Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Phytoremediation ; 26(4): 546-556, 2024.
Article in English | MEDLINE | ID: mdl-37667465

ABSTRACT

This study focuses on applying phytoremediation as a low-effective and simple process to treat wastewater laden with 1,4 dioxane (DIOX). A floating macrophyte (Eichhornia crassipes) was cultivated under hydroponic conditions (relative humidity 50-67%, photoperiod cycle 18:6 h light/dark, and 28-33 °C) and subjected to different DIOX loads between 0.0 (control) and 11.5 mg/g fresh mass (FM). The aquatic plant achieved DIOX and chemical oxygen demand (COD) removal efficiencies of 76-96% and 67-94%, respectively, within 15 days. E. crassipes could tolerate elevated DIOX-associated stresses until a dose of 8.2 mg DIOX/g, which highly influenced the oxidative defense system. Malondialdehyde (MDA) content, hydrogen peroxide (H2O2), and total phenolic compounds (TPC) increased by 7.3, 8.4, and 4.5-times, respectively, in response to operating the phytoremediation unit at a DIOX load of 11.5 mg/g. The associated succulent value, proteins, chlorophyll-a, chlorophyll-b, and pigments dropped by 39.6%, 45.8%, 51.5%, 80.8%, and 55.5%, respectively. The suggested removal mechanism of DIOX by E. crassipes could be uptake followed by phytovolatilization, whereas direct photodegradation from sunlight contributed to about 19.36% of the total DIOX removal efficiencies. Recycling the exhausted E. crassipes for biochar production was a cost-efficient strategy, making the payback period of the phytoremediation project equals to 6.96 yr.


Eichhornia crassipes could be used in phytoremediation of 1,4 dioxane (DIOX)-laden water at DIOX load< 8.2 mg/g FM. E. crassipes removed 77­97% DIOX via uptake and phytovolatilization. Recycling exhausted-plant to produce biochar was cost-efficient with 7 yr-payback period.


Subject(s)
Charcoal , Eichhornia , Water Pollutants, Chemical , Biodegradation, Environmental , Eichhornia/metabolism , Hydroponics , Hydrogen Peroxide/metabolism , Water Pollutants, Chemical/metabolism , Dioxanes/metabolism , Chlorophyll/metabolism
2.
Water Sci Technol ; 89(9): 2440-2456, 2024 May.
Article in English | MEDLINE | ID: mdl-38747959

ABSTRACT

1,4-Dioxane concentration in most contaminated water is much less than 1 mg/L, which cannot sustain the growth of most reported 1,4-dioxane-metabolizing pure cultures. These pure cultures were isolated following enrichment of mixed cultures at high concentrations (20 to 1,000 mg/L). This study is based on a different strategy: 1,4-dioxane-metabolizing mixed cultures were enriched by periodically spiking 1,4-dioxane at low concentrations (≤1 mg/L). Five 1,4-dioxane-metabolizing pure strains LCD6B, LCD6D, WC10G, WCD6H, and WD4H were isolated and characterized. The partial 16S rRNA gene sequencing showed that the five bacterial strains were related to Dokdonella sp. (98.3%), Acinetobacter sp. (99.0%), Afipia sp. (99.2%), Nitrobacter sp. (97.9%), and Pseudonocardia sp. (99.4%), respectively. Nitrobacter sp. WCD6H is the first reported 1,4-dioxane-metabolizing bacterium in the genus of Nitrobacter. The net specific growth rates of these five cultures are consistently higher than those reported in the literature at 1,4-dioxane concentrations <0.5 mg/L. Compared to the literature, our newly discovered strains have lower half-maximum-rate concentrations (1.8 to 8.2 mg-dioxane/L), lower maximum specific 1,4-dioxane utilization rates (0.24 to 0.47 mg-dioxane/(mg-protein ⋅ d)), higher biomass yields (0.29 to 0.38 mg-protein/mg-dioxane), and lower decay coefficients (0.01 to 0.02 d-1). These are characteristics of microorganisms living in oligotrophic environments.


Subject(s)
Dioxanes , Dioxanes/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Phylogeny , Water Pollutants, Chemical/metabolism
3.
Appl Microbiol Biotechnol ; 107(2-3): 955-969, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36625913

ABSTRACT

1,4-Dioxane is a contaminant of emerging concern that has been commonly detected in groundwater. In this study, a stable and robust 1,4-dioxane degrading enrichment culture was obtained from uncontaminated soil. The enrichment was capable to metabolically degrade 1,4-dioxane at both high (100 mg L-1) and environmentally relevant concentrations (300 µg L-1), with a maximum specific 1,4-dioxane degradation rate (qmax) of 0.044 ± 0.001 mg dioxane h-1 mg protein-1, and 1,4-dioxane half-velocity constant (Ks) of 25 ± 1.6 mg L-1. The microbial community structure analysis suggested Pseudonocardia species, which utilize the dioxane monooxygenase for metabolic 1,4-dioxane biodegradation, were the main functional species for 1,4-dioxane degradation. The enrichment culture can adapt to both acidic (pH 5.5) and alkaline (pH 8) conditions and can recover degradation from low temperature (10°C) and anoxic (DO < 0.5 mg L-1) conditions. 1,4-Dioxane degradation of the enrichment culture was reversibly inhibited by TCE with concentrations higher than 5 mg L-1 and was completely inhibited by the presence of 1,1-DCE as low as 1 mg L-1. Collectively, these results demonstrated indigenous stable and robust 1,4-dioxane degrading enrichment culture can be obtained from uncontaminated sources and can be a potential candidate for 1,4-dioxane bioaugmentation at environmentally relevant conditions. KEY POINTS: •1,4-Dioxane degrading enrichment was obtained from uncontaminated soil. • The enrichment culture could degrade 1,4-dioxane to below 10 µg L-1. •Low Ks and low cell yield of the enrichment benefit its application in bioremediation.


Subject(s)
Microbiota , Water Pollutants, Chemical , Soil , Biodegradation, Environmental , Dioxanes/metabolism , Water Pollutants, Chemical/metabolism
4.
Appl Environ Microbiol ; 88(7): e0209121, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35297726

ABSTRACT

1,4-Dioxane (dioxane) is an emerging contaminant of concern for which bioremediation is seen as a promising solution. To date, eight distinct gene families have been implicated in dioxane degradation, though only dioxane monooxygenase (DXMO) from Pseudonocardia dioxanivorans is routinely used as a biomarker in environmental surveys. In order to assess the functional and taxonomic diversity of bacteria capable of dioxane degradation, we collated existing, poorly-organized information on known biodegraders to create a curated suite of biomarkers with confidence levels for assessing 1,4-dioxane degradation potential. The characterized enzyme systems for dioxane degradation are frequently found on mobile elements, and we identified that many of the curated biomarkers are associated with other hallmarks of genomic rearrangements, indicating lateral gene transfer plays a role in dissemination of this trait. This is contrasted by the extremely limited phylogenetic distribution of known dioxane degraders, where all representatives belong to four classes within three bacterial phyla. Based on the curated set of expanded biomarkers, a search of more than 11,000 publicly available metagenomes identified a sparse and taxonomically limited distribution of potential dioxane degradation proteins. Our work provides an important and necessary structure to the current knowledge base for dioxane degradation and clarifies the potential for natural attenuation of dioxane across different environments. It further highlights a disconnect between the apparent mobility of these gene families and their limited distributions, indicating dioxane degradation may be difficult to integrate into a microorganism's metabolism. IMPORTANCE New regulatory limits for 1,4-dioxane in groundwater have been proposed or adopted in many countries, including the United States and Canada, generating a direct need for remediation options as well as better tools for assessing the fate of dioxane in an environment. A comprehensive suite of biomarkers associated with dioxane degradation was identified and then leveraged to examine the global potential for dioxane degradation in natural and engineered environments. We identified consistent differences in the dioxane-degrading gene families associated with terrestrial, aquatic, and wetland environments, indicating reliance on a single biomarker for assessing natural attenuation of dioxane is likely to miss key players. Most environments do not currently host the capacity for dioxane degradation-the sparse distribution of dioxane degradation potential highlights the need for bioaugmentation approaches over biostimulation of naturally occurring microbial communities.


Subject(s)
Groundwater , Water Pollutants, Chemical , Bacteria , Biodegradation, Environmental , Dioxanes/metabolism , Phylogeny , Water Pollutants, Chemical/metabolism
5.
Environ Res ; 205: 112511, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34871598

ABSTRACT

The present investigation reports the biotransformation of an endrocrine disrupting agent; 1,4-dioxane through bacterial metabolism. Initially, potential bacterial isolates capable of surviving with minimum 1,4-dioxane were screened from industrial wastewater. Thereafter, screening was done to isolate a bacteria which can biotransform higher concentration (1000 mg/L) of 1,4-dioxane. Morphological and biochemical features were examined prior establishing their phylogenetic relationships and the bacterium was identified as Staphylococcus capitis strain AG. Biotransformation experiments were tailored using response surface tool and predictions were made to elucidate the opimal conditions. Critical factors influencing bio-transformation efficiency such as tetrahydrofuran, availability of 1,4-dioxane and inoculum size were varied at three different levels as per the central composite design for ameliorating 1,4-dioxane removal. Functional attenuation of 1,4-dioxane by S. capitis strain AG were understood using spectroscopic techniques were significant changes in the peak positions and chemical shifts were visualized. Mass spectral profile revealed that 1.5 (% v/v) S. capitis strain AG could completely (∼99%) remove 1000 mg/L 1,4-dioxane, when incubated with 2 µg/L tetrahydrofuran for 96 h. The toxicity of 1,4-dioxane and biotransformed products by S. capitis strain AG were tested on Artemia salina. The results of toxicity tests revealed that the metabolic products were less toxic as they exerted minimal mortality rate after 48 h exposure. Thus, this research would be the first to report the response prediction and precise tailoring of 1,4-dioxane biotransformation using S. captis strain AG.


Subject(s)
Dioxanes/metabolism , Staphylococcus capitis , Algorithms , Biotransformation , Phylogeny , Staphylococcus capitis/metabolism
6.
Environ Res ; 214(Pt 2): 113939, 2022 11.
Article in English | MEDLINE | ID: mdl-35921903

ABSTRACT

1,4-dioxane is a heterocyclic ether used as a polar industrial solvent and are released as waste discharges. 1,4-dioxane deteriorates health and quality, thereby attracts concern by the environment technologists. The need of attaining sustainable development goals have resulted in search of an eco-friendly and technically viable treatment strategy. This extensive review is aimed to emphasis on the (a) characteristics of 1,4-dioxane and their occurrence in the environment as well as their toxicity, (b) remedial strategies, such as physico-chemical treatment and advanced oxidation techniques. Special reference to bioremediation that involves diverse microbial strains and their mechanism are highlighted in this review. The role of macronutrients, stimulants and other abiotic cofactors in the biodegradation of 1,4-dioxane is discussed lucidly. We have critically discussed the inducible enzymes, enzyme-based remediation, distinct instrumental method of analyses to know the fate of intermediates produced from 1,4-dioxane biotransformation. This comprehensive survey also tries to put forth the different toxicity assessment tools used in evaluating the extent of detoxification of 1,4-dioxane achieved through biotransforming mechanism. Conclusively, the challenges, opportunities, techno-economic feasibility and future prospects of implementing 1,4-dioxane through biotechnological interventions are also discussed.


Subject(s)
Water Pollutants, Chemical , Biodegradation, Environmental , Dioxanes/analysis , Dioxanes/metabolism , Water Pollutants, Chemical/analysis
7.
Biodegradation ; 33(2): 157-168, 2022 04.
Article in English | MEDLINE | ID: mdl-35102492

ABSTRACT

1,4-Dioxane is a pervasive and persistent contaminant in numerous aquifers. Although the median concentration in most contaminant plumes is in the microgram per liter range, a subset of sites have contamination in the milligram per liter range. Most prior studies that have examined 1,4-dioxane concentrations in the hundreds of milligrams per liter range have been performed with industrial wastewater. The main objective of this study was to evaluate aerobic biodegradation of 1,4-dioxane in microcosms prepared with soil and groundwater from a site where concentrations range from ~ 1500 mg·L-1 in the source zone, to 450 mg·L-1 at a midpoint of the groundwater plume, and to 6 mg·L-1 at a down-gradient location. Treatments included biostimulation with propane, addition of propane and a propanotrophic enrichment culture (ENV487), and unamended. The highest rates of biodegradation for each location in the plume occurred in the bioaugmented treatments, although indigenous propanotrophs also biodegraded 1,4-dioxane to below 25 µg·L-1. Nutrient additions were required to sustain biodegradation of propane and cometabolism of 1,4-dioxane. Among the unamended treatments, biodegradation of 1,4-dioxane was detected in the mid-gradient microcosms. An isolate was obtained that grows on 1,4-dioxane as a sole source of carbon and energy and identified through whole-genome sequencing as Pseudonocardia dioxivorans BERK-1. In a prior study, the same strain was isolated from an aquifer in the southeastern United States. Monod kinetic parameters for BERK-1 are similar to those for strain CB1190.


Subject(s)
Propane , Water Pollutants, Chemical , Biodegradation, Environmental , Dioxanes/metabolism , Water Pollutants, Chemical/metabolism
8.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-34882528

ABSTRACT

A Gram-stain-negative bacterium, designated as YN2T, that is capable of degrading 1,4-dioxane, was isolated from active sludge collected from a wastewater treatment plant in Harbin, PR China. Cells of strain YN2T were aerobic, motile, pleomorphic rods, mostly twisted, and contained the water-insoluble yellow zeaxanthin dirhamnoside. Strain YN2T grew at 10-40 °C (optimum, 30 °C), pH 5.0-8.0 (pH 7.0) and with 0-1 % (w/v) NaCl (0.1 %). It also could grow chemolithoautotrophically and fix N2 when no ammonium or nitrate was supplied. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YN2T belongs to the genus Xanthobacter and shares the highest pairwise identity with Xanthobacter autotrophicus 7cT (98.6 %) and Xanthobacter flavus 301T (98.4 %). The major respiratory quinone was ubiquinone-10. Chemotaxonomic analysis revealed that the strain possesses C16 : 0, C19 : 0 cyclo ω8c and C18 : 1 ω7c as the major fatty acids. The DNA G+C content was 67.95 mol%. Based on genome sequences, the DNA-DNA hybridization estimate values between strain YN2T and X. autotrophicus 7cT, X. flavus 301T and X. tagetidis TagT2CT (the only three species of Xanthobacter with currently available genomes) were 31.70, 31.30 and 28.50 %; average nucleotide identity values were 85.23, 84.84 and 83.59 %; average amino acid identity values were 81.24, 80.23 and 73.57 %. Based on its phylogenetic, phenotypic, and physiological characteristics, strain YN2T is considered to represent a novel species of the genus Xanthobacter, for which the name Xanthobacter dioxanivorans sp. nov. is proposed. The type strain is YN2T (=CGMCC 1.19031T=JCM 34666T).


Subject(s)
Dioxanes/metabolism , Phylogeny , Sewage/microbiology , Xanthobacter , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry , Water Purification , Xanthobacter/classification , Xanthobacter/isolation & purification
9.
Biotechnol Lett ; 43(3): 613-626, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33146857

ABSTRACT

OBJECTIVE: Laccase is one of the best known biocatalysts which degrade wide varieties of complex molecules that are both non-cyclic and cyclic in structure. The study focused on enzyme kinetics of a purified laccase from Trametes hirsuta L. fungus and its application on biotransformation of a carcinogenic molecule 1,4-dioxane. RESULTS: Laccase was purified from white-rot fungus T. hirsuta L. which showed specific activity of 978.34 U/mg after the purification fold of 54.08. The stable laccase activity (up to 16 h) is shown at 4-6 pH and 20-40 °C temperature range. The purified enzyme exhibited significant stability for 10 metal ions up to 10 mM concentration, except for Fe2+ and Hg2+. The Cu2+ ion induced laccase activity up to 142% higher than the control at 10 mM concentration. The laccase enzyme kinetic parameters Km was 20 ± 5 µM and 400 ± 60 µM, whereas Kcat was 198.29 ± 0.18/s and 80.20 ± 1.59/s for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and guaiacol respectively. The cyclic ether 1,4-dioxane (100 ppm) was completely degraded in presence of purified laccase within 2 h of incubation and it was confirmed by HPLC and GC analysis. The oxidation reaction was accelerated by 25, 22, 6 and 19% in presence of 1 mM syringaldehyde, vanillin, ABTS and guaiacol mediators respectively. CONCLUSIONS: In this study, fungal laccase (a natural biocatalyst) based degradation of synthetic chemical 1,4-dioxane was reported for the first time. This method has added advantages over the multiple methods reported earlier being a natural remedy.


Subject(s)
Dioxanes/metabolism , Fungal Proteins , Laccase , Trametes/enzymology , Biodegradation, Environmental , Biotransformation , Dioxanes/analysis , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Kinetics , Laccase/chemistry , Laccase/metabolism
10.
Ecotoxicol Environ Saf ; 217: 112206, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33866286

ABSTRACT

1,4-Dioxane (dioxane), an emerging groundwater contaminant, is frequently detected in landfill leachates with its structural analog, tetrahydrofuran (THF). Along with undesirable leakage of landfill leachates, dioxane and THF inevitably percolate into groundwater leading to a broader region of contamination. Cometabolic bioremediation is an effective approach to manage commingled THF and dioxane pollution. In this study, a newly isolated bacterium Arthrobacter sp. WN18 is able to co-oxidize dioxane with THF as the primary substrate. Meanwhile, the THF-induced thmADBC gene cluster was responsible for the dioxane degradation rate indicating THF monooxygenase is the essential enzyme that initializing α-hydroxylation of THF and dioxane. Further, γ-butyrolactone and HEAA were characterized as the key metabolites of THF and dioxane, respectively. In addition, WN18 can tolerate the inhibition of trichloroethylene (5.0 mg/L) as a representative of co-existing leachate constituent, and sustain its activity at various pH (5-11), temperatures (15-42 °C), and salinities (up to 4%, as NaCl wt). Like other Arthrobacter species, WN18 also exhibited the capability of fixing nitrogen. All this evidence indicates the feasibility and advantage of WN18 as a thmADBC-catalyzed inoculator to bioremediate co-contamination of THF and dioxane.


Subject(s)
Arthrobacter/metabolism , Biodegradation, Environmental , Dioxanes/metabolism , Furans/metabolism , Bacterial Proteins , Groundwater , Mixed Function Oxygenases , Multigene Family , Oxidation-Reduction , Trichloroethylene , Water Pollutants, Chemical
11.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638775

ABSTRACT

Biodegradation of 1,4-dioxane (dioxane) contamination has gained much attention for decades. In our previous work, we isolated a highly efficient dioxane degrader, Xanthobacter sp. YN2, but the underlying mechanisms of its extraordinary degradation performance remained unresolved. In this study, we performed a comparative transcriptome analysis of YN2 grown on dioxane and citrate to elucidate its genetic degradation mechanism and investigated the transcriptomes of different dioxane degradation stages (T0, T24, T48). We also analyzed the transcriptional response of YN2 over time during which the carbon source switched from citrate to dioxane. The results indicate that strain YN2 was a methylotroph, which provides YN2 a major advantage as a pollutant degrader. A large number of genes involved in dioxane metabolism were constitutively expressed prior to dioxane exposure. Multiple genes related to the catabolism of each intermediate were upregulated by treatment in response to dioxane. Glyoxylate metabolism was essential during dioxane degradation by YN2, and the key intermediate glyoxylate was metabolized through three routes: glyoxylate carboligase pathway, malate synthase pathway, and anaplerotic ethylmalonyl-CoA pathway. Genes related to quorum sensing and transporters were significantly upregulated during the early stages of degradation (T0, T24) prior to dioxane depletion, while the expression of genes encoding two-component systems was significantly increased at late degradation stages (T48) when total organic carbon in the culture was exhausted. This study is the first to report the participation of genes encoding glyoxalase, as well as methylotrophic genes xoxF and mox, in dioxane metabolism. The present study reveals multiple genetic and transcriptional strategies used by YN2 to rapidly increase biomass during growth on dioxane, achieve high degradation efficiency and tolerance, and adapt to dioxane exposure quickly, which provides useful information regarding the molecular basis for efficient dioxane biodegradation.


Subject(s)
Adaptation, Physiological , Biomass , Dioxanes/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Xanthobacter/metabolism , Xanthobacter/genetics
12.
Appl Environ Microbiol ; 86(17)2020 08 18.
Article in English | MEDLINE | ID: mdl-32591384

ABSTRACT

Cometabolic degradation plays a prominent role in bioremediation of commingled groundwater contamination (e.g., chlorinated solvents and the solvent stabilizer 1,4-dioxane [dioxane]). In this study, we untangled the diversity and catalytic functions of multicomponent monooxygenases in Azoarcus sp. strain DD4, a Gram-negative propanotroph that is effective in degrading dioxane and 1,1-dichloroethylene (1,1-DCE). Using a combination of knockout mutagenesis and heterologous expression, a toluene monooxygenase (MO) encoded by the tmoABCDEF gene cluster was unequivocally proved to be the key enzyme responsible for the cometabolism of both dioxane and 1,1-DCE. Interestingly, in addition to utilizing toluene as a primary substrate, this toluene MO can also oxidize propane into 1-propanol. Expression of this toluene MO in DD4 appears inducible by both substrates (toluene and propane) and their primary hydroxylation products (m-cresol, p-cresol, and 1-propanol). These findings coherently explain why DD4 can grow on propane and express toluene MO for active cooxidation of dioxane and 1,1-DCE. Furthermore, upregulation of tmo transcription by 1-propanol underlines the implication potential of using 1-propanol as an alternative auxiliary substrate for DD4 bioaugmentation. The discovery of this toluene MO in DD4 and its degradation and induction versatility can lead to broad applications, spanning from environmental remediation and water treatment to biocatalysis in green chemistry.IMPORTANCE Toluene MOs have been well recognized given their robust abilities to degrade a variety of environmental pollutants. Built upon previous research efforts, this study ascertained the untapped capability of a toluene MO in DD4 for effective cooxidation of dioxane and 1,1-DCE, two of the most prevailing yet challenging groundwater contaminants. This report also aligns the induction of a toluene MO with nontoxic and commercially accessible chemicals (e.g., propane and 1-propanol), extending its implications in the field of environmental microbiology and beyond.


Subject(s)
Azoarcus/enzymology , Bacterial Proteins/metabolism , Dichloroethylenes/metabolism , Dioxanes/metabolism , Mixed Function Oxygenases/metabolism , Oxidation-Reduction
13.
Appl Microbiol Biotechnol ; 104(9): 4155-4170, 2020 May.
Article in English | MEDLINE | ID: mdl-32170385

ABSTRACT

1,4-Dioxane, a probable human carcinogen, is a co-contaminant at many chlorinated solvent-contaminated sites. Although numerous 1,4-dioxane-degrading aerobic bacteria have been isolated, almost no information exists on the microorganisms able to degrade this chemical under anaerobic conditions. Here, the potential for 1,4-dioxane biodegradation was examined using multiple inocula and electron acceptor amendments. The inocula included uncontaminated agricultural soils and river sediments as well as sediments from two 1,4-dioxane contaminated sites. Five separate experiments involved the examination of triplicate live microcosms and abiotic controls for approximately 1 year. Compound-specific isotope analysis (CSIA) was used to further investigate biodegradation in a subset of the microcosms. Also, DNA was extracted from microcosms exhibiting 1,4-dioxane biodegradation for microbial community analysis using 16S rRNA gene amplicon high-throughput sequencing. Given the long incubation periods, it is likely that electron acceptor depletion occurred and methanogenic conditions eventually dominated. The iron/EDTA/humic acid or sulfate amendments did not result in 1,4-dioxane biodegradation in the majority of cases. 1,4-dioxane biodegradation was most commonly observed in the nitrate amended and no electron acceptor treatments. Notably, both contaminated site sediments illustrated removal in the samples compared to the abiotic controls in the no electron acceptor treatment. However, it is important to note that the degradation was slow (with concentration reductions occurring over approximately 1 year). In two of the three cases examined, CSIA provided additional evidence for 1,4-dioxane biodegradation. In one case, the reduction in 1,4-dioxane in the samples comparing the controls was likely too low for the method to detect a significant 13C/12C enrichment. Further research is required to determine the value of measuring 2H/1H for generating evidence for the biodegradation of this chemical. The microbial community analysis indicated that the phylotypes unclassified Comamonadaceae and 3 genus incertae sedis were more abundant in 1,4-dioxane-degrading microcosms compared to the live controls (no 1,4-dioxane) in microcosms inoculated with contaminated and uncontaminated sediment, respectively. The relative abundance of known 1,4-dioxane degraders was also investigated at the genus level. The soil microcosms were dominated primarily by Rhodanobacter with lower relative abundance values for Pseudomonas, Mycobacterium, and Acinetobacter. The sediment communities were dominated by Pseudomonas and Rhodanobacter. Overall, the current study indicates 1,4-dioxane biodegradation under anaerobic and, likely methanogenic conditions, is feasible. Therefore, natural attenuation may be an appropriate cleanup technology at sites where time is not a limitation.


Subject(s)
Dioxanes/metabolism , Geologic Sediments/microbiology , Microbiota , Soil Microbiology , Water Pollutants, Chemical/metabolism , Anaerobiosis , Biodegradation, Environmental , Electrons , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics
14.
Appl Microbiol Biotechnol ; 104(5): 2255-2269, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31956944

ABSTRACT

1,4-Dioxane, a co-contaminant at many chlorinated solvent sites, is a problematic groundwater pollutant because of risks to human health and characteristics which make remediation challenging. In situ 1,4-dioxane bioremediation has recently been shown to be an effective remediation strategy. However, the presence/abundance of 1,4-dioxane degrading species across different environmental samples is generally unknown. Here, the objectives were to identify which 1,4-dioxane degrading functional genes are present and which genera may be using 1,4-dioxane and/or metabolites to support growth across different microbial communities. For this, laboratory sample microcosms and abiotic control microcosms (containing media) were inoculated with four uncontaminated soils and sediments from two contaminated sites. Live control microcosms were treated in the same manner, except 1,4-dioxane was not added. 1,4-Dioxane decreased in live microcosms with all six inocula, but not in the abiotic controls, suggesting biodegradation occurred. A comparison of live sample microcosms and live controls (no 1,4-dioxane) indicated nineteen genera were enriched following exposure to 1,4-dioxane, suggesting a growth benefit for 1,4-dioxane biodegradation. The three most enriched were Mycobacterium, Nocardioides, and Kribbella (classifying as Actinomycetales). There was also a higher level of enrichment for Arthrobacter, Nocardia, and Gordonia (all three classifying as Actinomycetales) in one soil, Hyphomicrobium (Rhizobiales) in another soil, Clavibacter (Actinomycetales) and Bartonella (Rhizobiales) in another soil, and Chelativorans (Rhizobiales) in another soil. Although Arthrobacter, Mycobacterium, and Nocardia have previously been linked to 1,4-dioxane degradation, Nocardioides, Gordonia, and Kribbella are potentially novel degraders. The analysis of the functional genes associated with 1,4-dioxane demonstrated three genes were present at higher relative abundance values, including Rhodococcus sp. RR1 prmA, Rhodococcus jostii RHA1 prmA, and Burkholderia cepacia G4 tomA3. Overall, this study provides novel insights into the identity of the multiple genera and functional genes associated with aerobic degradation of 1,4-dioxane in mixed communities.


Subject(s)
Actinomycetales/metabolism , Bacterial Proteins/genetics , Dioxanes/metabolism , Mixed Function Oxygenases/genetics , Water Pollutants, Chemical/metabolism , Actinomycetales/classification , Actinomycetales/genetics , Actinomycetales/growth & development , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Biodegradation, Environmental , Phylogeny , Soil Microbiology
15.
Biotechnol Appl Biochem ; 67(5): 774-782, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31957059

ABSTRACT

Lignin is the second most abundant polymer after cellulose in lignocellulosic biomass. Its aromatic composition and recalcitrant nature make its valorization a major challenge for obtaining low molecular weight aromatics compounds with high value-added from the enzymatic depolymerization of industrial lignins. The oxidation reaction of lignin polymer using laccases alone remains inefficient. Therefore, researches are focused on the use of a laccase-mediator system (LMS) to facilitate enzymatic depolymerization. Until today, the LMS system was studied using water-soluble lignin only (commercial lignins, modified lignins, or lignin model compounds). This work reports a study of three LMS systems to depolymerize the three major industrial lignins (organosolv lignin, Kraft lignin, and sodium lignosulfonate). We show that an enzymatic depolymerization of these lignins can be achieved by LMS using laccase from Trametes versicolor, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt as mediator and a cosolvent (25% of 1,4-dioxane) to enhance the solubilization of lignins.


Subject(s)
Laccase/metabolism , Lignin/metabolism , Polyporaceae/enzymology , Biocatalysis , Dioxanes/metabolism , Oxidation-Reduction , Polyporaceae/metabolism , Solubility , Sulfonic Acids/metabolism
16.
Bull Exp Biol Med ; 170(1): 88-92, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33231798

ABSTRACT

We compared in vitro degradation and physical properties of polypropylene and a biodegradable polymer synthesized by electrospinning and consisting of 65% polycaprolactone and 35% polytrimethylene carbonate as a possible alternative material for use in surgery for pelvic floor muscle failure. Samples of the studied polymers were implanted to 10 male Wistar rats into the interfascial space on the back (polypropylene on the right side and biodegradable polymer on the left side). The synthesized biopolymer was characterized by elongation and tear resistance, similar to those of polypropylene. During the period from the third to the sixth month after implantation, the area of fibrosis around individual polypropylene and biopolymer fibers increased by 16.7 and 107.9%, respectively, while remaining reduced compared to polypropylene. The total fibrosis area in 6 months after implantation of polypropylene and biopolymer samples significantly increased by 18% (p=0.0097) and 48% (p=0.05), respectively, i.e. fibrosing processes were more intense in case of biopolymer. Induction of more pronounced fibrosis can be an advantage of the synthesized biopolymer when choosing the material for fabrication of implants and their use for correction of incompetence of the ligamentous and muscular apparatus.


Subject(s)
Absorbable Implants , Biocompatible Materials/metabolism , Dioxanes/metabolism , Polyesters/metabolism , Polymers/metabolism , Polypropylenes/metabolism , Surgical Mesh , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Dioxanes/chemical synthesis , Dioxanes/pharmacology , Fascia/drug effects , Fascia/ultrastructure , Fibrosis , Humans , Hydrophobic and Hydrophilic Interactions , Male , Materials Testing , Muscle, Skeletal/drug effects , Muscle, Skeletal/surgery , Muscle, Skeletal/ultrastructure , Polyesters/chemical synthesis , Polyesters/pharmacology , Polymers/chemical synthesis , Polymers/pharmacology , Polypropylenes/chemical synthesis , Polypropylenes/pharmacology , Rats , Rats, Wistar
17.
Appl Environ Microbiol ; 85(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30926731

ABSTRACT

Tetrahydrofuran (THF) is known to induce the biodegradation of 1,4-dioxane (dioxane), an emerging contaminant, but the mechanisms by which THF affects dioxane biodegradation in microbial communities are not well understood. To fill this knowledge gap, changes in the microbial community structure in microcosm experiments with synthetic medium and landfill leachate were examined over time using 16S rRNA gene amplicon sequencing and functional gene quantitative PCR assays. The overarching hypothesis being tested was that THF promoted dioxane biodegradation by increasing the abundance of dioxane-degrading bacteria in the consortium. The data revealed that in experiments with synthetic medium, the addition of THF significantly increased the abundance of Pseudonocardia, a genus with several representatives that can grow on both dioxane and THF, and of Rhodococcus ruber, a species that can use THF as the primary growth substrate while cometabolizing dioxane. However, in similar experiments with landfill leachate, only R. ruber was significantly enriched. When the THF concentration was higher than the dioxane concentration, THF competitively inhibited dioxane degradation since dioxane degradation was negligible, while the dioxane-degrading bacteria and the corresponding THF/dioxane monooxygenase gene copies increased by a few orders of magnitude.IMPORTANCE Widespread in groundwater and carcinogenic to humans, 1,4-dioxane (dioxane) is attracting significant attention in recent years. Advanced oxidation processes can effectively remove dioxane but require high energy consumption and operation costs. Biological removal of dioxane is of particular interest due to the ability of some bacteria to mineralize dioxane at a low energy cost. Although dioxane is generally considered recalcitrant to biodegradation, more than 20 types of bacteria can degrade dioxane as the sole electron donor substrate or the secondary electron donor substrate. In the latter case, tetrahydrofuran (THF) is commonly studied as the primary electron donor substrate. Previous work has shown that THF promotes dioxane degradation at a low THF concentration but inhibits dioxane degradation at a high THF concentration. Our work expanded on the previous work by mechanically examining the effects of THF on dioxane degradation in a microbial community context.


Subject(s)
Dioxanes/metabolism , Furans/pharmacology , Microbiota/drug effects , Microbiota/physiology , Actinobacteria/genetics , Actinobacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental/drug effects , Groundwater , Microbiota/genetics , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Water Pollutants, Chemical/metabolism
18.
Bioorg Chem ; 88: 102916, 2019 07.
Article in English | MEDLINE | ID: mdl-31026719

ABSTRACT

Both c-Met and VEGFR-2 were important targets for cancer therapies. In order to develop reversible and non-covalent c-Met and VEGFR-2 dual inhibitors, a series of [1,4]dioxino[2,3-f]quinazoline derivatives were designed and synthesized. The enzyme assay demonstrated that most target compounds had inhibition potency on both c-Met and VEGFR-2 with IC50 values in nanomolar range especially compounds 7m and 7k. Based on further cell proliferation assay in vitro, compound 7k showed significantly anti-tumor activity in vivo on a hepatocellular carcinoma (MHCC97H cells) xenograft mouse model. We docked the compound 7m with c-Met and VEGFR-2 kinases, and interpreted the SAR of these analogues. All results indicated that the target compounds were dual inhibitors of c-Met and VEGFR-2 kinases that held promising potential in cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Dioxanes/therapeutic use , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinazolines/therapeutic use , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dioxanes/chemical synthesis , Dioxanes/metabolism , Female , Humans , Hydrogen Bonding , Mice, SCID , Molecular Docking Simulation , Molecular Structure , Proto-Oncogene Proteins c-met/metabolism , Quinazolines/chemical synthesis , Quinazolines/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
19.
Biodegradation ; 29(3): 301-310, 2018 06.
Article in English | MEDLINE | ID: mdl-29696449

ABSTRACT

Rhodococcus aetherivorans JCM 14343 can degrade 1,4-dioxane as a sole carbon and energy source. This study aimed to characterize this 1,4-dioxane degradation ability further, and assess the potential use of the strain for 1,4-dioxane removal in industrial wastewater. Strain JCM 14343 was able to degrade 1,4-dioxane inducibly, and its 1,4-dioxane degradation was also induced by tetrahydrofuran and 1,4-butanediol. The demonstration that 1,4-butanediol not only induced but also enhanced 1,4-dioxane degradation was a novel finding of this study. Although strain JCM 14343 appeared not to be an effective 1,4-dioxane degrader considering the maximum specific 1,4-dioxane degradation rate (0.0073 mg-dioxane/mg-protein/h), half saturation concentration (59.2 mg/L), and cell yield (0.031 mg-protein/mg-1,4-dioxane), the strain could degrade over 1100 mg/L of 1,4-dioxane and maintain its degradation activity at a wide range of temperature (5-40 °C) and pH (4-9) conditions. This suggests the usefulness of strain JCM 14343 in 1,4-dioxane treatment under acidic and cold conditions. In addition, 1,4-dioxane degradation experiments in the presence of ethylene glycol (EG) or other cyclic ethers revealed that 1,4-dioxane degradation by strain JCM 14343 was inhibited in the presence of other cyclic ethers, but not by EG, suggesting certain applicability of strain JCM 14343 for industrial wastewater treatment.


Subject(s)
Dioxanes/metabolism , Rhodococcus/metabolism , Biodegradation, Environmental/drug effects , Ethers, Cyclic/pharmacology , Ethylene Glycol/pharmacology , Hydrogen-Ion Concentration , Kinetics , Rhodococcus/enzymology , Rhodococcus/growth & development , Temperature
20.
Water Sci Technol ; 77(1-2): 123-133, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29339611

ABSTRACT

1,4-Dioxane (dioxane), a probable human carcinogen, often exists in industrial wastewater and domestic sewage. In this study, we applied 16S rRNA and metatranscriptomic methods to analyze the dioxane biodegradation mechanism by activated sludge. Tetrahydrofuran (THF) was added as an essential co-metabolite to promote the degradation of dioxane. We found the dioxane removal ratio increased with increasing THF concentrations. When the THF concentration increased from 60.0 to 200.0 mg/L, the dioxane degradation rate was stable. Three additions of ∼60.0 mg/L THF resulted in better dioxane degradation than one addition of 200 mg/L THF. Ammonia-oxidizing and denitrifying bacteria with methane monooxygenases (MOs) and ammonia MOs played the most important roles during the degradation of dioxane. Kyoto Encyclopedia of Genes and Genomes metabolic pathway and functional genes analyses showed that the activated sludge system was complex and stable when dioxane was added. In future studies, primers should be designed to identify specific bacteria and functional MO genes, which would help reveal the function of various bacteria and their MOs during dioxane degradation.


Subject(s)
Dioxanes/analysis , Metagenome/genetics , Microbial Consortia/genetics , Sewage/microbiology , Transcriptome/genetics , Water Pollutants, Chemical/analysis , Biodegradation, Environmental/drug effects , Dioxanes/metabolism , Furans/pharmacology , Genes, Microbial , High-Throughput Nucleotide Sequencing , Oxidoreductases/genetics , Oxidoreductases/metabolism , RNA, Ribosomal, 16S , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL