Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
Add more filters

Publication year range
1.
Cell ; 186(21): 4676-4693.e29, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37729907

ABSTRACT

The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.


Subject(s)
Biological Evolution , Invertebrates , Neurons , Animals , Ctenophora/genetics , Gene Expression , Neurons/physiology , Phylogeny , Single-Cell Analysis , Invertebrates/cytology , Invertebrates/genetics , Invertebrates/metabolism , Paracrine Communication
2.
Nature ; 618(7963): 110-117, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198475

ABSTRACT

A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.


Subject(s)
Ctenophora , Phylogeny , Animals , Ctenophora/classification , Ctenophora/genetics , Genome/genetics , Porifera/classification , Porifera/genetics , Synteny/genetics
3.
Proc Natl Acad Sci U S A ; 119(18): e2122052119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476523

ABSTRACT

A substantial body of literature reports that ctenophores exhibit an apparently unique life history characterized by biphasic sexual reproduction, the first phase of which is called larval reproduction or dissogeny. Whether this strategy is plastically deployed or a typical part of these species' life history was unknown. In contrast to previous reports, we show that the ctenophore Mnemiopsis leidyi does not have separate phases of early and adult reproduction, regardless of the morphological transition to what has been considered the adult form. Rather, these ctenophores begin to reproduce at a small body size and spawn continuously from this point onward under adequate environmental conditions. They do not display a gap in productivity for metamorphosis or other physiological transition at a certain body size. Furthermore, nutritional and environmental constraints on fecundity are similar in both small and large animals. Our results provide critical parameters for understanding resource partitioning between growth and reproduction in this taxon, with implications for management of this species in its invaded range. Finally, we report an observation of similarly small-size spawning in a beroid ctenophore, which is morphologically, ecologically, and phylogenetically distinct from other ctenophores reported to spawn at small sizes. We conclude that spawning at small body size should be considered as the default, on-time developmental trajectory rather than as precocious, stress-induced, or otherwise unusual for ctenophores. The ancestral ctenophore was likely a direct developer, consistent with the hypothesis that multiphasic life cycles were introduced after the divergence of the ctenophore lineage.


Subject(s)
Ctenophora , Animals , Female , Larva , Life Cycle Stages , Parturition , Pregnancy , Reproduction
4.
Biophys J ; 123(14): 2038-2049, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38291751

ABSTRACT

Here we explore the evolutionary origins of fast N-type ball-and-chain inactivation in Shaker (Kv1) K+ channels by functionally characterizing Shaker channels from the ctenophore (comb jelly) Mnemiopsis leidyi. Ctenophores are the sister lineage to other animals and Mnemiopsis has >40 Shaker-like K+ channels, but they have not been functionally characterized. We identified three Mnemiopsis channels (MlShak3-5) with N-type inactivation ball-like sequences at their N termini and functionally expressed them in Xenopus oocytes. Two of the channels, MlShak4 and MlShak5, showed rapid inactivation similar to cnidarian and bilaterian Shakers with rapid N-type inactivation, whereas MlShak3 inactivated ∼100-fold more slowly. Fast inactivation in MlShak4 and MlShak5 required the putative N-terminal inactivation ball sequences. Furthermore, the rate of fast inactivation in these channels depended on the number of inactivation balls/channel, but the rate of recovery from inactivation did not. These findings closely match the mechanism of N-type inactivation first described for Drosophila Shaker in which 1) inactivation balls on the N termini of each subunit can independently block the pore, and 2) only one inactivation ball occupies the pore binding site at a time. These findings suggest classical N-type activation evolved in Shaker channels at the very base of the animal phylogeny in a common ancestor of ctenophores, cnidarians, and bilaterians and that fast-inactivating Shakers are therefore a fundamental type of animal K+ channel. Interestingly, we find evidence from functional co-expression experiments and molecular dynamics that MlShak4 and MlShak5 do not co-assemble, suggesting that Mnemiopsis has at least two functionally independent N-type Shaker channels.


Subject(s)
Ctenophora , Ion Channel Gating , Shaker Superfamily of Potassium Channels , Animals , Ctenophora/metabolism , Ctenophora/genetics , Shaker Superfamily of Potassium Channels/metabolism , Shaker Superfamily of Potassium Channels/genetics , Shaker Superfamily of Potassium Channels/chemistry , Amino Acid Sequence , Phylogeny , Oocytes/metabolism
5.
Mol Biol Evol ; 40(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36740225

ABSTRACT

Innexins facilitate cell-cell communication by forming gap junctions or nonjunctional hemichannels, which play important roles in metabolic, chemical, ionic, and electrical coupling. The lack of knowledge regarding the evolution and role of these channels in ctenophores (comb jellies), the likely sister group to the rest of animals, represents a substantial gap in our understanding of the evolution of intercellular communication in animals. Here, we identify and phylogenetically characterize the complete set of innexins of four ctenophores: Mnemiopsis leidyi, Hormiphora californensis, Pleurobrachia bachei, and Beroe ovata. Our phylogenetic analyses suggest that ctenophore innexins diversified independently from those of other animals and were established early in the emergence of ctenophores. We identified a four-innexin genomic cluster, which was present in the last common ancestor of these four species and has been largely maintained in these lineages. Evidence from correlated spatial and temporal gene expression of the M. leidyi innexin cluster suggests that this cluster has been maintained due to constraints related to gene regulation. We describe the basic electrophysiological properties of putative ctenophore hemichannels from muscle cells using intracellular recording techniques, showing substantial overlap with the properties of bilaterian innexin channels. Together, our results suggest that the last common ancestor of animals had gap junctional channels also capable of forming functional innexin hemichannels, and that innexin genes have independently evolved in major lineages throughout Metazoa.


Subject(s)
Ctenophora , Animals , Ctenophora/genetics , Phylogeny , Signal Transduction , Genome , Cell Communication/physiology
6.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37288606

ABSTRACT

Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.


Subject(s)
Ctenophora , Sea Anemones , Animals , Phylogeny , Polyadenylation , Ctenophora/genetics , Sea Anemones/genetics
7.
Mol Biol Evol ; 40(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36649189

ABSTRACT

There is conflicting evidence as to whether Porifera (sponges) or Ctenophora (comb jellies) comprise the root of the animal phylogeny. Support for either a Porifera-sister or Ctenophore-sister tree has been extensively examined in the context of model selection, taxon sampling, and outgroup selection. The influence of dataset construction is comparatively understudied. We re-examine five animal phylogeny datasets that have supported either root hypothesis using an approach designed to enrich orthologous signal in phylogenomic datasets. We find that many component orthogroups in animal datasets fail to recover major lineages as monophyletic with the exception of Ctenophora, regardless of the supported root. Enriching these datasets to retain orthogroups recovering ≥3 major lineages reduces dataset size by up to 50% while retaining underlying phylogenetic information and taxon sampling. Site-heterogeneous phylogenomic analysis of these enriched datasets recovers both Porifera-sister and Ctenophora-sister positions, even with additional constraints on outgroup sampling. Two datasets which previously supported Ctenophora-sister support Porifera-sister upon enrichment. All enriched datasets display improved model fitness under posterior predictive analysis. While not conclusively rooting animals at either Porifera or Ctenophora, we do see an increase in signal for Porifera-sister and a decrease in signal for Ctenophore-sister when data are filtered for orthologous signal. Our results indicate that dataset size and construction as well as model fit influence animal root inference.


Subject(s)
Ctenophora , Animals , Phylogeny
8.
Evol Dev ; 26(4): e12472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38390763

ABSTRACT

Nervous system is one of the key adaptations underlying the evolutionary success of the majority of animal groups. Ctenophores (or comb jellies) are gelatinous marine invertebrates that were probably the first lineage to diverge from the rest of animals. Due to the key phylogenetic position and multiple unique adaptations, the noncentralized nervous system of comb jellies has been in the center of the debate around the origin of the nervous system in the animal kingdom and whether it happened only once or twice. Here, we discuss the latest findings in ctenophore neuroscience and multiple challenges on the way to build a clear evolutionary picture of the origin of the nervous system.


Subject(s)
Biological Evolution , Ctenophora , Nervous System , Ctenophora/genetics , Ctenophora/anatomy & histology , Ctenophora/classification , Animals , Nervous System/anatomy & histology , Phylogeny
9.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34373891

ABSTRACT

The Krüppel-like factor (Klf) gene family encodes transcription factors that play an important role in the regulation of stem cell proliferation, cell differentiation and development in bilaterians. Although Klf genes have been shown to specify functionally various cell types in non-bilaterian animals, their role in early-diverging animal lineages has not been assessed. Thus, the ancestral activity of these transcription factors in animal development is not well understood. The ctenophore Mnemiopsis leidyi has emerged as an important non-bilaterian model system for understanding early animal evolution. Here, we characterize the expression and functional role of Klf genes during M. leidyi embryogenesis. Zygotic Klf gene function was assessed with both CRISPR/Cas9-mediated genome editing and splice-blocking morpholino oligonucleotide knockdown approaches. Abrogation of zygotic Klf expression during M. leidyi embryogenesis resulted in abnormal development of several organs, including the pharynx, tentacle bulbs and apical organ. Our data suggest an ancient role for Klf genes in regulating endodermal patterning, possibly through regulation of cell proliferation.


Subject(s)
Ctenophora/embryology , Kruppel-Like Transcription Factors/metabolism , Animals , Body Patterning , CRISPR-Cas Systems , Ctenophora/cytology , Ctenophora/genetics , Ctenophora/metabolism , Embryonic Development , Endoderm/cytology , Endoderm/embryology , Gene Editing , Gene Expression , Kruppel-Like Transcription Factors/genetics
10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911766

ABSTRACT

Invasion rates have increased in the past 100 y irrespective of international conventions. What characterizes a successful invasion event? And how does genetic diversity translate into invasion success? Employing a whole-genome perspective using one of the most successful marine invasive species world-wide as a model, we resolve temporal invasion dynamics during independent invasion events in Eurasia. We reveal complex regionally independent invasion histories including cases of recurrent translocations, time-limited translocations, and stepping-stone range expansions with severe bottlenecks within the same species. Irrespective of these different invasion dynamics, which lead to contrasting patterns of genetic diversity, all nonindigenous populations are similarly successful. This illustrates that genetic diversity, per se, is not necessarily the driving force behind invasion success. Other factors such as propagule pressure and repeated introductions are an important contribution to facilitate successful invasions. This calls into question the dominant paradigm of the genetic paradox of invasions, i.e., the successful establishment of nonindigenous populations with low levels of genetic diversity.


Subject(s)
Ctenophora/genetics , Genetic Variation , Genomics , Animal Distribution , Animals , Ctenophora/physiology , Genome , Introduced Species
11.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35277960

ABSTRACT

Neuropeptides are a diverse class of signaling molecules in metazoans. They occur in all animals with a nervous system and also in neuron-less placozoans. However, their origin has remained unclear because no neuropeptide shows deep homology across lineages, and none have been found in sponges. Here, we identify two neuropeptide precursors, phoenixin (PNX) and nesfatin, with broad evolutionary conservation. By database searches, sequence alignments, and gene-structure comparisons, we show that both precursors are present in bilaterians, cnidarians, ctenophores, and sponges. We also found PNX and a secreted nesfatin precursor homolog in the choanoflagellate Salpingoeca rosetta. PNX, in particular, is highly conserved, including its cleavage sites, suggesting that prohormone processing occurs also in choanoflagellates. In addition, based on phyletic patterns and negative pharmacological assays, we question the originally proposed GPR-173 (SREB3) as a PNX receptor. Our findings revealed that secreted neuropeptide homologs derived from longer precursors have premetazoan origins and thus evolved before neurons.


Subject(s)
Choanoflagellata , Ctenophora , Neuropeptides , Animals , Biological Evolution , Choanoflagellata/genetics , Nervous System , Neuropeptides/genetics
12.
Anim Cogn ; 26(6): 1851-1864, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38015282

ABSTRACT

Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.


Subject(s)
Ctenophora , Animals , Ctenophora/physiology , Nervous System , Neurons/physiology , Cognition , Biological Evolution
13.
Luminescence ; 38(8): 1477-1484, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37259886

ABSTRACT

The work presents the findings of the laboratory and in situ studies of ctenophore Pleurobrachia pileus O.F. Müller, 1776 which have shown that this species has bioluminescent properties. These organisms were considered non-luminous before. P. pileus bioluminescence was studied on board RV Professor Vodyanitsky during its 116th voyage. Sampling live organisms was preceded by probing with the Salpa MA+ probe to register the daily maximum glow in redoxcline, which in this zone was recorded, as a rule, in the depth range of 60-70 m, where dense clusters of P. pileus were formed at that time. The samples of ctenophores were taken by a Bogorov-Rass plankton net. After the net was closed, it was lifted to the surface at a speed of 0.4-0.5 m s-1 . It was shown that only at a temperature not exceeding 14°C, the P. pileus remained alive for 2-3 days. The data provided indicate that the temperature above 14°C is close to the maximum permissible for P. pileus; therefore, chemical and mechanical stimulation experiments were carried out at this temperature (14°C) to agitate ctenophores luminescence. Though, the nature of their signal was significantly different. The total percentage of luminous organisms from the entire catch was 32.43%, which unequivocally proves that P. pileus glows and makes a significant contribution to the intensity of the glow at great depths in redoxcline.


Subject(s)
Ctenophora , Animals , Black Sea , Luminescence
14.
Luminescence ; 38(6): 709-716, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37012639

ABSTRACT

The findings of the study on the impact of hypoxia on the glow of the Black Sea ctenophore Mnemiopsis leidyi A. Agassiz, 1865 of three size groups (20-30, 30-45, and 45-60 mm) were obtained under experimental conditions. Peculiarities of ctenophore bioluminescence were studied during mechanical and chemical stimulation under the conditions of normoxia (at an oxygen concentration of 5.6-6.7 mg O2  L-1 ), moderate hypoxia (2.5-2.8 mg O2  L-1 ), and acute hypoxia (1.2-1.5 mg O2  L-1 ). An increase in the amplitude and energy of luminescence of the ctenophores mechanically and chemically stimulated was observed at an oxygen concentration of 1.2-1.5 mg O2  L-1 (acute hypoxia) in two size groups in the lobate form (30-45 and 45-60 mm). The inhibition of amplitude, energy, and duration of the signal was registered in M. leidyi ctenophores at the transitional stage from larva to the lobate form under conditions of acute hypoxia. It was noted that in normoxia, the values of the amplitude and energy of the bioluminescent signal of M. leidyi increase along with a size growth of an individual. This phenomenon was observed both during mechanical and chemical stimulations. Under conditions of acute hypoxia, this trend was mainly preserved. The universality of the relation between the bioluminescence of the organisms and their bioenergetics is obvious. The bioluminescent system of ctenophores has the role of an antioxidant system and is engaged in the neutralization of reactive oxygen species (ROS), that is the process during which photons are emitted. The response of the bioluminescent system to a decrease in oxygen concentration can be associated with an increase in the production of ROS that provides high values of the ctenophore luminescence under hypoxic conditions.


Subject(s)
Ctenophora , Animals , Ctenophora/physiology , Reactive Oxygen Species , Luminescence , Larva , Oxygen
15.
Luminescence ; 38(11): 1946-1954, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37610051

ABSTRACT

Mnemiopsin 1 (Mn1) and Mnemiopsin 2 (Mn2) are photoproteins found in Mnemiopsis leidyi. We have tried to answer the question of whether the structural features of photoproteins can explain the observed activity data. According to the activity measurements data, they have the same characteristic wavelength. However, the initial intensity of Mn2 is significantly higher than that of Mn1, and decay time of Mn1 (0.92 s-1 ) is lower than that of Mn2 (1.46 s-1 ). The phylogenetic analysis demonstrates that, compared with Obelin and Aequorin from Obelia longissima and Aequorea victoria, respectively, a gene modification event may have caused the expansion of the N-terminal side of all photoproteins from M. leidyi. An in silico study has shown that the stability of the photoprotein-substrate complex of Mn2 is higher than that of Mn1, indicating a higher affinity of the substrate for Mn2 compared with Mn1. It was revealed that the active EF-hand loops 1 and III in Mn2 is locally more rigid compared with those in Mn1. We concluded that different stability of the photoprotein complexes leads to different initial intensity. While different patterns of the local dynamics of loops I and III may influence the decay rate.


Subject(s)
Ctenophora , Animals , Amino Acid Sequence , Phylogeny , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Ctenophora/chemistry , Ctenophora/genetics , Calcium/chemistry
16.
BMC Biol ; 20(1): 212, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36175868

ABSTRACT

BACKGROUND: Reactive derivatives of oxygen (reactive oxygen species; ROS) are essential in signalling networks of all aerobic life. Redox signalling, based on cascades of oxidation-reduction reactions, is an evolutionarily ancient mechanism that uses ROS to regulate an array of vital cellular processes. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are employed as signalling molecules that alter the oxidation state of atoms, inhibiting or activating gene activity. Here, we conduct metazoan-wide comparative genomic assessments of the two enzyme families, superoxide dismutase (SOD) and NADPH oxidases (NOX), that generate H2O2 and/or O2•- in animals. RESULTS: Using the genomes of 19 metazoan species representing 10 phyla, we expand significantly on previous surveys of these two ancient enzyme families. We find that the diversity and distribution of both the SOD and NOX enzyme families comprise some conserved members but also vary considerably across phyletic animal lineages. For example, there is substantial NOX gene loss in the ctenophore Mnemiopsis leidyi and divergent SOD isoforms in the bilaterians D. melanogaster and C. elegans. We focus particularly on the sponges (phylum Porifera), a sister group to all other metazoans, from which these enzymes have not previously been described. Within Porifera, we find a unique calcium-regulated NOX, the widespread radiation of an atypical member of CuZnSOD named Rsod, and a novel endoplasmic reticulum MnSOD that is prevalent across aquatic metazoans. CONCLUSIONS: Considering the precise, spatiotemporal specificity of redox signalling, our findings highlight the value of expanding redox research across a greater diversity of organisms to better understand the functional roles of these ancient enzymes within a universally important signalling mechanism.


Subject(s)
Ctenophora , Porifera , Animals , Caenorhabditis elegans , Calcium , Drosophila melanogaster , Hydrogen Peroxide , NADPH Oxidases/genetics , Oxidation-Reduction , Oxygen , Porifera/genetics , Reactive Oxygen Species , Superoxide Dismutase , Superoxides
17.
Syst Parasitol ; 101(1): 8, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38127230

ABSTRACT

Members of the genus Microphallus Ward, 1901, are endoparasites mainly of birds and mammals distributed worldwide. Unencysted metacercariae of Microphallus sp., were collected from the mesoglea of ctenophores of the genus Pleurobrachia Fleming; adult digeneans were recovered from the intestines of Eudocimus albus Linnaeus (Threskiornithidae) and Buteogallus urubitinga Gmelin (Accipitridae), in four locations from southeastern Mexico. Adult specimens were identified as M. basodactylophallus (Bridgman, 1969) based on the following features: body pyriform entirely covered by minute spines, prepharynx short, oesophagus very long, caeca short and widely divergent, testes slightly symmetrical and excretory vesicle short and V-shaped. Sequences from D1-D3 domain of the large subunit of ribosomal DNA (LSU) were generated, aligned, and compared with those of congeneric species available in GenBank. Phylogenetic analyses indicated that the metacercariae and adults formed a clade together with an isolate identified as M. basodactylophallus from Florida, USA (GenBank: AY220628). The intraspecific genetic divergence among isolates was low ranged from 0.0% to 0.6%, allowing the link between the two stages of the life cycle. We observed phenotypic plasticity in the morphological traits of M. basodactylophallus adults in definitive hosts (mammals and birds) throughout the distribution, which ranged from the USA to southeastern Mexico. Finally, the unencysted metacercariae identified as M. basodactylophallus represent the first report of a microphallid in ctenophores.


Subject(s)
Birds , Ctenophora , Parasites , Trematoda , Animals , Birds/parasitology , Larva , Metacercariae/genetics , Mexico , Phylogeny , Species Specificity , Trematoda/genetics
18.
Mol Biol (Mosk) ; 57(4): 726-735, 2023.
Article in Russian | MEDLINE | ID: mdl-37528795

ABSTRACT

The ctenophore Mnemiopsis leidyi A. Agassiz, 1865 responds to gentle mechanical stimulus with intense luminescence; however, the mechanism of this phenomenon is unknown. We searched for possible mechanosensitive receptors that initiate signal transduction resulting in photoprotein luminescence. The three orthologous genes of mouse (5z96) and drosophila (5vkq) TRPC-proteins, such as ML234550a-PA (860 a.a.), ML03701a-PA (828 a.a.), and ML038011a-PA (1395 a.a.), were found in the M. leidyi genome. The latter protein contains a long ankyrin helix consisting of 16 ANK domains. Study of the annotated domains and the network of interactions between the interactome proteins suggests that the ML234550a-PA and ML03701a-PA proteins carry out cytoplasmic transduction, but ML038011a-PA provides intranuclear transduction of mechanical signals. Spatial reconstruction of the studied proteins revealed differences in their structure, which may be related to various functions of these proteins in the cell. The question of which of these proteins is involved in the initiation of luminescence after mechanical stimulation is discussed.


Subject(s)
Ctenophora , Animals , Mice , Ctenophora/genetics , Luminescence , Luminescent Proteins/genetics , Signal Transduction , Genome
19.
Mol Biol Evol ; 38(10): 4322-4333, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34097041

ABSTRACT

Identifying our most distant animal relatives has emerged as one of the most challenging problems in phylogenetics. This debate has major implications for our understanding of the origin of multicellular animals and of the earliest events in animal evolution, including the origin of the nervous system. Some analyses identify sponges as our most distant animal relatives (Porifera-sister hypothesis), and others identify comb jellies (Ctenophora-sister hypothesis). These analyses vary in many respects, making it difficult to interpret previous tests of these hypotheses. To gain insight into why different studies yield different results, an important next step in the ongoing debate, we systematically test these hypotheses by synthesizing 15 previous phylogenomic studies and performing new standardized analyses under consistent conditions with additional models. We find that Ctenophora-sister is recovered across the full range of examined conditions, and Porifera-sister is recovered in some analyses under narrow conditions when most outgroups are excluded and site-heterogeneous CAT models are used. We additionally find that the number of categories in site-heterogeneous models is sufficient to explain the Porifera-sister results. Furthermore, our cross-validation analyses show CAT models that recover Porifera-sister have hundreds of additional categories and fail to fit significantly better than site-heterogenuous models with far fewer categories. Systematic and standardized testing of diverse phylogenetic models suggests that we should be skeptical of Porifera-sister results both because they are recovered under such narrow conditions and because the models in these conditions fit the data no better than other models that recover Ctenophora-sister.


Subject(s)
Ctenophora , Animals , Phylogeny
20.
Biochem Biophys Res Commun ; 624: 23-27, 2022 10 08.
Article in English | MEDLINE | ID: mdl-35932575

ABSTRACT

The bright bioluminescence of ctenophores inhabiting the oceans worldwide is caused by light-sensitive Ca2+-regulated photoproteins. By now, the cDNAs encoding photoproteins from the four different ctenophore species have been cloned and the recombinant proteins have been characterized to some extent. In this work, we report on the specific activity and the quantum yield of bioluminescence reaction as well as the absorbance characteristics of high-purity recombinant berovin. To determine those, we applied the amino acid composition analysis to accurately measure berovin concentration and the recombinant aequorin as a light standard to convert relative light units to quanta. The extinction coefficient of 1% berovin solution at 435 nm was found to be 1.82. The one can be employed to precisely determine the protein concentration of active photoproteins from other ctenophore species. The specific activity and the bioluminescence quantum yield were respectively found to be 1.98 × 1015 quanta/mg and 0.083. These values appeared to be several times lower than those of the cnidarian photoproteins, which is obviously due to differences in amino acid environments of the substrate in active sites of these photoproteins.


Subject(s)
Ctenophora , Aequorin/genetics , Aequorin/metabolism , Amino Acids/metabolism , Animals , Calcium/metabolism , Ctenophora/chemistry , Ctenophora/genetics , Luminescent Measurements , Luminescent Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL