contributes significantly to global aquaculture; however, C. gigas culture has been affected by ostreid herpesvirus-1 (OsHV-1) and variants. The dynamics of how the virus maintains itself at culture sites is unclear and the role of carriers, reservoirs or hosts is unknown. Both wild and cultured mussels Mytilus spp. (Mytilus edulis, Mytilus galloprovincialis and hybrids) are commonly found at C. gigas culture sites. The objective of this study was to investigate if Mytilus spp. can harbour the virus and if viral transmission can occur between mussels and oysters. Mytilus spp. living at oyster trestles, 400-500 m higher up the shore from the trestles and up to 26 km at non-culture sites were screened for OsHV-1 and variants by all the World Organization for Animal Health (OIE) recommended diagnostic methods including polymerase chain reaction (PCR), quantitative PCR (qPCR), histology, in situ hybridization and confirmation using direct sequencing. The particular primers that target OsHV-1 and variants, including OsHV-1 microVar (µVar), were used in the PCR and qPCR. OsHV-1 µVar was detected in wild Mytilus spp. at C. gigas culture sites and more significantly the virus was detected in mussels at non-culture sites. Cohabitation of exposed wild mussels and naïve C. gigas resulted in viral transmission after 14 days, under an elevated temperature regime. These results indicate that mussels can harbour OsHV-1 µVar; however, the impact of OsHV-1 µVar on Mytilus spp. requires further investigation.


Subject(s)
Crassostrea/virology , DNA Viruses/isolation & purification , Herpesviridae Infections/veterinary , Mytilus/virology , Animals , Aquaculture , DNA Primers , DNA Viruses/genetics , DNA, Viral , Disease Reservoirs/virology , Herpesviridae Infections/transmission , Real-Time Polymerase Chain Reaction
19.
J Fish Dis ; 41(4): 603-611, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29205402

ABSTRACT

Betanodaviruses are small ssRNA viruses responsible for viral encephalopathy and retinopathy, otherwise known as viral nervous necrosis, in marine fish worldwide. These viruses can be either horizontally or vertically transmitted and have been sporadically detected in invertebrates, which seem to be one of the possible viral sources. Twenty-eight new betanodavirus strains were retrieved in three molluscs species collected from different European countries between 2008 and 2015. The phylogenetic analyses revealed that strains retrieved from bivalve molluscs are closely related to viruses detected in finfish in Southern Europe in the period 2000-2009. Nevertheless, a new betanodavirus strain, markedly different from the other members of the RGNNV genotype, was detected. Such a massive and varied presence of betanodaviruses in bivalve molluscs greatly stresses the risks of transmission previously feared for other invertebrates. Bivalve molluscs reared in the same area as farmed and wild finfish could act as a reservoir of the virus. Furthermore, current European regulations allow relaying activities and the sale of live bivalve molluscs, which could pose a real risk of spreading betanodaviruses across different geographic regions. To our knowledge, this is the first study, which focuses on the detection and genetic characterization of betanodaviruses in bivalve molluscs.


Subject(s)
Bivalvia/virology , Nodaviridae/physiology , Animals , Crassostrea/virology , Europe , Mytilus/virology , Nodaviridae/classification , Nodaviridae/genetics , Phylogeny , Sequence Analysis, RNA
20.
J Fish Dis ; 41(11): 1759-1769, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30151980

ABSTRACT

The acute course of disease in young oysters infected by OsHV-1 and the rapid tissue degradation often preclude histological examination of specimens collected during outbreaks in field. Herein, live spat originated from two geographical areas were sampled just at the onset of a mortality event that occurred in Normandy (France) in June 2016. The lesions, associated with high OsHV-1 DNA quantities, were characterized by severe and diffuse haemocytosis mainly involving blast-like cells, myocyte degeneration and large, irregularly shaped degenerate eosinophilic cells in the connective tissue. The herpesvirus was identified by negative staining TEM and real-time PCR. Sequencing of the C region and ORFs 42/43 confirmed that the variants met the definition of OsHV-1 µVar. We sequenced 30 other ORFs in twenty OsHV-1-positive individuals and compared them to the µVar specimens isolated between 2009 and 2011. The ORFs encoding putative membrane proteins showed the highest number of variations. Seven different genotypes were identified, confirming the presence of relevant genetic diversity. Phylogenetic analysis provided evidence for a well-separated µVar new group, with an evolutionary divergence estimated at 0.0013 from the other µVar variants. The geographical distribution of these newly described variants and their effective virulence should be investigated in future.


Subject(s)
Crassostrea/virology , DNA Viruses/physiology , Animals , DNA Viruses/classification , DNA Viruses/genetics , DNA, Viral/analysis , France , Microscopy, Electron, Transmission , Phylogeny , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL