Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters

Publication year range
1.
Cell ; 148(3): 421-33, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22304913

ABSTRACT

Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKß-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Aging/metabolism , Caloric Restriction , Signal Transduction , Stilbenes/administration & dosage , 3',5'-Cyclic-AMP Phosphodiesterases/chemistry , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , AMP-Activated Protein Kinase Kinases , Adipose Tissue, White/drug effects , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Diet , Glucose Intolerance/prevention & control , Guanine Nucleotide Exchange Factors/metabolism , Mice , Models, Molecular , Muscle, Skeletal/drug effects , NAD/metabolism , Obesity/prevention & control , Protein Kinases/metabolism , Resveratrol , Rolipram/administration & dosage , Ryanodine Receptor Calcium Release Channel/metabolism , Sirtuin 1/metabolism
2.
Bioorg Chem ; 121: 105667, 2022 04.
Article in English | MEDLINE | ID: mdl-35182886

ABSTRACT

In search of potent and new anti-inflammatory agents, we explored a new class of isocoumarin derivatives possessing the 3-oxoalkyl moiety at C-4 position. These compounds were synthesized via the FeCl3 catalyzed construction of isocoumarin ring. The methodology involved coupling of 2-alkynyl benzamides with alkyl vinyl ketone and proceeded via a regioselective cyclization to give the desired compound as a result of formation of CO and CC bonds. A large number of isocoumarins were synthesized and assessed against PDE4B in vitro. While isocoumarins containing an aminosulfonyl moiety attached to the C-3 aryl ring showed encouraging inhibition of PDE4B, some of the derivatives devoid of aminosulfonyl moiety also showed considerable inhibition. According to the SAR analysis the C6H4NHSO2R2-m moiety at C-3 position of the isocoumarin ring was favorable when the R2 was chosen as an aryl or 2-thienyl group whereas the presence of F or OMe substituent at C-7 of the isocoumarin ring was found to be beneficial. The compound 5f with IC50 values 0.125 ± 0.032 and 0.43 ± 0.013 µM against PDE4B and 4D, respectively was identified as an initial hit. It showed in silico interaction with the PHE678 residue in the CR3 region of PDE4B and relatively less number of interactions with PDE4D. Besides showing the PDE4 selectivity over other PDEs and TNF-α inhibition in vitro the compound 5f at an intraperitoneal dose of 30 mg/kg demonstrated the protective effects against the development of arthritis and potent immunomodulatory activity in adjuvant induced arthritic (AIA) rats. Furthermore, no significant adverse effects were observed for this compound when evaluated in a systematic toxicity (e.g. teratogenicity, hepatotoxicity and cardiotoxicity) studies in zebrafish at various concentrations. Collectively, being a new, potent, moderately selective and safe inhibitor of PDE4B the isocoumarin 5f can be progressed into further pharmacological studies.


Subject(s)
Ferric Compounds , Isocoumarins , Animals , Catalysis , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Isocoumarins/chemistry , Rats , Structure-Activity Relationship , Zebrafish/metabolism
3.
FASEB J ; 34(11): 14997-15014, 2020 11.
Article in English | MEDLINE | ID: mdl-32939821

ABSTRACT

Diabetic nephropathy (DN) is a leading cause of end-stage renal disease (ESRD). Hypertension increases kidney stress, which deteriorates function, and leads to peripheral renal vascular resistance. Long-term hypoperfusion promotes interstitial fibrosis and glomerular sclerosis, resulting in nephrosclerosis. Although hypertension and DN are frequent ESRD complications, relevant animal models remain unavailable. We generated a deoxycorticosterone acetate (DOCA)-salt hypertensive uni-nephrectomized (UNx) KKAy mouse model demonstrating hypertension, hyperglycemia, cardiac hypertrophy, kidney failure, increased urinary albumin creatinine ratio (UACR), and increased renal PDE4D and cardiac PDE5A mRNA levels. We hypothesized that the novel PDE4 selective inhibitor, compound A, and PDE5 inhibitor, sildenafil, exhibit nephroprotective, and cardioprotective effects in this new model. Compound A, sildenafil, and the angiotensin II receptor blocker, irbesartan, significantly reduced ventricular hypertrophy and pleural effusion volume. Meanwhile, compound A and sildenafil significantly suppressed the UACR, urinary kidney injury molecule-1, and monocyte chemoattractant protein-1 levels, as well as that of renal pro-fibrotic marker mRNAs, including collagen 1A1, fibronectin, and transforming growth factor-beta (TGF-ß). Moreover, compound A significantly suppressed TGF-ß-induced pro-fibrotic mRNA expression in vitro in all major kidney lesions, including within the glomerular mesangial region, podocytes, and epithelial region. Hence, PDE4 and PDE5 inhibitors may be promising treatments, in combination with irbesartan, for DN with hypertension as they demonstrate complementary mechanisms.


Subject(s)
Cardiomegaly/drug therapy , Desoxycorticosterone/toxicity , Hyperglycemia/drug therapy , Hypertension/drug therapy , Phosphodiesterase 5 Inhibitors/pharmacology , Renal Insufficiency/drug therapy , Sildenafil Citrate/pharmacology , Acetates/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cardiomegaly/chemically induced , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Female , Hyperglycemia/chemically induced , Hyperglycemia/enzymology , Hyperglycemia/pathology , Hypertension/chemically induced , Hypertension/enzymology , Hypertension/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mineralocorticoids/toxicity , Renal Insufficiency/chemically induced , Renal Insufficiency/enzymology , Renal Insufficiency/pathology , Sodium Chloride/toxicity , Tyramine/analogs & derivatives , Tyramine/pharmacology
4.
Bioorg Chem ; 115: 105265, 2021 10.
Article in English | MEDLINE | ID: mdl-34426160

ABSTRACT

In spite of possessing a wide range of pharmacological properties the anti-inflammatory activities of isoquinolin-1(2H)-ones were rarely known or explored earlier. PDE4 inhibitors on the other hand in addition to their usefulness in treating inflammatory diseases have been suggested to attenuate the cytokine storm in COVID-19 especially TNF-α. In our effort, a new class of isoquinolin-1(2H)-ones derivatives containing an aminosulfonyl moiety were designed and explored as potential inhibitors of PDE4. Accordingly, for the first time a CuCl2-catalyzed inexpensive, faster and ligand/additive free approach has been developed for the synthesis of these predesigned isoquinolin-1(2H)-one derivatives via the coupling-cyclization strategy. Thus, the CuCl2-catalyzed reaction of 2-iodobenzamides with appropriate terminal alkynes proceeded with high chemo and regioselectivity affording the desired compounds in 77-84% yield within 1-1.5 h. The methodology also afforded simpler isoquinolin-1(2H)-ones devoid of aminosulfonyl moiety showing a broader generality and scope of this approach. Several of the synthesized compounds especially 3c, 3k and 3s showed impressive inhibition (83-90%) of PDE4B when tested at 10 µM in vitro whereas compounds devoid of aminosulfonyl moiety was found to be less active. In spite of high inhibition showed at 10 µM these compounds did not show proper concertation dependent inhibition below 1 µM that was reflected in their IC50 values e.g. 2.43 ± 0.32, 3.26 ± 0.24 and 3.63 ± 0.80 µM for 3k, 3o and 3s respectively. The anti-inflammatory potential of these compounds was indicated by their TNF-α inhibition (60-50% at 10 µM). The in silico docking studies of these molecules suggested good interactions with PDE4B and selective inhibition of PDE4B by 3k over PDE4D that was supported by in vitro assay results. These observations together with the favorable ADME and safety predicted for 3kin silico not only suggested 3k as an interesting hit molecule for further studies but also reveal the first example of isoquinolin-1(2H)-one based inhibitor of PDE4B.


Subject(s)
Anti-Inflammatory Agents/chemistry , Copper/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Isoquinolines/chemistry , Phosphodiesterase 4 Inhibitors/chemistry , Animals , Anti-Inflammatory Agents/chemical synthesis , Catalysis , Cyclization , Enzyme Assays , Humans , Isoquinolines/chemical synthesis , Mice , Molecular Structure , Phosphodiesterase 4 Inhibitors/chemical synthesis , RAW 264.7 Cells , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors
5.
Bioorg Med Chem Lett ; 30(10): 127112, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32209292

ABSTRACT

An improved and rapid synthesis of mefenamic acid based indole derivatives has been achieved via the ligand free Cu-catalyzed coupling-cyclization method under ultrasound irradiation. This simple, straightforward and inexpensive one-pot method involved the reaction of a terminal alkyne derived from mefenamic acid with 2-iodosulfanilides in the presence of CuI and K2CO3 in PEG-400. The reaction proceeded via an initial CC bond formation (the coupling step) followed by CN bond formation (the intramolecular cyclization) to afford the mefenamic acid based indole derivatives in good to acceptable yields. Several of these compounds showed inhibition of PDE4 in vitro and the SAR (Structure Activity Relationship) within the series is discussed. The compound 3d has been identified as a promising and selective inhibitor of PDE4B (IC50 = 1.34 ± 0.46 µM) that showed TNF-α inhibition in vitro (IC50 = 5.81 ± 0.24 µM) and acceptable stability in the rat liver microsomes.


Subject(s)
Copper/chemistry , Indoles/chemistry , Mefenamic Acid/chemistry , Sonication , Binding Sites , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Catalysis , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclization , Half-Life , Humans , Indoles/metabolism , Indoles/pharmacology , Mefenamic Acid/metabolism , Mefenamic Acid/pharmacology , Molecular Docking Simulation , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
6.
Bioorg Chem ; 97: 103691, 2020 04.
Article in English | MEDLINE | ID: mdl-32143019

ABSTRACT

In spite of their various pharmacological properties the anti-inflammatory potential of benzo[c]phenanthridines remained underexplored. Thus, for the first time PDE4 inhibitory potential of 11,12-dihydro benzo[c]phenanthridine/benzo[c]phenanthridine was assessed in vitro. Elegant synthesis of these compounds was performed via a multi-step sequence consisting of a Pd-catalyzed unusual construction of 4-allyl isocoumarin ring and FeCl3-mediated intramolecular regio- as well as site-selective arene-allyl cyclization as key steps. The overall strategy involved Sonogashira coupling followed by isocoumarin and isoquinolone synthesis, then chlorination and subsequent cyclization to afford a range of 11,12-dihydro derivatives. One of these dihydro compounds was converted to the corresponding benzo[c]phenanthridine that showed concentration dependent inhibition of PDE4B affording an initial hit molecule. The SAR study suggested that 11,12-dihydro analogs were less potent than the compound having unsaturation at the same part of the ring.


Subject(s)
Phenanthridines/chemical synthesis , Phenanthridines/pharmacology , Phosphodiesterase 4 Inhibitors/chemical synthesis , Phosphodiesterase 4 Inhibitors/pharmacology , Animals , Benzene Derivatives/chemical synthesis , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Catalysis , Cell Line , Chemistry Techniques, Synthetic , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclization , Humans , Isocoumarins/chemical synthesis , Isocoumarins/chemistry , Molecular Docking Simulation , Palladium/chemistry , Phenanthridines/chemistry , Phosphodiesterase 4 Inhibitors/chemistry
7.
Molecules ; 25(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093112

ABSTRACT

Alzheimer's disease is the most common type of dementia, affecting millions of people worldwide. One of its main consequences is memory loss, which is related to downstream effectors of cyclic adenosine monophosphate (cAMP). A well-established strategy to avoid cAMP degradation is the inhibition of phosphodiesterase (PDE). In recent years, GEBR-32a has been shown to possess selective inhibitory properties against PDE type 4 family members, resulting in an improvement in spatial memory processes without the typical side effects that are usually correlated with this mechanism of action. In this work, we performed the HPLC chiral resolution and absolute configuration assignment of GEBR-32a. We developed an efficient analytical and semipreparative chromatographic method exploiting an amylose-based stationary phase, we studied the chiroptical properties of both enantiomers and we assigned their absolute configuration by 1H-NMR (nuclear magnetic resonance). Lastly, we measured the IC50 values of both enantiomers against both the PDE4D catalytic domain and the long PDE4D3 isoform. Results strongly support the notion that GEBR-32a inhibits the PDE4D enzyme by interacting with both the catalytic pocket and the regulatory domains.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Phosphodiesterase 4 Inhibitors/chemistry , Humans , Nuclear Magnetic Resonance, Biomolecular
8.
Molecules ; 25(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085423

ABSTRACT

Several anti-inflammatory agents based on pyrazole and imidazopyrazole scaffolds and a large library of substituted catechol PDE4D inhibitors were reported by us in the recent past. To obtain new molecules potentially able to act on different targets involved in inflammation onset we designed and synthesized a series of hybrid compounds by linking pyrazole and imidazo-pyrazole scaffolds to differently decorated catechol moieties through an acylhydrazone chain. Some compounds showed antioxidant activity, inhibiting reactive oxygen species (ROS) elevation in neutrophils, and a good inhibition of phosphodiesterases type 4D and, particularly, type 4B, the isoform most involved in inflammation. In addition, most compounds inhibited ROS production also in platelets, confirming their ability to exert an antiinflammatory response by two independent mechanism. Structure-activity relationship (SAR) analyses evidenced that both heterocyclic scaffolds (pyrazole and imidazopyrazole) and the substituted catechol moiety were determinant for the pharmacodynamic properties, even if hybrid molecules bearing to the pyrazole series were more active than the imidazopyrazole ones. In addition, the pivotal role of the catechol substituents has been analyzed. In conclusion the hybridization approach gave a new serie of multitarget antiinflammatory compounds, characterized by a strong antioxidant activity in different biological targets.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Pyrazoles/pharmacology , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Blood Platelets/drug effects , Blood Platelets/metabolism , Cell Survival/drug effects , Chemotaxis/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/pharmacology , Humans , Male , Neutrophils/drug effects , Neutrophils/metabolism , Oxidation-Reduction , Phosphodiesterase 4 Inhibitors/chemical synthesis , Phosphodiesterase 4 Inhibitors/pharmacology , Platelet Aggregation/drug effects , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
9.
Molecules ; 25(4)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102361

ABSTRACT

The aim of the present study was to evaluate the possible gut inhibitory role of the phosphodiesterase (PDE) inhibitor roflumilast. Increasing doses of roflumilast were tested against castor oil-induced diarrhea in mice, whereas the pharmacodynamics of the same effect was determined in isolated rabbit jejunum tissues. For in silico analysis, the identified PDE protein was docked with roflumilast and papaverine using the Autodock vina program from the PyRx virtual screening tool. Roflumilast protected against diarrhea significantly at 0.5 and 1.5 mg/kg doses, with 40% and 80% protection. Ex vivo findings from jejunum tissues show that roflumilast possesses an antispasmodic effect by inhibiting spontaneous contractions in a concentration-dependent manner. Roflumilast reversed carbachol (CCh, 1 µM)-mediated and potassium (K+, 80 mM)-mediated contractile responses with comparable efficacies but different potencies. The observed potency against K+ was significantly higher in comparison to CCh, similar to verapamil. Experiments were extended to further confirm the inhibitory effect on Ca++ channels. Interestingly, roflumilast deflected Ca++ concentration-response curves (CRCs) to the right with suppression of the maximum peak at both tested doses (0.001-0.003 mg/mL), similar to verapamil. The PDE-inhibitory effect was authenticated when pre-incubation of jejunum tissues with roflumilast (0.03-0.1 mg/mL) produced a leftward deflection of isoprenaline-mediated inhibitory CRCs and increased the tissue level of cAMP, similar to papaverine. This idea was further strengthened by molecular docking studies, where roflumilast exhibited a better binding affinity (-9.4 kcal/mol) with the PDE protein than the standard papaverine (-8.3 kcal/mol). In conclusion, inhibition of Ca++ channels and the PDE-4 enzyme explains the pharmacodynamics of the gut inhibitory effect of roflumilast.


Subject(s)
Aminopyridines/pharmacology , Antidiarrheals/pharmacology , Benzamides/pharmacology , Calcium Channel Blockers/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Diarrhea/prevention & control , Parasympatholytics/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Aminopyridines/chemistry , Aminopyridines/pharmacokinetics , Animals , Antidiarrheals/chemistry , Antidiarrheals/pharmacokinetics , Benzamides/chemistry , Benzamides/pharmacokinetics , Binding Sites , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacokinetics , Carbachol/pharmacology , Castor Oil/administration & dosage , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclopropanes/chemistry , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Diarrhea/chemically induced , Diarrhea/metabolism , Diarrhea/physiopathology , Isoproterenol/pharmacology , Jejunum/drug effects , Jejunum/metabolism , Mice , Molecular Docking Simulation , Papaverine/pharmacology , Parasympatholytics/chemistry , Parasympatholytics/pharmacokinetics , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/pharmacokinetics , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Rabbits , Verapamil/pharmacology
10.
Biochemistry ; 57(19): 2876-2888, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29652483

ABSTRACT

Selected members of the large rolipram-related GEBR family of type 4 phosphodiesterase (PDE4) inhibitors have been shown to facilitate long-term potentiation and to improve memory functions without causing emetic-like behavior in rodents. Despite their micromolar-range binding affinities and their promising pharmacological and toxicological profiles, few if any structure-activity relationship studies have been performed to elucidate the molecular bases of their action. Here, we report the crystal structure of a number of GEBR library compounds in complex with the catalytic domain of PDE4D as well as their inhibitory profiles for both the long PDE4D3 isoform and the catalytic domain alone. Furthermore, we assessed the stability of the observed ligand conformations in the context of the intact enzyme using molecular dynamics simulations. The longer and more flexible ligands appear to be capable of forming contacts with the regulatory portion of the enzyme, thus possibly allowing some degree of selectivity between the different PDE4 isoforms.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Memory/drug effects , Phosphodiesterase 4 Inhibitors/chemistry , Structure-Activity Relationship , Animals , Catalytic Domain , Crystallography, X-Ray , Humans , Ligands , Memory/physiology , Molecular Dynamics Simulation , Phosphodiesterase 4 Inhibitors/therapeutic use , Rolipram/chemistry , Rolipram/therapeutic use
11.
Biochemistry ; 57(30): 4518-4525, 2018 07 31.
Article in English | MEDLINE | ID: mdl-29975048

ABSTRACT

Inhibitors of phosphodiesterases (PDEs) have been widely studied as therapeutics for the treatment of human diseases, but improvement of inhibitor selectivity is still desirable for the enhancement of inhibitor potency. Here, we report identification of a water-containing subpocket as a PDE4-specific pocket for inhibitor binding. We designed against the pocket and synthesized two enantiomers of PDE4 inhibitor Zl-n-91. The ( S)-Zl-n-91 enantiomer showed IC50 values of 12 and 20 nM for the catalytic domains of PDE4D2 and PDE4B2B, respectively, selectivity several thousand-fold greater than those of other PDE families, and potent neuroprotection activities. Crystal structures of the PDE4D2 catalytic domain in complex with each Zl-n-91 enantiomer revealed that ( S)-Zl-n-91 but not ( R)-Zl-n-91 formed a hydrogen bond with the bound water in the pocket, thus explaining its higher affinity. The structural superposition between the PDE families revealed that this water-containing subpocket is unique to PDE4 and thus valuable for the design of PDE4 selective inhibitors.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Drug Design , Furans/chemistry , Furans/pharmacology , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/pharmacology , Animals , Binding Sites/drug effects , Catalytic Domain/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Furans/pharmacokinetics , Humans , Hydrogen Bonding/drug effects , Male , Memory/drug effects , Mice, Inbred ICR , Molecular Docking Simulation , Phenyl Ethers/pharmacokinetics , Phosphodiesterase 4 Inhibitors/pharmacokinetics , Rolipram/analogs & derivatives , Rolipram/pharmacokinetics , Rolipram/pharmacology , Stereoisomerism , Water/chemistry
12.
Org Biomol Chem ; 16(38): 6900-6908, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30024008

ABSTRACT

Metal-mediated C-H functionalization of cyclic N-oxides was exploited to access a series of new difluoromethylated analogs of imidazolidinone-based PDE4 inhibitor CMPI in a diastereoselective manner. Among the products synthesized, compounds with fine-tuned activity/selectivity profiles compared to both CMPI and the clinically applied apremilast were identified. From these studies, an unusual fused 1,2-oxazinoimidazolidinone heterocyclic system was suggested as a novel scaffold for the design of potent and selective PDE4 inhibitors. Computational studies suggest that the oxygen atom in the imidazolidinone unit can bind to the metal ion center (most likely Mg2+). DFT calculations of the relative interaction energies of inhibitors with Mg2+ and Zn2+ ions were performed on a model of the bimetal active site of PDE4.


Subject(s)
Catechols/chemical synthesis , Imidazolidines/chemical synthesis , Phosphodiesterase 4 Inhibitors/chemical synthesis , Catalytic Domain/drug effects , Catechols/chemistry , Catechols/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Halogenation , Humans , Imidazolidines/chemistry , Imidazolidines/pharmacology , Methylation , Molecular Docking Simulation , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship
13.
Biochem J ; 474(4): 597-609, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27993970

ABSTRACT

Cyclic AMP (cAMP)-specific phosphodiesterase-4 (PDE4) enzymes underpin compartmentalised cAMP signalling by localising to distinct signalling complexes. PDE4 long isoforms can be phosphorylated by mitogen-activated protein kinase-activated protein kinase 2 (MK2), which attenuates activation of such enzymes through their phosphorylation by protein kinase A. Here we show that MK2 interacts directly with PDE4 long isoforms and define the sites of interaction. One is a unique site that locates within the regulatory upstream conserved region 1 (UCR1) domain and contains a core Phe141, Leu142 and Tyr143 (FLY) cluster (PDE4A5 numbering). Located with the second site is a critical core Phe693, Glu694, Phe695 (FQF) motif that is also employed in the sequestering of PDE4 long forms by an array of other signalling proteins, including the signalling scaffold ß-arrestin, the tyrosyl kinase Lyn, the SUMOylation E2 ligase UBC9, the dynein regulator Lis1 (PAFAH1B1) and the protein kinase Erk. We propose that the FQF motif lies at the heart of a multifunctional docking (MFD) site located within the PDE4 catalytic unit. It is clear from our data that, as well as aiding fidelity of interaction, the MFD site confers exclusivity of binding between PDE4 and a single specific partner protein from the cohort of signalling proteins whose interaction with PDE4 involves the FQF motif.


Subject(s)
Catalytic Domain , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Molecular Docking Simulation , Protein Serine-Threonine Kinases/chemistry , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Amino Acid Motifs , Animals , COS Cells , Chlorocebus aethiops , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Gene Expression , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , beta-Arrestins/chemistry , beta-Arrestins/genetics , beta-Arrestins/metabolism , src-Family Kinases/chemistry , src-Family Kinases/genetics , src-Family Kinases/metabolism
14.
Proc Natl Acad Sci U S A ; 112(12): E1414-22, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25775568

ABSTRACT

Phosphodiesterase 4 (PDE4) is an essential contributor to intracellular signaling and an important drug target. The four members of this enzyme family (PDE4A to -D) are functional dimers in which each subunit contains two upstream conserved regions (UCR), UCR1 and -2, which precede the C-terminal catalytic domain. Alternative promoters, transcriptional start sites, and mRNA splicing lead to the existence of over 25 variants of PDE4, broadly classified as long, short, and supershort forms. We report the X-ray crystal structure of long form PDE4B containing UCR1, UCR2, and the catalytic domain, crystallized as a dimer in which a disulfide bond cross-links cysteines engineered into UCR2 and the catalytic domain. Biochemical and mass spectrometric analyses showed that the UCR2-catalytic domain interaction occurs in trans, and established that this interaction regulates the catalytic activity of PDE4. By elucidating the key structural determinants of dimerization, we show that only long forms of PDE4 can be regulated by this mechanism. The results also provide a structural basis for the long-standing observation of high- and low-affinity binding sites for the prototypic inhibitor rolipram.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Protein Engineering/methods , Alternative Splicing , Catalytic Domain , Chromatography, Liquid , Codon , Crystallography, X-Ray , Cyclic AMP/metabolism , Dysostoses/enzymology , Gene Expression Regulation, Enzymologic , Genetic Variation , Humans , Intellectual Disability/enzymology , Mass Spectrometry , Models, Molecular , Mutation , Osteochondrodysplasias/enzymology , Phosphorylation , Protein Conformation , Protein Multimerization , Rolipram/chemistry , Signal Transduction , X-Ray Diffraction
15.
J Comput Aided Mol Des ; 31(6): 563-575, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28534194

ABSTRACT

In a first step in the discovery of novel potent inhibitor structures for the PDE4B family with limited side effects, we present a protocol to rank newly designed molecules through the estimation of their IC[Formula: see text] values. Our protocol is based on reproducing the linear relationship between the logarithm of experimental IC[Formula: see text] values [[Formula: see text](IC[Formula: see text])] and their calculated binding free energies ([Formula: see text]). From 13 known PDE4B inhibitors, we show here that (1) binding free energies obtained after a docking process by AutoDock are not accurate enough to reproduce this linear relationship; (2) MM-GB/SA post-processing of molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear relationship; (3) by taking into account all representative structures obtained by AutoDock and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, a linear relationship between [Formula: see text](IC[Formula: see text]) and the lowest [Formula: see text] is achieved with [Formula: see text].


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Ligands , Phosphodiesterase 4 Inhibitors/chemistry , Small Molecule Libraries/chemistry , Binding Sites , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protein Conformation , Quantitative Structure-Activity Relationship , Rolipram/chemistry , Thermodynamics
16.
Bioorg Med Chem ; 25(20): 5709-5717, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28888661

ABSTRACT

Improvement of subtype selectivity of an inhibitor's binding activity using the conformational restriction approach has become an effective strategy in drug discovery. In this study, we applied this approach to PDE4 inhibitors and designed a series of novel oxazolidinone-fused 1,2,3,4-tetrahydroisoquinoline derivatives as conformationally restricted analogues of rolipram. The bioassay results demonstrated the oxazolidinone-fused tetrahydroisoquinoline derivatives exhibited moderate to good inhibitory activity against PDE4B and high selectivity for PDE4B/PDE4D. Among these derivatives, compound 12 showed both the strongest inhibition activity (IC50=0.60µM) as well as good selectivity against PDE4B and good in vivo activity in animal models of asthma/COPD and sepsis induced by LPS. The primary SAR study showed that restricting the conformation of the catechol moiety in rolipram with the scaffold of oxazolidinone-fused tetrahydroisoquinoline could lead to an increase in selectivity for PDE4B over PDE4D, which was consistent with the observed docking simulation.


Subject(s)
Drug Design , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/pharmacology , Animals , Asthma/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Disease Models, Animal , Humans , Inhibitory Concentration 50 , Molecular Conformation , Molecular Docking Simulation , Phosphodiesterase 4 Inhibitors/chemical synthesis , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Rolipram/chemistry , Rolipram/pharmacology , Rolipram/therapeutic use , Sepsis/drug therapy , Structure-Activity Relationship , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/therapeutic use
17.
Am J Physiol Lung Cell Mol Physiol ; 310(8): L747-58, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26773068

ABSTRACT

Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond ß-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6-8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCß enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCß and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction.


Subject(s)
Flavonoids/pharmacology , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Phospholipase C beta/antagonists & inhibitors , Animals , Aorta/drug effects , Aorta/physiopathology , Asthma/drug therapy , Bronchoconstriction/drug effects , Calcium Signaling , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Drug Evaluation, Preclinical , Flavonoids/chemistry , Flavonols , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Male , Mice , Muscle Contraction , Muscle, Smooth/physiology , Muscle, Smooth/physiopathology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/pharmacology , Phospholipase C beta/physiology
18.
J Pharmacol Exp Ther ; 358(3): 413-22, 2016 09.
Article in English | MEDLINE | ID: mdl-27353073

ABSTRACT

Psoriasis and atopic dermatitis are skin diseases affecting millions of patients. Here, we characterize benzoxaborole phosphodiesterase (PDE)-4 inhibitors, a new topical class that has demonstrated therapeutic benefit for psoriasis and atopic dermatitis in phase 2 or phase 3 studies. Crisaborole [AN2728, 4-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)benzonitrile], compd2 [2-ethoxy-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)nicotinonitrile], compd3 [6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-(2-isopropoxyethoxy)nicotinonitrile], and compd4 [5-chloro-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-((4-oxopentyl)oxy)nicotinonitrile] are potent PDE4 inhibitors with similar affinity for PDE4 isoforms and equivalent inhibition on the catalytic domain and the full-length enzyme. These benzoxaboroles are less active on other PDE isozymes. Compd4 binds to the catalytic domain of PDE4B2 with the oxaborole group chelating the catalytic bimetal and overlapping with the phosphate in cAMP during substrate hydrolysis, and the interaction extends into the adenine pocket. In cell culture, benzoxaborole PDE4 inhibitors suppress the release of tumor necrosis factor-α, interleukin (IL)-23, IL-17, interferon-γ, IL-4, IL-5, IL-13, and IL-22, and these cytokines contribute to the pathologic changes in skin structure and barrier functions as well as immune dysregulation in atopic dermatitis and psoriasis. Treatment with compd3 or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate increases cAMP response element binding protein phosphorylation in human monocytes and decreases extracellular signal-regulated kinase phosphorylation in human T cells; these changes lead to reduced cytokine production and are among the mechanisms by which compd3 blocks cytokine release. Topical compd3 penetrates the skin and suppresses phorbol myristate acetate-induced IL-13, IL-22, IL-17F, and IL-23 transcription and calcipotriol-induced thymic stromal lymphopoietin expression in mouse skin. Skin thinning is a major dose-limiting side effect of glucocorticoids. By contrast, repeated application of compd3 did not thin mouse skin. These findings show the potential benefits and safety of benzoxaborole PDE4 inhibitors for the treatment of psoriasis and atopic dermatitis.


Subject(s)
Boron Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dermatitis, Atopic/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Psoriasis/drug therapy , Skin/drug effects , Skin/pathology , Administration, Topical , Animals , Boron Compounds/administration & dosage , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Catalytic Domain , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cytokines/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Female , Gene Expression Regulation/drug effects , Leukocytes/drug effects , Leukocytes/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Phosphodiesterase 4 Inhibitors/administration & dosage , Phosphodiesterase 4 Inhibitors/therapeutic use , Phosphorylation/drug effects , Psoriasis/metabolism , Psoriasis/pathology , Skin/metabolism , Thymic Stromal Lymphopoietin
19.
Anal Biochem ; 503: 41-9, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27033007

ABSTRACT

In the past decade, surface plasmon resonance (SPR) biosensor-based technology has been exploited more and more to characterize the interaction between drug targets and small-molecule modulators. Here, we report the successful application of SPR methodology for the analysis of small-molecule binding to two therapeutically relevant cAMP phosphodiesterases (PDEs), Trypanosoma brucei PDEB1 which is implicated in African sleeping sickness and human PDE4D which is implicated in a plethora of disease conditions including inflammatory pulmonary disorders such as asthma, chronic obstructive pulmonary disease and central nervous system (CNS) disorders. A protocol combining the use of directed capture using His-tagged PDE_CDs with covalent attachment to the SPR surface was developed. This methodology allows the determination of the binding kinetics of small-molecule PDE inhibitors and also allows testing their specificity for the two PDEs. The SPR-based assay could serve as a technology platform for the development of highly specific and high-affinity PDE inhibitors, accelerating drug discovery processes.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Phosphodiesterase Inhibitors/analysis , Phosphodiesterase Inhibitors/chemistry , Protozoan Proteins/chemistry , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , Surface Plasmon Resonance , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Binding Sites , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Humans , Protein Binding , Protozoan Proteins/metabolism , Substrate Specificity
20.
J Theor Biol ; 394: 117-126, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26804643

ABSTRACT

Pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulation studies have been performed, to explore the putative binding modes of 2-phenylpyrimidine series as PDE4B selective inhibitors. A five point pharmacophore model was developed using 87 molecules having pIC50 ranging from 8.52 to 5.07. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2)=0.918), cross validation coefficient (Q(2)=0.852), and F value (175) at 4 component PLS factor. The external validation indicated that our QSAR model possessed high predictive power (R(2)=0.70). The generated model was further validated by enrichment studies using the decoy test. To evaluate the effectiveness of docking protocol in flexible docking, we have selected crystallographic bound compound to validate our docking procedure as evident from root mean square deviation. A 10ns molecular dynamics simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Further, similar orientation was observed between the superposition of the conformations of 85 after MD simulation and best XP-docking pose; MD simulation and 3D-QSAR pose; best XP-docking and 3D-QSAR poses. Outcomes of the present study provide insight in designing novel molecules with better PDE4B selective inhibitory activity.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Molecular Docking Simulation , Phosphodiesterase 4 Inhibitors/chemistry , Pyrimidines/chemistry , Quantitative Structure-Activity Relationship , Least-Squares Analysis , Molecular Dynamics Simulation , Reproducibility of Results , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL