Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 700
Filter
Add more filters

Publication year range
1.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35882236

ABSTRACT

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Subject(s)
Bacterial Infections , Neutrophils , Receptors, G-Protein-Coupled , Animals , Mice , Anti-Bacterial Agents , Carrier Proteins , Defensins/genetics , Dysbiosis , Keratinocytes , Receptors, G-Protein-Coupled/metabolism , Staphylococcus aureus
2.
Cell Mol Life Sci ; 81(1): 230, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780625

ABSTRACT

Insect host defense comprises two complementary dimensions, microbial killing-mediated resistance and microbial toxin neutralization-mediated resilience, both jointly providing protection against pathogen infections. Insect defensins are a class of effectors of innate immunity primarily responsible for resistance to Gram-positive bacteria. Here, we report a newly originated gene from an ancestral defensin via genetic deletion following gene duplication in Drosophila virilis, which confers an enhanced resilience to Gram-positive bacterial infection. This gene encodes an 18-mer arginine-rich peptide (termed DvirARP) with differences from its parent gene in its pattern of expression, structure and function. DvirARP specifically expresses in D. virilis female adults with a constitutive manner. It adopts a novel fold with a 310 helix and a two CXC motif-containing loop stabilized by two disulfide bridges. DvirARP exhibits no activity on the majority of microorganisms tested and only a weak activity against two Gram-positive bacteria. DvirARP knockout flies are viable and have no obvious defect in reproductivity but they are more susceptible to the DvirARP-resistant Staphylococcus aureus infection than the wild type files, which can be attributable to its ability in neutralization of the S. aureus secreted toxins. Phylogenetic distribution analysis reveals that DvirARP is restrictedly present in the Drosophila subgenus, but independent deletion variations also occur in defensins from the Sophophora subgenus, in support of the evolvability of this class of immune effectors. Our work illustrates for the first time how a duplicate resistance-mediated gene evolves an ability to increase the resilience of a subset of Drosophila species against bacterial infection.


Subject(s)
Defensins , Drosophila Proteins , Drosophila , Drosophila/classification , Drosophila/genetics , Drosophila/immunology , Drosophila/microbiology , Defensins/chemistry , Defensins/genetics , Defensins/immunology , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Animals , Gene Deletion , Gene Duplication , Female , Protein Folding , Amino Acid Motifs , Bacterial Toxins/metabolism , Staphylococcus aureus/physiology
3.
Plant J ; 115(4): 1071-1083, 2023 08.
Article in English | MEDLINE | ID: mdl-37177878

ABSTRACT

The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phylogeny , Zinc/metabolism , Metals/metabolism , Plants/metabolism , Defensins/genetics , Defensins/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism
4.
PLoS Pathog ; 18(9): e1010851, 2022 09.
Article in English | MEDLINE | ID: mdl-36174087

ABSTRACT

During infection, Bacillus anthracis bacilli encounter potent antimicrobial peptides (AMPs) such as defensins. We examined the role that B. anthracis capsule plays in protecting bacilli from defensins and other cationic AMPs by comparing their effects on a fully virulent encapsulated wild type (WT) strain and an isogenic capsule-deficient capA mutant strain. We identified several human defensins and non-human AMPs that were capable of killing B. anthracis. The human alpha defensins 1-6 (HNP-1-4, HD-5-6), the human beta defensins 1-4 (HBD-1-4), and the non-human AMPs, protegrin, gramicidin D, polymyxin B, nisin, and melittin were all capable of killing both encapsulated WT and non-encapsulated capA mutant B. anthracis. However, non-encapsulated capA mutant bacilli were significantly more susceptible than encapsulated WT bacilli to killing by nearly all of the AMPs tested. We demonstrated that purified capsule bound HBD-2, HBD-3, and HNP-1 in an electrophoretic mobility shift assay. Furthermore, we determined that the capsule layer enveloping WT bacilli bound and trapped HBD-3, substantially reducing the amount reaching the cell wall. To assess whether released capsule might also play a protective role, we pre-incubated HBD-2, HBD-3, or HNP-1 with purified capsule before their addition to non-encapsulated capA mutant bacilli. We found that free capsule completely rescued the capA mutant bacilli from killing by HBD-2 and -3 while killing by HNP-1 was reduced to the level observed with WT bacilli. Together, these results suggest an immune evasion mechanism by which the capsule, both that enveloping the bacilli and released fragments, contributes to virulence by binding to and inhibiting the antimicrobial activity of cationic AMPs.


Subject(s)
Bacillus anthracis , Nisin , alpha-Defensins , beta-Defensins , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Defensins/genetics , Defensins/pharmacology , Gramicidin , Humans , Melitten , Polymyxin B , alpha-Defensins/pharmacology
5.
BMC Microbiol ; 24(1): 167, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755524

ABSTRACT

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Defensins , Diptera , Larva , Animals , Defensins/pharmacology , Defensins/genetics , Defensins/chemistry , Defensins/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diptera/genetics , Larva/drug effects , Larva/genetics , Microbial Sensitivity Tests , Amino Acid Sequence , Insect Proteins/genetics , Insect Proteins/pharmacology , Insect Proteins/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Gram-Negative Bacteria/drug effects
6.
Plant Physiol ; 191(1): 515-527, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36087013

ABSTRACT

Grain cadmium (Cd) is translocated from source to sink tissues exclusively via phloem, though the phloem Cd unloading transporter has not been identified yet. Here, we isolated and functionally characterized a defensin-like gene DEFENSIN 8 (DEF8) highly expressed in rice (Oryza sativa) grains and induced by Cd exposure in seedling roots. Histochemical analysis and subcellular localization detected DEF8 expression preferentially in pericycle cells and phloem of seedling roots, as well as in phloem of grain vasculatures. Further analysis demonstrated that DEF8 is secreted into extracellular spaces possibly by vesicle trafficking. DEF8 bound to Cd in vitro, and Cd efflux from protoplasts as well as loading into xylem vessels decreased in the def8 mutant seedlings compared with the wild type. At maturity, significantly less Cd accumulation was observed in the mutant grains. These results suggest that DEF8 is a dual function protein that facilitates Cd loading into xylem and unloading from phloem, thus mediating Cd translocation from roots to shoots and further allocation to grains, representing a phloem Cd unloading regulator. Moreover, essential mineral nutrient accumulation as well as important agronomic traits were not affected in the def8 mutants, suggesting DEF8 is an ideal target for breeding low grain Cd rice.


Subject(s)
Cadmium , Oryza , Cadmium/metabolism , Oryza/genetics , Oryza/metabolism , Phloem/metabolism , Plant Breeding , Edible Grain/metabolism , Seedlings/metabolism , Plant Roots/metabolism , Defensins/genetics , Defensins/analysis , Defensins/metabolism
7.
Genome ; 67(9): 316-326, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38722238

ABSTRACT

Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.


Subject(s)
Defensins , Houseflies , Animals , Defensins/genetics , Houseflies/genetics , Evolution, Molecular , Phylogeny , Larva/genetics , Immune System , Amino Acid Sequence , Multigene Family
8.
Physiol Plant ; 176(5): e14513, 2024.
Article in English | MEDLINE | ID: mdl-39262029

ABSTRACT

Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.


Subject(s)
Defensins , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Withania , Withania/genetics , Withania/physiology , Withania/metabolism , Withania/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/drug effects , Nicotiana/microbiology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Defensins/genetics , Defensins/metabolism , Plant Growth Regulators/metabolism , Alternaria/physiology , Droughts , Seedlings/genetics , Seedlings/physiology , Seedlings/drug effects , Salicylic Acid/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Hydrogen Peroxide/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/physiology
9.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33483420

ABSTRACT

RNA helicases play roles in various essential biological processes such as RNA splicing and editing. Recent in vitro studies show that RNA helicases are involved in immune responses toward viruses, serving as viral RNA sensors or immune signaling adaptors. However, there is still a lack of in vivo data to support the tissue- or cell-specific function of RNA helicases owing to the lethality of mice with complete knockout of RNA helicases; further, there is a lack of evidence about the antibacterial role of helicases. Here, we investigated the in vivo role of Dhx15 in intestinal antibacterial responses by generating mice that were intestinal epithelial cell (IEC)-specific deficient for Dhx15 (Dhx15 f/f Villin1-cre, Dhx15ΔIEC). These mice are susceptible to infection with enteric bacteria Citrobacter rodentium (C. rod), owing to impaired α-defensin production by Paneth cells. Moreover, mice with Paneth cell-specific depletion of Dhx15 (Dhx15 f/f Defensinα6-cre, Dhx15ΔPaneth) are more susceptible to DSS (dextran sodium sulfate)-induced colitis, which phenocopy Dhx15ΔIEC mice, due to the dysbiosis of the intestinal microbiota. In humans, reduced protein levels of Dhx15 are found in ulcerative colitis (UC) patients. Taken together, our findings identify a key regulator of Wnt-induced α-defensins in Paneth cells and offer insights into its role in the antimicrobial response as well as intestinal inflammation.


Subject(s)
Colitis/immunology , Defensins/genetics , Enterobacteriaceae Infections/immunology , Paneth Cells/immunology , RNA Helicases/genetics , Wnt Signaling Pathway , Animals , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Defensins/immunology , Dextran Sulfate/administration & dosage , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Gastrointestinal Microbiome/immunology , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/immunology , Paneth Cells/microbiology , Protein Isoforms/genetics , Protein Isoforms/immunology , RNA Helicases/immunology
10.
J Fish Dis ; 47(4): e13922, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38204197

ABSTRACT

The purpose of this study was to investigate whether a defensin-like antimicrobial peptide (C-13326 peptide) identified in Hermetia illucens could possess protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The cDNA of C-13326 peptide comprised 243 nucleotides encoding 80 amino acids, with six conserved cysteine residues and the classical CSαß structure. The recombinant expression plasmid pPIC9K-C-13326 was constructed and transformed into GS115 Pichia pastoris, and the C-13326 peptide was expressed by induction with 1% methanol. The crude extract of C-13326 peptide was precipitated by ammonium sulfate, assayed by Braford method, detected by tricine-SDS-PAGE, evaluated by BandScan software and identified by liquid chromatography-mass spectrometry. The C-13326 peptide was shown to have inhibitory activity against the growth of multidrug-resistant A. schubertii DM210910 by using the minimum growth inhibitory concentration and Oxford cup method. In addition, scanning electron microscopy analysis suggested that C-13326 peptide inhibited the growth of A. schubertii DM210910 by damaging the bacterial cell membrane. To explore the role of peptide C-13326 in vivo, hybrid snakehead was fed with peptide C-13326 as feed additives for 7 days. The results revealed that C-13326 peptide could significantly down-regulate the expression levels of IL-1ß, IL-8, IL-12 and TNF-α (p < .05), and significantly improved the survival rate of hybrid snakehead after challenging with A. schubertii DM210910. Therefore, the C-13326 peptide is a promising antimicrobial agent for A. schubertii treatment in aquaculture.


Subject(s)
Aeromonas , Fish Diseases , Animals , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fishes/genetics , Aeromonas/genetics , Peptides , Defensins/genetics , Defensins/pharmacology
11.
Ecotoxicol Environ Saf ; 277: 116371, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663196

ABSTRACT

Nicotine, a naturally occurring alkaloid found in tobacco, is a potent neurotoxin extensively used to control Nilaparvata lugens (Stål), a destructive insect pest of rice crops. The insect gut harbors a wide array of resident microorganisms that profoundly influence several biological processes, including host immunity. Maintaining an optimal gut microbiota and immune homeostasis requires a complex network of reciprocal regulatory interactions. However, the underlying molecular mechanisms driving these symbiotic exchanges, particularly between specific gut microbe and immunity, remain largely unknown in insects. Our previous investigations identified and isolated a nicotine-degrading Burkholderia cepacia strain (BsNLG8) with antifungal properties. Building on those findings, we found that nicotine intake significantly increased the abundance of a symbiotic bacteria BsNLG8, induced a stronger bacteriostatic effect in hemolymph, and enhanced the nicotine tolerance of N. lugens. Additionally, nicotine-induced antimicrobial peptides (AMPs) exhibited significant antibacterial effects against Staphylococcus aureus. We adopted RNA-seq to explore the underlying immunological mechanisms in nicotine-stressed N. lugens. Bioinformatic analyses identified numerous differentially expressed immune genes, including recognition/immune activation (GRPs and Toll) and AMPs (i.e., Defensin, Lugensin, lysozyme). Temporal expression profiling (12, 24, and 48 hours) of immune genes revealed pattern recognition proteins and immune effectors as primary responders to nicotine-induced stress. Defensin A, a broad-spectrum immunomodulatory cationic peptide, exhibited significantly high expression. RNA interference-mediated silencing of Defensin A reduced the survival, enhanced nicotine sensitivity of N. lugens to nicotine, and decreased the abundance of BsNLG8. The reintroduction of BsNLG8 improved the expression of immune genes, aiding nicotine resistance of N. lugens. Our findings indicate a potential reciprocal immunomodulatory interaction between Defensin A and BsNLG8 under nicotine stress. Moreover, this study offers novel and valuable insights for future research into enhancing nicotine-based pest management programs and developing alternative biocontrol methods involving the implication of insect symbionts.


Subject(s)
Burkholderia cepacia , Gastrointestinal Microbiome , Hemiptera , Nicotine , Animals , Nicotine/toxicity , Nicotine/pharmacology , Hemiptera/drug effects , Gastrointestinal Microbiome/drug effects , Burkholderia cepacia/drug effects , Defensins/genetics , Stress, Physiological/drug effects , Symbiosis
12.
BMC Microbiol ; 23(1): 82, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966312

ABSTRACT

BACKGROUND: The emergence of multi-resistant pathogens have increased dramatically in recent years, becoming a major public-health concern. Among other promising antimicrobial molecules with potential to assist in this worldwide struggle, cysteine-stabilized αß (CS-αß) defensins are attracting attention due their efficacy, stability, and broad spectrum against viruses, bacteria, fungi, and protists, including many known human pathogens. RESULTS: Here, 23 genomes of ciliated protists were screened and two CS-αß defensins with a likely antifungal activity were identified and characterized, using bioinformatics, from a culturable freshwater species, Laurentiella sp. (LsAMP-1 and LsAMP-2). Although any potential cellular ligand could be predicted for LsAMP-2; evidences from structural, molecular dynamics, and docking analyses suggest that LsAMP-1 may form stably associations with phosphatidylinositol 4,5-bisphosphates (PIP2), a phospholipid found on many eukaryotic cells, which could, in turn, represent an anchorage mechanism within plasma membrane of targeted cells. CONCLUSION: These data stress that more biotechnology-oriented studies should be conducted on neglected protists, such ciliates, which could become valuable sources of novel bioactive molecules for therapeutic uses.


Subject(s)
Anti-Infective Agents , Ciliophora , Defensins , Antifungal Agents/metabolism , Cysteine , Defensins/genetics , Defensins/pharmacology , Molecular Dynamics Simulation
13.
J Exp Bot ; 74(17): 5374-5393, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37326591

ABSTRACT

Ectopic expression of defensins in plants correlates with their increased capacity to withstand abiotic and biotic stresses. This applies to Arabidopsis thaliana, where some of the seven members of the PLANT DEFENSIN 1 family (AtPDF1) are recognised to improve plant responses to necrotrophic pathogens and increase seedling tolerance to excess zinc (Zn). However, few studies have explored the effects of decreased endogenous defensin expression on these stress responses. Here, we carried out an extensive physiological and biochemical comparative characterization of (i) novel artificial microRNA (amiRNA) lines silenced for the five most similar AtPDF1s, and (ii) a double null mutant for the two most distant AtPDF1s. Silencing of five AtPDF1 genes was specifically associated with increased aboveground dry mass production in mature plants under excess Zn conditions, and with increased plant tolerance to different pathogens - a fungus, an oomycete and a bacterium, while the double mutant behaved similarly to the wild type. These unexpected results challenge the current paradigm describing the role of PDFs in plant stress responses. Additional roles of endogenous plant defensins are discussed, opening new perspectives for their functions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Stress, Physiological/genetics , Zinc/metabolism , Defensins/genetics , Defensins/metabolism , Defensins/pharmacology , Gene Expression Regulation, Plant , Plant Diseases/genetics
14.
Transgenic Res ; 32(3): 223-233, 2023 06.
Article in English | MEDLINE | ID: mdl-37131050

ABSTRACT

Plant defensins are a potential tool in crop improvement programs through biotechnology. Their antifungal action makes them attractive molecules for the production of transgenic plants. Information is currently lacking on what happens to the expression of defense genes in transgenic plants that overexpress a defensin. Here we show the relative expression of four defense-related genes: Mn-sod, PAL1, aos1 and HPL evaluated in two transgenic soybean events (Def1 and Def17) constitutively expressing the NmDef02 defensin gene from Nicotiana megalosiphon. The expression of these defense genes showed a differential profile in the transgenic events, with the increased expression of the aos1 gene and the repression of the Mn-sod gene in both events, when compared to the non-transgenic control. Furthermore, the expression of the PAL1 gene only increased in the Def17 event. The results indicate that although there were some changes in the expression of defense genes in transgenic plants overexpressing the defensin NmDef02; the morphoagronomic parameters evaluated were similar to the non-transgenic control. Understanding the molecular changes that occur in these transgenic plants could be of interest in the short, medium and long term.


Subject(s)
Glycine max , Superoxide Dismutase , Glycine max/genetics , Glycine max/metabolism , Superoxide Dismutase/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Defensins/genetics , Gene Expression Regulation, Plant
15.
Mol Biol Rep ; 50(1): 11-18, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36282461

ABSTRACT

BACKGROUND: Chickpea (Cicer arietinum L.), a major nutritional source cultivated worldwide, is vulnerable to several abiotic and biotic stresses, including different types of soil-borne pathogens like Fusarium oxysporum f. sp. ciceri, which causes root rot disease and severely affects productivity. METHODS AND RESULTS: In this study, putative transgenic plants were obtained with the Radish defensin (Rs-AFP2) gene through Agrobacterium tumefaciens mediated transformation using the embryo axis explants. Transgenes were confirmed in 18 putative transgenic plants with PCR-specific primers for nptII and Rs-AFP2 genes. Twelve transgenic plants were established successfully under greenhouse conditions. The T0 plants were allowed for self-pollination to obtain T1 seeds. The T1 plants, selected for Fusarium wilt assay using Fusarium oxysporum f. sp. Cicero, showed different resistance levels, from moderate to high levels in comparison to control plants (wild-type) which exhibited severe wilt symptoms. CONCLUSION: Our results suggest the application of Radish defensins (RsAFP1/RsAFP2 genes) for improving pathogen resistance in chickpea.


Subject(s)
Cicer , Fusarium , Raphanus , Cicer/genetics , Cicer/metabolism , Fusarium/genetics , Raphanus/genetics , Plants, Genetically Modified/genetics , Defensins/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
16.
Genomics ; 114(5): 110475, 2022 09.
Article in English | MEDLINE | ID: mdl-36064074

ABSTRACT

Salmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected. RNA-seq was performed after challenging the chicken with Salmonella Typhimurium. Comparative differential expression results showed that following infection, a total of 3153 genes and 1787 genes were differentially expressed in the liver and spleen, respectively. The genes that were differentially expressed included interleukins, cytokines, NOS2, Avß-defensins, toll-like receptors, and other immune-related gene families. Most of the genes and signaling pathways involved in the innate and adaptive immune responses against bacterial infection were significantly enriched in the Kashmir faverolla. Pathway analysis revealed that most of the enriched pathways were MAPK signaling pathway, NOD-like receptor signaling pathway, TLR signaling pathway, PPAR signaling pathway, endocytosis, etc. Surprisingly some immune-related genes like TLRs were upregulated in the susceptible chicken breed. On postmortem examination, the resistant birds showed small lesions in the liver compared to large necrotic lesions in susceptible birds. The pathological manifestations and RNA sequencing results suggest a balancing link between resistance and infection tolerance in Kashmir faverolla. Here we also developed an online Poultry Infection Database (https://skuastk.org/pif/index.html), the first publicly available gene expression resource for disease resistance in chickens. The available database not only shows the data for gene expression in chicken tissues but also provides quick search, visualization and download capacity.


Subject(s)
Chickens , Poultry Diseases , Animals , Chickens/genetics , Cytokines/genetics , Defensins/genetics , Disease Resistance/genetics , Gene Expression , NLR Proteins/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Poultry/genetics , Poultry Diseases/genetics , RNA-Seq , Salmonella/genetics , Sequence Analysis, RNA , Toll-Like Receptors/genetics
17.
Funct Integr Genomics ; 22(2): 235-250, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35195843

ABSTRACT

Plant defensins and lipid transfer proteins (LTPs) constitute a large and evolutionarily diverse family of antimicrobial peptides. Defensins and LTPs are two pathogenesis-related proteins (PR proteins) whose characterization may help to uncover aspects about the sugarcane response to pathogens attack. LTPs have also been investigated for their participation in the response to different types of stress. Despite the important roles of defensins and LTPs in biotic and abiotic stresses, scarce knowledge is found about these proteins in sugarcane. By using bioinformatics approaches, we characterized defensins and LTPs in the sugarcane wild species and modern cultivar genomes. The identification of defensins and LTPs showed that all five defensins groups and eight of the nine LTPs have their respective genes loci, although some was only identified in the cultivar genome. Phylogenetic analysis showed that defensins appear to be more conserved among groups of plants than LTPs. Some defensins and LTPs showed opposite expression during pathogenic and benefic bacterial interactions. Interestingly, the expression of defensins and LTPs in shoots and roots was completely different in plants submitted to benefic bacteria or water depletion. Finally, the modeling and comparison of isoforms of LTPs and defensins in wild species and cultivars revealed a high conservation of tertiary structures, with variation of amino acids in different regions of proteins, which could impact their antimicrobial activity. Our data contributed to the characterization of defensins and LTPs in sugarcane and provided new elements for understanding the involvement of these proteins in sugarcane response to different types of stress.


Subject(s)
Saccharum , Defensins/chemistry , Defensins/genetics , Defensins/metabolism , Lipids , Phylogeny , Plant Proteins/metabolism , Saccharum/genetics , Saccharum/metabolism
18.
Cell Microbiol ; 23(3): e13301, 2021 03.
Article in English | MEDLINE | ID: mdl-33331054

ABSTRACT

Fungal spores are unique cells that mediate dispersal and survival in the environment. For pathogenic fungi encountering a susceptible host, these specialised structures may serve as infectious particles. The main causative agent of the opportunistic disease aspergillosis, Aspergillus fumigatus, produces asexual spores, the conidia, that become dissipated by air flows or water currents but also serve as propagules to infect a susceptible host. We demonstrate that the defX gene of this mould encodes putative antimicrobial peptides resembling cysteine-stabilised (CS)αß defensins that are expressed in a specific spatial and temporal manner in the course of asexual spore formation. Localisation studies on strains expressing a fluorescent proxy or tagged defX alleles expose that these antimicrobial peptides are secreted to coat the conidial surface. Deletion mutants reveal that the spore-associated defX gene products delay the growth of Gram-positive Staphylococcus aureus and demonstrate that the defX gene and presumably its encoded spore-associated defensins confer a growth advantage to the fungal opponent over bacterial competitors. These findings have implications with respect to the ecological niche of A. fumigatus that serves as a 'virulence school' for this human pathogenic mould; further relevance is given for the infectious process resulting in aspergillosis, considering competition with the host microbiome or co-infecting microorganisms to break colonisation resistance at host surfaces.


Subject(s)
Aspergillus fumigatus/pathogenicity , Defensins/metabolism , Fungal Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Aspergillosis/microbiology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/physiology , Defensins/genetics , Escherichia coli/growth & development , Fungal Proteins/genetics , Genes, Fungal , Humans , Pore Forming Cytotoxic Proteins/genetics , Spores, Fungal/metabolism , Spores, Fungal/physiology , Staphylococcus aureus/growth & development , Virulence
19.
Protein Expr Purif ; 192: 106032, 2022 04.
Article in English | MEDLINE | ID: mdl-34922007

ABSTRACT

Insect defensins are effector components of the innate defense system. Defensins, which are widely distributed among insects, are a type of small cysteine-rich plant antimicrobial peptides with broad-spectrum antimicrobial activity. Here, the cDNAs of the black soldier fly, Hermetia illucens (L.), encoding six defensins, designated herein as Hidefensin1-1, 2, 3, 4, 5, 6. Moreover, Hidefensin1-1, 2, and 5 were identified for the first time by genome-targeted analysis. These Hidefensins were found to mainly adopt α-helix and ß-sheet conformation homology as modeled by PRABI, Swiss-Model and ProFunc server. Six conserved cysteine residues that contribute to three disulfide bonds formed the spacing pattern "C-X12-C-X3-C-X9-C-X5-C-X-C", which play a vital role in the molecular stability of Hidefensins. Phylogenetic analysis revealed that the homology of five Hidefensins (except Hidefensin4) was about 59%-92% compared with other insect defensins, indicating that they are novel antimicrobial peptides genes in black soldier fly. Furthermore, the Hidefensin1-1 was expressed in the Escherichia coli strain BL21(DE3) as a fusion protein with thioredoxin. Results showed that the purified TRX-Hidefensin1-1 exerted strong inhibitory effects against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The inhibitory efficacy of TRX-Hidefensin1-1 against Gram-positive bacteria was better than that against Gram-negative bacteria. These results indicated that Hidefensin1-1 has potent antimicrobial activities against test pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Defensins/chemistry , Defensins/pharmacology , Diptera/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Anti-Bacterial Agents/metabolism , Defensins/genetics , Defensins/metabolism , Diptera/chemistry , Diptera/classification , Diptera/genetics , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Phylogeny , Sequence Alignment
20.
Fish Shellfish Immunol ; 131: 817-826, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36349653

ABSTRACT

In this study, seven transcripts representing a novel antimicrobial peptide (AMP) family with structural features similar to those of arthropod defensins were identified from Mytilus coruscus. These novel defensins from the Mytilus AMP family were named myticofensins. To explore the possible immune-related functions of these myticofensins, we examined their expression profiles in different tissues and larval stages, as well as in three immune-related tissues under the threat of different microbes. Our data revealed that the seven myticofensins had relatively high expression levels in immune-related tissues. Most myticofensins were undetectable, or had low expression levels, in different larval mussel stages. Additionally, in vivo microbial challenges significantly increased the expression levels of myticofensins in M. coruscus hemocytes, gills, and digestive glands, showing different immune response patterns under challenges from different microbes. Our data indicates that different myticofensins may have different immune functions in different tissues. Furthermore, peptide sequences corresponding to the beta-hairpin, alpha-helix, and N-terminal loop of myticofensin were synthesized and the antimicrobial activities of these peptide fragments were tested. Our data confirms the diversity of defensins in Mytilus and reports the complex regulation of these defensins in the mussel immune response to different microbes in immune-related tissues. The immune system of Mytilus has been studied for years as they are a species with strong environmental adaptations. Our data can be regarded as a step forward in the study of the adaptation of Mytilus spp. to an evolving microbial world.


Subject(s)
Mytilus , Animals , Antimicrobial Peptides , Defensins/genetics , Defensins/metabolism , Hemocytes , Larva
SELECTION OF CITATIONS
SEARCH DETAIL