Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.233
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 92: 1-13, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37001139

ABSTRACT

In this autobiographical article, I reflect on my Swedish background. Then I discuss endogenous DNA alterations and the base excision repair pathway and alternative repair strategies for some unusual DNA lesions. Endogenous DNA damage, such as loss of purine bases and cytosine deamination, is proposed as a major source of cancer-causing mutations.


Subject(s)
DNA Glycosylases , DNA Repair , DNA Damage , DNA/genetics , DNA/metabolism , DNA Glycosylases/metabolism
2.
Annu Rev Biochem ; 88: 163-190, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31220976

ABSTRACT

Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox cofactor in biology. Using DNA electrochemistry, we find that binding of the DNA polyanion promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to a ∼500-fold increase in DNA-binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced [4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport (DNA CT) chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated, with possible roles for the redox switch highlighted. A model is described where repair proteins may signal one another using DNA-mediated charge transport as a first step in their search for lesions. The redox switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA polymerase δ, the redox switch provides a means to modulate replication in response to oxidative stress. We thus describe redox signaling interactions of DNA-processing [4Fe4S] enzymes, as well as the most interesting potential players to consider in delineating new DNA-mediated redox signaling networks.


Subject(s)
DNA Glycosylases/chemistry , DNA Helicases/chemistry , DNA-Directed DNA Polymerase/chemistry , DNA/chemistry , Endonucleases/chemistry , Genome , Iron-Sulfur Proteins/chemistry , Animals , Bacteria/genetics , Bacteria/metabolism , DNA/metabolism , DNA/ultrastructure , DNA Damage , DNA Glycosylases/metabolism , DNA Glycosylases/ultrastructure , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/ultrastructure , Electron Spin Resonance Spectroscopy , Endonucleases/metabolism , Endonucleases/ultrastructure , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/ultrastructure , Oxidation-Reduction , Protein Binding , Signal Transduction , Thermodynamics
3.
Annu Rev Biochem ; 88: 137-162, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31220977

ABSTRACT

Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.


Subject(s)
DNA Glycosylases/chemistry , DNA-Directed DNA Polymerase/chemistry , DNA/chemistry , Endonucleases/chemistry , Genome , Ligases/chemistry , Lyases/chemistry , DNA/metabolism , DNA/ultrastructure , DNA Damage , DNA Glycosylases/metabolism , DNA Glycosylases/ultrastructure , DNA Repair , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/ultrastructure , Endonucleases/metabolism , Endonucleases/ultrastructure , Eukaryota/genetics , Eukaryota/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/enzymology , Genomic Instability , Humans , Ligases/metabolism , Ligases/ultrastructure , Lyases/metabolism , Lyases/ultrastructure , Models, Molecular , Mutagenesis , Nucleic Acid Conformation , Protein Conformation
4.
Nature ; 629(8011): 410-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38632404

ABSTRACT

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.


Subject(s)
Bacteria , Bacteriophage T4 , DNA Glycosylases , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Bacteria/immunology , Bacteria/virology , Bacteriophage T4/growth & development , Bacteriophage T4/immunology , Bacteriophage T4/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Escherichia coli/genetics , Escherichia coli/virology , Gene Library , Metagenomics/methods , Soil Microbiology , Virus Replication
5.
Cell ; 152(5): 1146-59, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23434322

ABSTRACT

Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.


Subject(s)
5-Methylcytosine/analysis , Cytosine/analogs & derivatives , DNA Methylation , 5-Methylcytosine/metabolism , Animals , Brain/cytology , Brain/metabolism , Cytosine/analysis , Cytosine/metabolism , DNA Glycosylases/metabolism , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/metabolism , Kruppel-Like Factor 4 , Mass Spectrometry , Mice , Oxidation-Reduction , Proto-Oncogene Proteins/metabolism , Regulatory Factor X Transcription Factors , Stem Cells/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
6.
Nature ; 606(7916): 930-936, 2022 06.
Article in English | MEDLINE | ID: mdl-35477155

ABSTRACT

Chromothripsis is a catastrophic mutational process that promotes tumorigenesis and causes congenital disease1-4. Chromothripsis originates from aberrations of nuclei called micronuclei or chromosome bridges5-8. These structures are associated with fragile nuclear envelopes that spontaneously rupture9,10, leading to DNA damage when chromatin is exposed to the interphase cytoplasm. Here we identify a mechanism explaining a major fraction of this DNA damage. Micronuclei accumulate large amounts of RNA-DNA hybrids, which are edited by adenine deaminases acting on RNA (ADAR enzymes) to generate deoxyinosine. Deoxyinosine is then converted into abasic sites by a DNA base excision repair (BER) glycosylase, N-methyl-purine DNA glycosylase11,12 (MPG). These abasic sites are cleaved by the BER endonuclease, apurinic/apyrimidinic endonuclease12 (APE1), creating single-stranded DNA nicks that can be converted to DNA double strand breaks by DNA replication or when closely spaced nicks occur on opposite strands13,14. This model predicts that MPG should be able to remove the deoxyinosine base from the DNA strand of RNA-DNA hybrids, which we demonstrate using purified proteins and oligonucleotide substrates. These findings identify a mechanism for fragmentation of micronuclear chromosomes, an important step in generating chromothripsis. Rather than breaking any normal chromosome, we propose that the eukaryotic cytoplasm only damages chromosomes with pre-existing defects such as the DNA base abnormality described here.


Subject(s)
Chromosomes , Chromothripsis , Cytoplasm , DNA Damage , DNA Repair , Chromatin/metabolism , Chromatin/pathology , Chromosomes/metabolism , Cytoplasm/metabolism , DNA/metabolism , DNA Glycosylases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , RNA/metabolism
7.
Nature ; 600(7888): 324-328, 2021 12.
Article in English | MEDLINE | ID: mdl-34819670

ABSTRACT

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Subject(s)
B-Lymphocytes , DNA Glycosylases , DNA Mismatch Repair , Immunoglobulin Class Switching , Membrane Proteins , Mutation , Neoplasm Proteins , Somatic Hypermutation, Immunoglobulin , Animals , Female , Humans , Mice , B-Lymphocytes/metabolism , CRISPR-Cas Systems , DNA Glycosylases/antagonists & inhibitors , DNA Glycosylases/metabolism , Epistasis, Genetic , HEK293 Cells , Immunoglobulin Class Switching/genetics , Immunoglobulin Switch Region/genetics , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Somatic Hypermutation, Immunoglobulin/genetics
8.
Mol Cell ; 75(1): 117-130.e6, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31101499

ABSTRACT

Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Glycosylases/genetics , DNA Repair/radiation effects , Genomic Instability/radiation effects , Guanine/analogs & derivatives , Telomere/radiation effects , Cell Division/radiation effects , Cell Line, Tumor , Cell Survival/radiation effects , DNA Damage , DNA Glycosylases/deficiency , DNA Replication/radiation effects , Gene Expression , Guanine/agonists , Guanine/biosynthesis , HeLa Cells , Humans , Light/adverse effects , Micronuclei, Chromosome-Defective/radiation effects , Optogenetics , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoblasts/radiation effects , Oxidative Stress/radiation effects , Singlet Oxygen/agonists , Singlet Oxygen/metabolism , Telomere/metabolism , Telomere Homeostasis/radiation effects
9.
Proc Natl Acad Sci U S A ; 121(27): e2402422121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923984

ABSTRACT

Maintenance of DNA integrity is essential to all forms of life. DNA damage generated by reaction with genotoxic chemicals results in deleterious mutations, genome instability, and cell death. Pathogenic bacteria encounter several genotoxic agents during infection. In keeping with this, the loss of DNA repair networks results in virulence attenuation in several bacterial species. Interstrand DNA crosslinks (ICLs) are a type of DNA lesion formed by covalent linkage of opposing DNA strands and are particularly toxic as they interfere with replication and transcription. Bacteria have evolved specialized DNA glycosylases that unhook ICLs, thereby initiating their repair. In this study, we describe AlkX, a DNA glycosylase encoded by the multidrug resistant pathogen Acinetobacter baumannii. AlkX exhibits ICL unhooking activity similar to that of its Escherichia coli homolog YcaQ. Interrogation of the in vivo role of AlkX revealed that its loss sensitizes cells to DNA crosslinking and impairs A. baumannii colonization of the lungs and dissemination to distal tissues during pneumonia. These results suggest that AlkX participates in A. baumannii pathogenesis and protects the bacterium from stress conditions encountered in vivo. Consistent with this, we found that acidic pH, an environment encountered during host colonization, results in A. baumannii DNA damage and that alkX is induced by, and contributes to, defense against acidic conditions. Collectively, these studies reveal functions for a recently described class of proteins encoded in a broad range of pathogenic bacterial species.


Subject(s)
Acinetobacter baumannii , DNA Damage , DNA Glycosylases , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/metabolism , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , DNA Repair , Acinetobacter Infections/microbiology , Acinetobacter Infections/pathology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Mice , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Virulence , Escherichia coli/genetics , Escherichia coli/metabolism
10.
Nucleic Acids Res ; 52(9): 5107-5120, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38554113

ABSTRACT

Sirtuin 2 (SIRT2) regulates the maintenance of genome integrity by targeting pathways of DNA damage response and homologous recombination repair. However, whether and how SIRT2 promotes base excision repair (BER) remain to be determined. Here, we found that independent of its catalytic activity SIRT2 interacted with the critical glycosylase OGG1 to promote OGG1 recruitment to its own promoter upon oxidative stress, thereby enhancing OGG1 promoter activity and increasing BER efficiency. Further studies revealed that SIRT2 was phosphorylated on S46 and S53 by ATM/ATR upon oxidative stress, and SIRT2 phosphorylation enhanced the SIRT2-OGG1 interaction and mediated the stimulatory effect of SIRT2 on OGG1 promoter activity. We also characterized 37 cancer-derived SIRT2 mutants and found that 5 exhibited the loss of the stimulatory effects on OGG1 transcription. Together, our data reveal that SIRT2 acts as a tumor suppressor by promoting OGG1 transcription and increasing BER efficiency in an ATM/ATR-dependent manner.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Glycosylases , DNA Repair , Sirtuin 2 , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Humans , Sirtuin 2/metabolism , Sirtuin 2/genetics , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Phosphorylation , Promoter Regions, Genetic , Oxidative Stress , Transcriptional Activation , HEK293 Cells , DNA Damage , Transcription, Genetic , Cell Line, Tumor , Excision Repair
11.
J Biol Chem ; 300(9): 107579, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025455

ABSTRACT

NEIL1 is a DNA glycosylase that recognizes and initiates base excision repair of oxidized bases. The ubiquitous ssDNA binding scaffolding protein, replication protein A (RPA), modulates NEIL1 activity in a manner that depends on DNA structure. Interaction between NEIL1 and RPA has been reported, but the molecular basis of this interaction has yet to be investigated. Using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we show that NEIL1 interacts with RPA through two contact points. An interaction with the RPA32C protein recruitment domain was mapped to a motif in the common interaction domain (CID) of NEIL1 and a dissociation constant (Kd) of 200 nM was measured. A substantially weaker secondary interaction with the tandem RPA70AB ssDNA binding domains was also mapped to the CID. Together these two contact points reveal NEIL1 has a high overall affinity (Kd ∼ 20 nM) for RPA. A homology model of the complex of RPA32C with the NEIL1 RPA binding motif in the CID was generated and used to design a set of mutations in NEIL1 to disrupt the interaction, which was confirmed by ITC. The mutant NEIL1 remains catalytically active against a thymine glycol lesion in duplex DNA in vitro. Testing the functional effect of disrupting the NEIL1-RPA interaction in vivo using a Fluorescence Multiplex-Host Cell Reactivation (FM-HCR) reporter assay revealed an unexpected role for NEIL1 in nucleotide excision repair. These findings are discussed in the context of the role of NEIL1 in replication-associated repair.


Subject(s)
DNA Glycosylases , DNA Repair , Protein Binding , Replication Protein A , Replication Protein A/metabolism , Replication Protein A/genetics , Replication Protein A/chemistry , DNA Glycosylases/metabolism , DNA Glycosylases/chemistry , DNA Glycosylases/genetics , Humans , Models, Molecular , Protein Domains , Excision Repair
12.
Plant J ; 119(4): 2021-2032, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963754

ABSTRACT

DNA glycosylases initiate the base excision repair (BER) pathway by catalyzing the removal of damaged or mismatched bases from DNA. The Arabidopsis DNA glycosylase methyl-CpG-binding domain protein 4 like (MBD4L) is a nuclear enzyme triggering BER in response to the genotoxic agents 5-fluorouracil and 5-bromouracil. To date, the involvement of MBD4L in plant physiological processes has not been analyzed. To address this, we studied the enzyme functions in seeds. We found that imbibition induced the MBD4L gene expression by generating two alternative transcripts, MBD4L.3 and MBD4L.4. Gene activation was stronger in aged than in non-aged seeds. Seeds from mbd4l-1 mutants displayed germination failures when maintained under control or ageing conditions, while 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 seeds reversed these phenotypes. Seed nuclear DNA repair, assessed by comet assays, was exacerbated in an MBD4L-dependent manner at 24 h post-imbibition. Under this condition, the BER genes ARP, APE1L, and LIG1 showed higher expression in 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 than in mbd4l-1 seeds, suggesting that these components could coordinate with MBD4L to repair damaged DNA bases in seeds. Interestingly, the ATM, ATR, BRCA1, RAD51, and WEE1 genes associated with the DNA damage response (DDR) pathway were activated in mbd4l-1, but not in 35S:MBD4L.3/mbd4l-1 or 35S:MBD4L.4/mbd4l-1 seeds. These results indicate that MBD4L is a key enzyme of a BER cascade that operates during seed imbibition, whose deficiency would cause genomic damage detected by DDR, generating a delay or reduction in germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Glycosylases , DNA Repair , Germination , Seeds , Seeds/genetics , Seeds/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Gene Expression Regulation, Plant , DNA Damage
13.
Plant Cell ; 34(10): 3685-3701, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35775949

ABSTRACT

Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.


Subject(s)
Arabidopsis , DNA Glycosylases , Arabidopsis/genetics , DNA/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Methylation/genetics , Endosperm/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant/genetics , Genomic Imprinting/genetics , RNA, Small Interfering/genetics , Zea mays/genetics , Zea mays/metabolism
14.
Mol Cell ; 68(4): 797-807.e7, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149600

ABSTRACT

DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.


Subject(s)
DNA Damage , DNA Glycosylases/metabolism , DNA Repair/radiation effects , Ultraviolet Rays , Acetohexamide/pharmacology , Cell Line, Tumor , DNA Glycosylases/biosynthesis , DNA Glycosylases/genetics , DNA Repair/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/radiation effects , Humans , Male
15.
Nucleic Acids Res ; 51(3): 1034-1049, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36631987

ABSTRACT

DNA glycosylase MutY plays a critical role in suppression of mutations resulted from oxidative damage, as highlighted by cancer-association of the human enzyme. MutY requires a highly conserved catalytic Asp residue for excision of adenines misinserted opposite 8-oxo-7,8-dihydroguanine (OG). A nearby Asn residue hydrogen bonds to the catalytic Asp in structures of MutY and its mutation to Ser is an inherited variant in human MUTYH associated with colorectal cancer. We captured structural snapshots of N146S Geobacillus stearothermophilus MutY bound to DNA containing a substrate, a transition state analog and enzyme-catalyzed abasic site products to provide insight into the base excision mechanism of MutY and the role of Asn. Surprisingly, despite the ability of N146S to excise adenine and purine (P) in vitro, albeit at slow rates, N146S-OG:P complex showed a calcium coordinated to the purine base altering its conformation to inhibit hydrolysis. We obtained crystal structures of N146S Gs MutY bound to its abasic site product by removing the calcium from crystals of N146S-OG:P complex to initiate catalysis in crystallo or by crystallization in the absence of calcium. The product structures of N146S feature enzyme-generated ß-anomer abasic sites that support a retaining mechanism for MutY-catalyzed base excision.


Subject(s)
DNA Glycosylases , Neoplasms , Humans , Calcium , DNA Repair , Mutation , Purines , DNA Glycosylases/metabolism
16.
Nucleic Acids Res ; 51(10): 4942-4958, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37021552

ABSTRACT

The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA. This sampling process, that we find to be tightly regulated by the conserved residue G245, is crucial for the rapid recruitment of OGG1 at oxidative lesions induced by laser micro-irradiation. Furthermore, we show that residues Y203, N149 and N150, while being all involved in early stages of 8-oxoG probing by OGG1 based on previous structural data, differentially regulate the sampling of the DNA and recruitment to oxidative lesions.


Subject(s)
DNA Glycosylases , Humans , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA/chemistry , DNA Glycosylases/metabolism , DNA Repair
17.
Nucleic Acids Res ; 51(8): 3754-3769, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37014002

ABSTRACT

The N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and ß deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase. The structure of a complex between the active site unedited mutant CΔ100 P2G hNEIL1 (K242) glycosylase and double-stranded (ds) DNA containing a urea lesion reveals a pre-cleavage intermediate, in which the Gly2 N-terminal amine forms a conjugate with the deoxyribose C1' of the lesion, with the urea moiety remaining intact. This structure supports a proposed catalytic mechanism in which Glu3-mediated protonation of O4' facilitates attack at deoxyribose C1'. The deoxyribose is in the ring-opened configuration with the O4' oxygen protonated. The electron density of Lys242 suggests the 'residue 242-in conformation' associated with catalysis. This complex likely arises because the proton transfer steps involving Glu6 and Lys242 are hindered due to Glu6-mediated H-bonding with the Gly2 and the urea lesion. Consistent with crystallographic data, biochemical analyses show that the CΔ100 P2G hNEIL1 (K242) glycosylase exhibits a residual activity against urea-containing dsDNA.


Subject(s)
DNA Glycosylases , DNA Repair , Deoxyribose , Urea , Deoxyribose/chemistry , DNA/chemistry , DNA Damage , DNA Glycosylases/metabolism , Humans
18.
Nucleic Acids Res ; 51(3): 1087-1102, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36651270

ABSTRACT

Reactive oxygen species (ROS) are implicated in epithelial cell-state transition and deposition of extracellular matrix upon airway injury. Of the many cellular targets of ROS, oxidative DNA modification is a major driving signal. However, the role of oxidative DNA damage in modulation profibrotic processes has not been fully delineated. Herein, we report that oxidative DNA base lesions, 8-oxoG, complexed with 8-oxoguanine DNA glycosylase 1 (OGG1) functions as a pioneer factor, contributing to transcriptional reprogramming within airway epithelial cells. We show that TGFß1-induced ROS increased 8-oxoG levels in open chromatin, dynamically reconfigure the chromatin state. OGG1 complexed with 8-oxoG recruits transcription factors, including phosphorylated SMAD3, to pro-fibrotic gene promoters thereby facilitating gene activation. Moreover, 8-oxoG levels are elevated in lungs of mice subjected to TGFß1-induced injury. Pharmacologic targeting of OGG1 with the selective small molecule inhibitor of 8-oxoG binding, TH5487, abrogates fibrotic gene expression and remodeling in this model. Collectively, our study implicates that 8-oxoG substrate-specific binding by OGG1 is a central modulator of transcriptional regulation in response to tissue repair.


Subject(s)
DNA Glycosylases , Guanine , Lung Injury , Animals , Mice , Chromatin , DNA/metabolism , DNA Damage , DNA Glycosylases/metabolism , DNA Repair , Reactive Oxygen Species/metabolism , Transcriptional Activation , Guanine/analogs & derivatives
19.
Nucleic Acids Res ; 51(22): 12508-12521, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37971311

ABSTRACT

Cellular DNA is subject to damage from a multitude of sources and repair or bypass of sites of damage utilize an array of context or cell cycle dependent systems. The recognition and removal of oxidatively damaged bases is the task of DNA glycosylases from the base excision repair pathway utilizing two structural families that excise base lesions in a wide range of DNA contexts including duplex, single-stranded and bubble structures arising during transcription. The mammalian NEIL2 glycosylase of the Fpg/Nei family excises lesions from each of these DNA contexts favoring the latter two with a preference for oxidized cytosine products and abasic sites. We have determined the first liganded crystal structure of mammalian NEIL2 in complex with an abasic site analog containing DNA duplex at 2.08 Å resolution. Comparison to the unliganded structure revealed a large interdomain conformational shift upon binding the DNA substrate accompanied by local conformational changes in the C-terminal domain zinc finger and N-terminal domain void-filling loop necessary to position the enzyme on the DNA. The detailed biochemical analysis of NEIL2 with an array of oxidized base lesions indicates a significant preference for its lyase activity likely to be paramount when interpreting the biological consequences of variants.


Subject(s)
DNA Glycosylases , DNA-(Apurinic or Apyrimidinic Site) Lyase , Opossums , Animals , Humans , DNA/chemistry , DNA Damage , DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Mammals/genetics , Zinc Fingers , Protein Conformation
20.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197283

ABSTRACT

Alkylating agents damage DNA and proteins and are widely used in cancer chemotherapy. While cellular responses to alkylation-induced DNA damage have been explored, knowledge of how alkylation affects global cellular stress responses is sparse. Here, we examined the effects of the alkylating agent methylmethane sulfonate (MMS) on gene expression in mouse liver, using mice deficient in alkyladenine DNA glycosylase (Aag), the enzyme that initiates the repair of alkylated DNA bases. MMS induced a robust transcriptional response in wild-type liver that included markers of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) known to be controlled by XBP1, a key UPR effector. Importantly, this response is significantly reduced in the Aag knockout. To investigate how AAG affects alkylation-induced UPR, the expression of UPR markers after MMS treatment was interrogated in human glioblastoma cells expressing different AAG levels. Alkylation induced the UPR in cells expressing AAG; conversely, AAG knockdown compromised UPR induction and led to a defect in XBP1 activation. To verify the requirements for the DNA repair activity of AAG in this response, AAG knockdown cells were complemented with wild-type Aag or with an Aag variant producing a glycosylase-deficient AAG protein. As expected, the glycosylase-defective Aag does not fully protect AAG knockdown cells against MMS-induced cytotoxicity. Remarkably, however, alkylation-induced XBP1 activation is fully complemented by the catalytically inactive AAG enzyme. This work establishes that, besides its enzymatic activity, AAG has noncanonical functions in alkylation-induced UPR that contribute to cellular responses to alkylation.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , Protein Unfolding , Alkylation , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Endoplasmic Reticulum Stress , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , X-Box Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL