Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 151(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39206939

ABSTRACT

Shoot apical meristems (SAMs) continuously initiate organ formation and maintain pluripotency through dynamic genetic regulations and cell-to-cell communications. The activity of meristems directly affects the plant's structure by determining the number and arrangement of organs and tissues. We have taken a forward genetic approach to dissect the genetic pathway that controls cell differentiation around the SAM. The rice mutants, adaxial-abaxial bipolar leaf 1 and 2 (abl1 and abl2), produce an ectopic leaf that is fused back-to-back with the fourth leaf, the first leaf produced after embryogenesis. The abaxial-abaxial fusion is associated with the formation of an ectopic shoot meristem at the adaxial base of the fourth leaf primordium. We cloned the ABL1 and ABL2 genes of rice by mapping their chromosomal positions. ABL1 encodes OsHK6, a histidine kinase, and ABL2 encodes a transcription factor, OSHB3 (Class III homeodomain leucine zipper). Expression analyses of these mutant genes as well as OSH1, a rice ortholog of the Arabidopsis STM gene, unveiled a regulatory circuit that controls the formation of an ectopic meristem near the SAM at germination.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Meristem , Oryza , Plant Leaves , Plant Proteins , Meristem/genetics , Meristem/metabolism , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Cytokinins/metabolism , Cytokinins/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Mutation/genetics , Genes, Plant , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639600

ABSTRACT

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Subject(s)
Oryza , Oryza/genetics , Cytokinins/genetics , Purine Nucleosides , N-Glycosyl Hydrolases/genetics , Nucleosides , Cell Wall/genetics
3.
FASEB J ; 38(1): e23366, 2024 01.
Article in English | MEDLINE | ID: mdl-38102957

ABSTRACT

Cytokinins (CKs) are a class of growth-promoting signaling molecules that affect multiple cellular and developmental processes. These phytohormones are well studied in plants, but their presence continues to be uncovered in organisms spanning all kingdoms, which poses new questions about their roles and functions outside of plant systems. Cytokinin production can be initiated by one of two different biosynthetic enzymes, adenylate isopentenyltransfases (IPTs) or tRNA isopentenyltransferases (tRNA-IPTs). In this study, the social amoeba, Dictyostelium discoideum, was used to study the role of CKs by generating deletion and overexpression strains of its single adenylate-IPT gene, iptA. The life cycle of D. discoideum is unique and possesses both single- and multicellular stages. Vegetative amoebae grow and divide while food resources are plentiful, and multicellular development is initiated upon starvation, which includes distinct life cycle stages. CKs are produced in D. discoideum throughout its life cycle and their functions have been well studied during the later stages of multicellular development of D. discoideum. To investigate potential expanded roles of CKs, this study focused on vegetative growth and early developmental stages. We found that iptA-deficiency results in cytokinesis defects, and both iptA-deficiency and overexpression results in dysregulated tricarboxylic acid (TCA) cycle and amino acid metabolism, as well as increased levels of adenosine monophosphate (AMP). Collectively, these findings extend our understanding of CK function in amoebae, indicating that iptA loss and overexpression alter biological processes during vegetative growth that are distinct from those reported during later development.


Subject(s)
Dictyostelium , Dictyostelium/genetics , Cytokinesis , Cytokinins/genetics , Cytokinins/metabolism , RNA, Transfer/metabolism , Amino Acids/metabolism
4.
EMBO J ; 39(17): e104238, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32667089

ABSTRACT

Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine-tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re-organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin-sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.


Subject(s)
Arabidopsis/growth & development , Cell Differentiation , Cell Proliferation , Cytokinins/metabolism , Microtubules/metabolism , Plant Roots/growth & development , Animals , Arabidopsis/genetics , Cytokinins/genetics , Microtubules/genetics , Plant Roots/genetics
5.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 270-274, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814203

ABSTRACT

Cardiovascular diseases, particularly stroke, are a leading cause of morbidity and mortality worldwide. Genetic variations in genes associated with inflammation have been implicated in the pathogenesis of stroke. Interleukin-6 (IL-6), a pleiotropic cytokine with diverse biological functions, has been linked to cardiovascular diseases and stroke. The relationship between cerebral ischemia and inflammation is well-established, suggesting a potential role for IL-6 polymorphisms in stroke susceptibility. In the context of this study, the focus is on evaluating a pleiotropic cytokinin polymorphism, specifically IL-6-572GC, and its association with cerebral infarction in a Chinese male population. The investigation aims to elucidate the genetic correlation between IL-6 polymorphisms and stroke risk, particularly in the context of hemorrhagic subtype of stroke. The study utilizes a case-control design, comparing stroke patients with healthy controls while adjusting for classic risk factors associated with stroke. The methodology employed includes the detection of IL-6 polymorphisms using Real Time Taq Man Probe and PCR-RFLP methods. The results suggest an association between the IL-6-572GC genotype and an increased risk of stroke, particularly in the hemorrhagic subtype. However, the relationship between another IL-6 polymorphism, IL-6-174GC, and stroke remains inconclusive, except for a potential correlation with one allele. The findings underscore the potential role of IL-6-572GC genotype as a genetic risk factor for stroke in the Chinese male population under study. Further research involving larger cohorts is warranted to validate these results and clarify the role of IL-6-174GC polymorphism in stroke susceptibility. Understanding the genetic underpinnings of stroke can provide valuable insights for risk assessment and personalized treatment strategies in affected populations.


Subject(s)
Asian People , Cerebral Infarction , Genetic Predisposition to Disease , Interleukin-6 , Polymorphism, Single Nucleotide , Aged , Humans , Male , Middle Aged , Asian People/genetics , Case-Control Studies , Cerebral Infarction/genetics , China , Cytokinins/metabolism , Cytokinins/genetics , East Asian People , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genotype , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
6.
PLoS Genet ; 17(4): e1009537, 2021 04.
Article in English | MEDLINE | ID: mdl-33901177

ABSTRACT

Morphogenesis and differentiation are important stages in organ development and shape determination. However, how they are balanced and tuned during development is not fully understood. In the compound leaved tomato, an extended morphogenesis phase allows for the initiation of leaflets, resulting in the compound form. Maintaining a prolonged morphogenetic phase in early stages of compound-leaf development in tomato is dependent on delayed activity of several factors that promote differentiation, including the CIN-TCP transcription factor (TF) LA, the MYB TF CLAU and the plant hormone Gibberellin (GA), as well as on the morphogenesis-promoting activity of the plant hormone cytokinin (CK). Here, we investigated the genetic regulation of the morphogenesis-differentiation balance by studying the relationship between LA, CLAU, TKN2, CK and GA. Our genetic and molecular examination suggest that LA is expressed earlier and more broadly than CLAU and determines the developmental context of CLAU activity. Genetic interaction analysis indicates that LA and CLAU likely promote differentiation in parallel genetic pathways. These pathways converge downstream on tuning the balance between CK and GA. Comprehensive transcriptomic analyses support the genetic data and provide insights into the broader molecular basis of differentiation and morphogenesis processes in plants.


Subject(s)
Cell Differentiation/genetics , Cytokinins/genetics , Gibberellins/metabolism , Morphogenesis/genetics , Cytokinins/metabolism , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Development/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics
7.
Plant Cell Physiol ; 64(3): 284-290, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36331512

ABSTRACT

Shoot stem cells act as the source of the aboveground parts of flowering plants. A precise regulatory basis is required to ensure that plant stem cells show the right status during the stages of proliferation, senescence and cell death. Over the past few decades, the genetic circuits controlling stem cell fate, including the regulatory pathways of establishment, maintenance and differentiation, have been largely revealed. However, the morphological changes and molecular mechanisms of the final stages of stem cells, which are represented by senescence and cell death, have been less studied. The senescence and death of shoot stem cells are under the control of a complex series of pathways that integrate multiple internal and external signals. Given the crucial roles of shoot stem cells in influencing plant longevity and crop yields, researchers have attempted to uncover details of stem cell senescence and death. Recent studies indicate that stem cell activity arrest is controlled by the FRUITFULL-APETALA2 pathway and the plant hormones auxin and cytokinin, while the features of senescent and dead shoot apical stem cells have also been described, with dynamic changes in reactive oxygen species implicated in stem cell death. In this review, we highlight the recent breakthroughs that have enriched our understanding of senescence and cell death processes in plant stem cells.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Senescence , Plant Shoots , Stem Cells , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/genetics , Cytokinins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Meristem/genetics , Meristem/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Senescence/genetics , Plant Senescence/physiology , Plant Shoots/genetics , Plant Shoots/metabolism , Plant Shoots/physiology , Regulated Cell Death/genetics , Regulated Cell Death/physiology , Stem Cells/metabolism , Stem Cells/physiology
8.
Plant Physiol ; 188(3): 1604-1616, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34893912

ABSTRACT

Efficient foraging by plant roots relies on the ability to sense multiple physical and chemical cues in soil and to reorient growth accordingly (tropism). Root tropisms range from sensing gravity (gravitropism), light (phototropism), water (hydrotropism), touch (thigmotropism), and more. Electrotropism, also known as galvanotropism, is the phenomenon of aligning growth with external electric fields and currents. Although root electrotropism has been observed in a few species since the end of the 19th century, its molecular and physical mechanisms remain elusive, limiting its comparison with the more well-defined sensing pathways in plants. Here, we provide a quantitative and molecular characterization of root electrotropism in the model system Arabidopsis (Arabidopsis thaliana), showing that it does not depend on an asymmetric distribution of the plant hormone auxin, but instead requires the biosynthesis of a second hormone, cytokinin. We also show that the dose-response kinetics of the early steps of root electrotropism follows a power law analogous to the one observed in some physiological reactions in animals. Future studies involving more extensive molecular and quantitative characterization of root electrotropism would represent a step toward a better understanding of signal integration in plants and would also serve as an independent outgroup for comparative analysis of electroreception in animals and fungi.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Cytokinins/biosynthesis , Electricity , Plant Roots/growth & development , Plant Roots/metabolism , Tropism/drug effects , Arabidopsis/genetics , Cytokinins/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Plant Roots/genetics
9.
Plant Physiol ; 188(1): 560-575, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34599592

ABSTRACT

Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Cytokinins/genetics , Cytokinins/metabolism , Medicago truncatula/genetics , Medicago truncatula/physiology , Plant Root Nodulation/genetics , Root Nodules, Plant/metabolism , Symbiosis/genetics , Alkyl and Aryl Transferases/genetics , Gene Expression Regulation, Plant , Genes, Plant , Nitrogen Fixation/genetics , Nitrogen Fixation/physiology , Organogenesis/genetics , Plant Roots/genetics , Plant Roots/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/growth & development , Sinorhizobium meliloti/physiology , Symbiosis/physiology
10.
Plant Cell ; 32(9): 2763-2779, 2020 09.
Article in English | MEDLINE | ID: mdl-32616661

ABSTRACT

Grain number is a flexible trait that strongly contributes to grain yield. In rice (Oryza sativa), the OsMKKK10-OsMKK4-OsMPK6 cascade, which is negatively regulated by the dual-specificity phosphatase GSN1, coordinates the trade-off between grain number and grain size. However, the specific components upstream and downstream of the GSN1-MAPK module that regulate spikelet number per panicle remain obscure. Here, we report that ERECTA1 (OsER1), a negative regulator of spikelet number per panicle, acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade and that the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway is required to maintain cytokinin homeostasis. OsMPK6 directly interacts with and phosphorylates the zinc finger transcription factor DST to enhance its transcriptional activation of CYTOKININ OXIDASE2 (OsCKX2), indicating that the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle morphology by regulating cytokinin metabolism. Furthermore, overexpression of either DST or OsCKX2 rescued the spikelet number phenotype of the oser1, osmkkk10, osmkk4, and osmpk6 mutants, suggesting that the DST-OsCKX2 module genetically functions downstream of the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway. These findings reveal specific crosstalk between a MAPK signaling pathway and cytokinin metabolism, shedding light on how developmental signals modulate phytohormone homeostasis to shape the inflorescence.


Subject(s)
Cytokinins/metabolism , Oryza/physiology , Plant Proteins/metabolism , Cytokinins/genetics , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Mutation , Oryza/metabolism , Phosphorylation , Plant Proteins/genetics , Plants, Genetically Modified , Signal Transduction
11.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446040

ABSTRACT

Cytokinin is widely involved in the regulation of plant growth, but its pathway-related genes have not been reported in Moso bamboo. In this study, a total of 129 candidate sequences were identified by bioinformatic methods. These included 15 IPT family genes, 19 LOG family genes, 22 HK family genes, 11 HP family genes and 62 RR family genes. Phylogenetic analysis revealed that the cytokinin pathway was closely related to rice, and evolutionary pattern analysis found that most of the genes have syntenic relationship with rice-related genes. The Moso bamboo cytokinin pathway was evolutionarily conservative and mainly underwent purifying selection, and that gene family expansion was mainly due to whole-gene duplication events. Analysis of transcriptome data revealed a tissue-specific expression pattern of Moso bamboo cytokinin family genes, with auxin and gibberellin response patterns. Analysis of co-expression patterns at the developmental stages of Moso bamboo shoots revealed the existence of a phytohormone co-expression pattern centered on cytokinin signaling genes. The auxin signaling factor PheARF52 was identified by yeast one-hybrid assay as regulating the PheRR3 gene through a P-box element in the PheRR3 promoter region. Auxin and cytokinin signaling crosstalk to regulate Moso bamboo growth. Overall, we systematically identified and analyzed key gene families of the cytokinin pathway in Moso bamboo and obtained key factors for auxin and cytokinin crosstalk, laying the foundation for the study of hormone regulation in Moso bamboo.


Subject(s)
Plant Growth Regulators , Poaceae , Plant Growth Regulators/metabolism , Phylogeny , Poaceae/genetics , Indoleacetic Acids/metabolism , Cytokinins/genetics , Cytokinins/metabolism , Gene Expression Regulation, Plant
12.
Plant J ; 108(6): 1690-1703, 2021 12.
Article in English | MEDLINE | ID: mdl-34628678

ABSTRACT

The riboflavin derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes in multiple cellular processes. Characterizing mutants with impaired riboflavin metabolism can help clarify the role of riboflavin in plant development. Here, we characterized a rice (Oryza sativa) white and lesion-mimic (wll1) mutant, which displays a lesion-mimic phenotype with white leaves, chlorophyll loss, chloroplast defects, excess reactive oxygen species (ROS) accumulation, decreased photosystem protein levels, changes in expression of chloroplast development and photosynthesis genes, and cell death. Map-based cloning and complementation test revealed that WLL1 encodes lumazine synthase, which participates in riboflavin biosynthesis. Indeed, the wll1 mutant showed riboflavin deficiency, and application of FAD rescued the wll1 phenotype. In addition, transcriptome analysis showed that cytokinin metabolism was significantly affected in wll1 mutant, which had increased cytokinin and δ-aminolevulinic acid contents. Furthermore, WLL1 and riboflavin synthase (RS) formed a complex, and the rs mutant had a similar phenotype to the wll1 mutant. Taken together, our findings revealed that WLL1 and RS play pivotal roles in riboflavin biosynthesis, which is necessary for ROS balance and chloroplast development in rice.


Subject(s)
Chloroplasts/physiology , Multienzyme Complexes/metabolism , Oryza/physiology , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Cytokinins/genetics , Cytokinins/metabolism , DNA Damage , Evolution, Molecular , Flavin-Adenine Dinucleotide/genetics , Flavin-Adenine Dinucleotide/metabolism , Gene Expression Regulation, Plant , Multienzyme Complexes/genetics , Mutation , Phenotype , Phylogeny , Plant Leaves/cytology , Plant Leaves/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Riboflavin/genetics , Riboflavin/metabolism , Two-Hybrid System Techniques
13.
Plant Physiol ; 186(3): 1734-1746, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33909905

ABSTRACT

The cytokinin (CK) phytohormones have long been known to activate cell proliferation in plants. However, how CKs regulate cell division and cell expansion remains unclear. Here, we reveal that a basic helix-loop-helix transcription factor, CYTOKININ-RESPONSIVE GROWTH REGULATOR (CKG), mediates CK-dependent regulation of cell expansion and cell cycle progression in Arabidopsis thaliana. The overexpression of CKG increased cell size in a ploidy-independent manner and promoted entry into the S phase of the cell cycle, especially at the seedling stage. Furthermore, CKG enhanced organ growth in a pleiotropic fashion, from embryogenesis to reproductive stages, particularly of cotyledons. In contrast, ckg loss-of-function mutants exhibited smaller cotyledons. CKG mainly regulates the expression of genes involved in the regulation of the cell cycle including WEE1. We propose that CKG provides a regulatory module that connects cell cycle progression and organ growth to CK responses.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Cell Cycle/genetics , Cell Division/genetics , Cell Proliferation/genetics , Cytokinins/genetics , Cytokinins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Plants, Genetically Modified
14.
Proc Natl Acad Sci U S A ; 116(28): 14319-14324, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31235564

ABSTRACT

Strigolactones (SLs), a group of terpenoid lactones derived from carotenoids, are plant hormones that control numerous aspects of plant development. Although the framework of SL signaling that the repressor DWARF 53 (D53) could be SL-dependently degraded via the SL receptor D14 and F-box protein D3 has been established, the downstream response genes to SLs remain to be elucidated. Here we show that the cytokinin (CK) content is dramatically increased in shoot bases of the rice SL signaling mutant d53 By examining transcript levels of all the CK metabolism-related genes after treatment with SL analog GR24, we identified CYTOKININ OXIDASE/DEHYDROGENASE 9 (OsCKX9) as a primary response gene significantly up-regulated within 1 h of treatment in the wild type but not in d53 We also found that OsCKX9 functions as a cytosolic and nuclear dual-localized CK catabolic enzyme, and that the overexpression of OsCKX9 suppresses the browning of d53 calli. Both the CRISPR/Cas9-generated OsCKX9 mutants and OsCKX9-overexpressing transgenic plants showed significant increases in tiller number and decreases in plant height and panicle size, suggesting that the homeostasis of OsCKX9 plays a critical role in regulating rice shoot architecture. Moreover, we identified the CK-inducible rice type-A response regulator OsRR5 as the secondary SL-responsive gene, whose expression is significantly repressed after 4 h of GR24 treatment in the wild type but not in osckx9 These findings reveal a comprehensive plant hormone cross-talk in which SL can induce the expression of OsCKX9 to down-regulate CK content, which in turn triggers the response of downstream genes.


Subject(s)
Cytokinins/metabolism , F-Box Proteins/genetics , Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Oxidoreductases/genetics , Plant Growth Regulators/genetics , Cytokinins/genetics , F-Box Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Lactones/metabolism , Oryza/genetics , Oryza/metabolism , Oxidoreductases/metabolism , Plant Growth Regulators/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Protein Binding/genetics , Signal Transduction/genetics , Transcriptional Activation/genetics
15.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3749-3755, 2022 Jul.
Article in Zh | MEDLINE | ID: mdl-35850831

ABSTRACT

Lonicera japonica is a ubiquitous medicinal species in China.Winter pruning has long been used to improve its quality and yield, but the mechanism is rarely studied.Therefore, in this study, the growth phenotypes of L.japonica processed with different pruning methods were observed and the yield-and quality-boosting mechanism of pruning was analyzed.Specifically, the young shoots of the three-year old L.japonica were cut to different degrees(heavy pruning, mild pruning, and no pruning, respectively) in winter in 2020 and 2021, respectively, and the growth phenotypes, hormone content, and gene expression of the lateral buds at the sprouting stage and young shoots at the anthesis stage in the next year were analyzed.The result showed that the length, flower bud number, internode length, and node number of young shoots in the next year were in the order of heavy pruning>mild pruning>no pruning.The content of auxin and zeatin in apical buds of young shoots at the anthesis stage was the highest in the heavy pruning group, followed by the mild pruning group, and coming in the third was the no pruning group.The content of auxin and zeatin in lateral buds at the sprouting stage was in the order of no pruning>mild pruning>heavy pruning.Transcriptome analysis of the lateral buds at sprouting stage yielded the differentially expressed genes related to auxin and cytokinin, such as Lj1A1163T36, Lj3A719T115, Lj7C657T7, Lj9C505T15, and Lj9A505T70.In conclusion, the growth phenotypes of young shoots of L.japonica processed with different pruning methods in winter were related to the difference in hormone content in the apical buds.Therefore, winter pruning influenced the content of auxin and cytokinin in new shoots of L.japonica and further regulated the expression of hormone-related genes, thereby promoting shoot growth and increasing the yield of L.japonica.


Subject(s)
Lonicera , Plant Growth Regulators , Cytokinins/genetics , Cytokinins/metabolism , Flowers/genetics , Flowers/metabolism , Hormones/metabolism , Indoleacetic Acids/metabolism , Lonicera/genetics , Lonicera/metabolism , Plant Shoots/genetics , Zeatin/metabolism
16.
Development ; 145(14)2018 07 20.
Article in English | MEDLINE | ID: mdl-29967282

ABSTRACT

Mutual interactions of the phytohormones, cytokinins and auxin determine root or shoot identity during postembryonic de novo organogenesis in plants. However, our understanding of the role of hormonal metabolism and perception during early stages of cell fate reprogramming is still elusive. Here we show that auxin activates root formation, whereas cytokinins mediate early loss of the root identity, primordia disorganisation and initiation of shoot development. Exogenous and endogenous cytokinins influence the initiation of newly formed organs, as well as the pace of organ development. The process of de novo shoot apical meristem establishment is accompanied by accumulation of endogenous cytokinins, differential regulation of genes for individual cytokinin receptors, strong activation of AHK4-mediated signalling and induction of the shoot-specific homeodomain regulator WUSCHEL. The last is associated with upregulation of isopentenyladenine-type cytokinins, revealing higher shoot-forming potential when compared with trans-zeatin. Moreover, AHK4-controlled cytokinin signalling negatively regulates the root stem cell organiser WUSCHEL RELATED HOMEOBOX 5 in the root quiescent centre. We propose an important role for endogenous cytokinin biosynthesis and AHK4-mediated cytokinin signalling in the control of de novo-induced organ identity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Cytokinins/metabolism , Meristem/embryology , Organogenesis, Plant/physiology , Protein Kinases/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction/physiology , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cytokinins/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Meristem/cytology , Protein Kinases/genetics , Receptors, Cell Surface/genetics
17.
Development ; 145(3)2018 02 13.
Article in English | MEDLINE | ID: mdl-29361563

ABSTRACT

As originally proposed by Goethe in 1790, floral organs are derived from leaf-like structures. The conversion of leaves into different types of floral organ is mediated by floral homeotic proteins, which, as described by the ABCE model of flower development, act in a combinatorial manner. However, how these transcription factors bring about this transformation process is not well understood. We have previously shown that floral homeotic proteins are involved in suppressing the formation of branched trichomes, a hallmark of leaf development, on reproductive floral organs of Arabidopsis Here, we present evidence that the activities of the C function gene AGAMOUS (AG) and the related SHATTERPROOF1/2 genes are superimposed onto the regulatory network that controls the distribution of trichome formation in an age-dependent manner. We show that AG regulates cytokinin responses and genetically interacts with the organ polarity gene KANADI1 to suppress trichome initiation on gynoecia. Thus, our results show that parts of the genetic program for leaf development remain active during flower formation but have been partially rewired through the activities of the floral homeotic proteins.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , AGAMOUS Protein, Arabidopsis/genetics , AGAMOUS Protein, Arabidopsis/metabolism , Arabidopsis/growth & development , Cytokinins/genetics , Cytokinins/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Models, Biological , Mutation , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plants, Genetically Modified , Transcription Factors/genetics , Transcription Factors/metabolism , Trichomes/growth & development , Trichomes/metabolism
18.
Plant Cell Rep ; 40(8): 1367-1375, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33047229

ABSTRACT

KEY MESSAGE: We reveal the onset and dynamic tissue-specific cytokinin signaling domains and functional importance of auxin in the auxin-cytokinin interaction domains in shaping root architecture in the economically important rice plant. Plant hormones such as auxin and cytokinin are central regulators of root organogenesis. Typical in the grass species, the root system in rice is primarily composed of post-embryonic adventitious/crown roots (ARs/CRs). Antagonistic auxin-cytokinin activities mutually balance each other to ensure proper root development. Cytokinin has been shown to inhibit crown root initiation in rice; albeit, the responsive domains remain elusive during the initiation and outgrowth of crown root primordia (CRP). Here, we show the cytokinin response domains during various stages of CRP development. RNA-RNA in situ hybridization and protein immunohistochemistry studies of the reporter gene expressed under the cytokinin responsive synthetic promoter revealed detailed spatio-temporal cytokinin signaling domains in the developing CRP. Furthermore, rice lines genetically depleted for endogenous auxin in the cytokinin responsive domains provided insight into the functional importance of auxin signaling during crown root development. Thus, our study demonstrates the onset and dynamic tissue-specific cytokinin response and functional significance of auxin-cytokinin interaction during root architecture formation in rice, a model grass species.


Subject(s)
Cytokinins/metabolism , Indoleacetic Acids/metabolism , Oryza/metabolism , Plant Roots/growth & development , Cytokinins/genetics , Oryza/genetics , Oryza/growth & development , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plants, Genetically Modified , Signal Transduction
19.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575868

ABSTRACT

Temperature is an important factor that largely affects the patterns of shoot branching in plants. However, the effect and mechanism of temperature on axillary bud development in chrysanthemum remains poorly defined. The purpose of the present study is to investigate the effect of high temperature on the axillary bud growth and the mechanism of axillary bud formation in chrysanthemum. Decapitation experiments combined with the transcriptome analysis were designed. Results showed that the axillary bud length was significantly inhibited by high temperature. Decapitation of primary shoot (primary decapitation) resulted in slower growth of axillary buds (secondary buds) under 35 °C. However, secondary decapitation resulted in complete arrest of tertiary buds at high temperature. These results demonstrated that high temperature not only inhibited axillary bud formation but also retarded bud outgrowth in chrysanthemum. Comparative transcriptome suggested differentially expressed gene sets and identified important modules associated with bud formation. This research helped to elucidate the regulatory mechanism of high temperature on axillary bud growth, especially bud formation in chrysanthemum. Meanwhile, in-depth studies of this imperative temperature signaling can offer the likelihood of vital future applications in chrysanthemum breeding and branching control.


Subject(s)
Chrysanthemum/embryology , Chrysanthemum/genetics , Chrysanthemum/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Plant Growth Regulators/genetics , Cytokinins/genetics , Gene Expression Profiling , Genes, Plant , Homeostasis , Hot Temperature , Indoleacetic Acids , Plant Proteins/genetics , Plant Shoots/genetics , RNA-Seq , Sucrose/chemistry , Transcriptome
20.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072151

ABSTRACT

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


Subject(s)
Arabidopsis/physiology , Arabidopsis/radiation effects , Plant Development/radiation effects , Sound , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/genetics , Cytokinins/metabolism , Gene Expression Regulation, Plant , Phenotype , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Seeds/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL